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In this work we analyze the translocation of homopolymer chains poly-X, where X represents any of the
20 naturally occurring amino acid residues, in terms of size N and single-helical propensity ω. We provide
an analytical framework to calculate both the free energy F of translocation and the translocation time τ as a
function of chain size N , energies U and ε of the unfolded and folded states, respectively. Our results show that
free energy F has a characteristic bell-shaped barrier as function of the percentage of monomers translocated.
Inclusion of single-helical propensity ω associated to monomer X and chain’s native energy ε in the translocation
model increases the energy barrier �F up to one order of magnitude as compared with the well-known Gaussian
chain model. Computation of the mean first-passage time as function of chain size N shows that the translocation
time τ exhibits a significant jump of several orders of magnitude at a critical chain size N . This jump markedly
slows down translocation of chains larger than N . Existence of the transition jump of τ has been observed
experimentally at least in poly(ethylene oxide) chains [R. P. Choudhury, P. Galvosas, and M. Schönhoff, J. Phys.
Chem. B 112, 13245 (2008)]. Our results suggest the transition jump of τ as a function of N may be a very well
spread feature throughout translocation of poly-X chains.
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I. INTRODUCTION

Translocation of biopolymers through membranes is a
cornerstone in many cellular processes. Biopolymers involved
in translocation usually include RNA, DNA, and proteins but
translocation is not restricted to them. During translocation,
biopolymers thread through a channel embedded in a mem-
brane connecting two milieu called cis and trans regions.
Protein translocation systems are diverse, such as the vesicle-
embedded anthrax toxin channel [1], the virulent needle-like
type three secretion system connecting the bacterial and host
cell membranes [2], or the Sec complex channel embedded in
the endoplasmic reticulum or the periplasmic membranes [3].
The general view suggests that in order to initiate translocation,
a targeting signal has to be recognized and bound at the en-
trance of the channel. To accomplish translocation, unfolding,
diffusion, and coupling of electrochemical forces are necessary
steps [3–6]. Understanding translocation is thus a key step
in the development of systems with potential applications
involving biopolymer sequencing and delivery of proteins as
therapeutic agents [7,8].

Most of the experimental and computational approaches
characterizing translocation have focused on analyzing the free
energy of translocation F and the translocation time τ in terms
of the chain size N . Recent experiments of polynucleotide and
polypeptide chains across α-hemolysin channels and solid-
state nanopores have provided both qualitative and quantitative
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valuable information regarding functional forms for �F and
τ during translocation. For instance, umbrella sampling MD
of Ubiquitin (PDB code 1UBI) have shown the existence of
a free energy barrier �F with a characteristic umbrella-like
profile [9] as a function of the percentage of monomers translo-
cated. Results for confined, flexible charged polyelectrolytes
crossing narrow nanopores also exhibit this type of umbrella-
like profile [10]. Such a profile has been observed as well on
MD studies on flexible hard-sphere chains through cylindrical
holes [11] where some small-amplitude additional oscillations
have also been observed. MD studies performed in other
geometries have also shown these characteristic profiles [12].
In regard to the translocation time, adsorption-driven MD
simulations have evaluated τ as a function of size N and
obtained that it follows a power-law τ � Nξ , where ξ = 2.2,
approximately [13]. Early translocation experiments done by
Kasianowick et al. using ssDNA fragments through an α-
hemolysin pore, suggested initially that τ scaled linearly with
size N for driven translocation [14]. However, for non-driven
translocation, Sung and Park [15] and Mutkhumar [16] have
suggested that τ ∼ N2 based on Focker-Planck and Master
Equation approaches.

In this work we shall introduce monomeric helical propen-
sity ω, energy penalty U , and the ground state energy ε as
relevant parameters to describe free energy barrier �F and
translocation time τ . These quantities have several advantages,
since ω for instance, takes into account the tendency of
monomers to participate in helical structures, whereas U is
a measure of the energy penalty per monomer in a non-native
bond and ε represents collective energy when all monomers
have correct bonds. Following standard theoretical works
on this subject [15,16], we use a coarse-grained description
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focusing on poly-X chain translocation. Our model is based
on the calculation of the equilibrium partition function Z for
the N -monomer system. In contrast with other works, we
shall consider two contributions for Z . The first contribution
accounts for the tendency of the chain to fold into a ground
state conformation driven by energies U , ε, and helical
propensity ω, whereas the second contribution takes into
account reduction of conformations by anchorage of the chain
to the pore. We analyze in detail the phase-space of variables
�F and τ in terms of the set (N,ω,ε,U ) focusing on poly-X
chains where X represents any of the 20 proteinogenic amino
acid residues.

Our analytical results for the free energy of translocation
show a characteristic bell-shape profile ofF as a function of the
fraction of residues translocated. The free energy barrier �F
is increased primarily by the value of the ground state energy
ε and the chain size N . The penalty energy U has also a drastic
effect on the energy barrier, giving rise to two regimes defined
here as the regimes of flexible and rodlike chains. Poly-X
chains in the flexible regime show the largest energy barriers
in contrast to poly-X chains in the rodlike regime. Results
obtained in this work for non-driven translocation show that
τ exhibits a jump-like transition as a function of N . After
such transition, τ follows the exponential law τ � ANξ , where
1.5 � ξ � 2.0. The specific value of ξ depends strongly on the
energy penalty U and only slightly on the helical propensity ω,
as we shall discuss in detail. Constant A is in general, strongly
dependent on parameters chosen here and it may, in fact,
span several orders of magnitude for translocation time, from
nanoseconds to seconds. Such a jump-like transition has been
recently observed experimentally at least for poly(ethylene
oxide) chains [17], therefore we expect that the type of
transition predicted by our model might be very well spread
in homopolymer chain translocation.

This paper is organized as follows. Section II provides
details on the derivation of the model for poly-X translocation
from the equilibrium partition function. Section III describes
results obtained for free energy of translocation F and energy
barrier �F whereas Sec. IV discusses the translocation time
τ profiles. Finally, Sec. V presents conclusions.

II. MODEL FOR HOMOPOLYMER POLY-X
TRANSLOCATION

A. Free energy of translocation

Let us consider poly-X chains composed by N monomers
of a single type X in which each monomer has a tendency
to participate in a helical structure described by the helical
propensity ω. It will be assumed that translocation proceeds
as the polymer threads a pore of small dimensions through a
wall. During translocation, the polymer is considered as two
chain segments joined at the pore with one end free and the
other end anchored at the pore. The two chain segments, which
we shall name trans and cis, are n and N − n monomers long,
respectively, see Fig. 1. The free energy of the chain during
translocation, F(n), is the sum of the free energies of the chain
segment in the trans side, Ftrans, and the chain segment in the
cis side, Fcis. This is,

F(n) = Fcis(N − n) + Ftrans(n), (1)

FIG. 1. Schematic representation of a poly-X chain with helical
propensity ω in translocation. At time t there are n monomers in the
trans side and N − n monomers in the cis side. Blue color is used
to highlight monomers in non-native contacts with an energy penalty
U . Red color indicates monomers in native contacts. Native energy
when all monomers have native contacts is −ε. Quantity b denotes
bond length between two consecutive monomers.

where we have assumed that the same functional form for F

applies at both sides of the wall.
The free energy F of each chain segment is obtained

from the partition function Z , which represents the effective
number of available states at a temperature T . In free space,
the number of states of one chain segment depends on the
number of monomers in native and non-native contacts. In
this work, we additionally consider the tendency of a single
residue to participate in a helical structure. For such chains, the
partition function in free space is QZ. Anchorage to the pore
by one end of the chain reduces the available conformations
as compared with the free-chain. Such reduction on the
conformational space is accounted for by the steric factor
Qs . Both contributions give the total partition function Z =
QZQs, therefore, the free energy of each chain segment is
F = −kBT lnZ , which can be written as F = FZ + Fs, where
FZ = −kBT lnQZ and Fs = −kBT lnQs . Dimensions of the
pore are considered negligible in such a sense that it only
permits a single monomer to cross the boundary at a given
time. In this way, the number n of monomers crossing the wall
is the main dynamical variable describing the translocation,
and computation of the free energy F relies on its functional
form from FZ and Fs via QZ and Qs.

1. Free energy of free-chain segments

To evaluate the free energy FZ for a free-chain segment we
shall use the idea proposed by Zwanzig [18] to compute the
partition function QZ. In Zwanzig’s model, a homopolymer
chain poly-X is composed of N identical monomers X. Each
monomer has a number ν + 1 of potential conformations, ν

corresponds to non-native conformations, and there is a single
native contact for each monomer. As a first approximation, we
shall consider there is no correlation in conformations between
close monomers, in this sense all monomer conformations are
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independent. Let U > 0 be the energy penalty per monomer
in a non-native state and −ε < 0 be the overall energy of
the chain when all monomers have native contacts, ε is the
ground state energy. For a given conformation of the chain
with α monomers having native contacts, it is proposed that
the energy Eα of the chain can be written as [18]

Eα = (N − α)U − εδN,α with 0 � α � N. (2)

It is worth realizing that in this description, the ground state
of the polypeptide arises only as an all-or-none transition, i.e,
only when all monomers have attained its native conformation.
The degeneracy gα associated to energy level Eα can easily be
calculated to give [18]

gα = νN−α

(
N

α

)
, (3)

where ν is the number of non-native potential conformations
per monomer. From this, the equilibrium partition function QZ

can be obtained:

QZ = eβε + (1 + νe−βU )N − 1, (4)

from which the free energy is FZ(n) = −kBT lnQZ(n), where
n is the number of monomers translocated, kB is the Boltzmann
constant, and T is the temperature.

Recently, it has been shown that if we restrict to helix-coil
transitions, ν may be in fact related to the helical propensity
ω per monomer, which is associated with a conditional
probability of a given monomer to participate in a helical state
if its neighbor is already in a helical one [19]. The argument
goes as follows. The free energy change per monomer �f

during a helix-coil transition can be written as

�f = �h − T �s, (5)

where �h and �s represent the enthalpy and entropy change
per monomer between non-native and native conformations.
During a helix-coil transition, the Lifson-Roig model states
the helical propensity is ω = −RT ln(�f ) [20]. Assum-
ing each monomer has ν available non-native states, the
change of entropy towards the native conformation is �s =
−RT ln(ν) [19]. With these two expressions and from Eq. (5),
the relation between the helical propensity ω and the number
of non-native states ν becomes [19]

ω = 1

ν
exp(−β�h), (6)

where β = 1/RT is the Boltzmann factor. From the last
expression, ω is inversely proportional to the number of
non-native conformations ν. This implies that the number of
non-native conformations ν is reduced as the helical propensity
ω increases. This agrees with ω viewed as a measure of
the tendency to participate in a helical structure. A helical
transition is favored by increasing the helical propensity or
by decreasing the number of sampled conformations. The
enthalpy change per monomer �h also contributes positively
or negatively to the helical propensity. For instance, if the
transition is enthalpically favored, �h < 0, the term e−β�h

is an increasing function and therefore w is increased, an
expected result if the helical transition is favored. Solving
for ν from Eq. (6) and by substitution in Eq. (4), gives

the full partition function QZ as a function of the helical
propensity [19]:

QZ(n) = eβε +
(

1 + 1

ω
e−β(U+�h)

)n

− 1, (7)

from which the free energy contribution of a poly-X chain
of n monomers in thermal equilibrium with a given ω is
obtained as

FZ(n) = −kBT lnQZ(n). (8)

2. Free energy of anchored-chain segments

For the second contribution Fs , we use the steric constraint
factor Qs. Anchorage to the pore by one end of the chain
segment blocks some of the potential conformations. In
comparison with free space, there exists a reduction in the
number of conformations. For the anchored chain, it can
be shown that the corresponding partition function Qs is a
power-law respect to the number of monomers which goes
as Qs ∼ nγ−1, with γ > 0 [15,16]. It has been shown that
exponent γ can take values 0.5, �0.69, and 1, for a Gaussian,
self-avoiding, and rodlike chain, respectively, [15,16]. Then,
the contribution to the free energy of translocation due to the
anchorage to the pore by one end of the chain segment can be
written as [16]

Fs(n) = (1 − γ )kBT ln(n), (9)

where n is the number of translocated monomers across the
pore.

Summing up the last two free energy contributions, the
free energy of one chain-segment can be written as F (n) =
kBT ln ( n1−γ

QZ(n) ). Considering both chain segments of the cis and
trans sides the free energy of translocation of the poly-X that
possess helical propensity is

F(n) = kBT ln

{
((N − n)n)1−γ

QZ(N − n)QZ(n)

}
(10)

where n is the number of translocated monomers at a given
time.

B. Translocation time

Translocation time is computed following previous works
where the dynamics of translocation is treated in terms of av-
erage first-passage times. Let P (n,t | n0,0) be the probability
distribution function that n monomers have crossed the wall at
time t , starting from n0 at t = 0. Such probability distribution
P can be computed by solving a Fokker-Planck equation [21]
in terms of the chain diffusivity during translocation D(n)
and the free energy F(n) [15]. In general, P satisfies a
Fokker-Planck equation [15,22]:

∂P

∂t
= LFP(n)P, (11)

where LFP is the Fokker-Planck operator

LFP(n) = (1/b2)(∂/∂n)D(n)

× exp (−βF(n))(∂/∂n) exp(βF(n)), (12)

where b is the monomer length. From a series expansion,
it can be shown that P also obeys the so-called backward
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Kolmogorov equation in terms of the adjoint Fokker-Planck
operator L†

FP acting on variable n0 [21], i.e.,

∂P

∂t
= −L†

FP (n0)P. (13)

Knowledge of P permits to compute average quantities.
However, its computation may be avoided if the translocation
time is the goal of such calculation [21], as discussed below.

Translocation time τ is defined as the average time to
reach for the first time n = N − 1, starting at n = 1. In this
formalism τ corresponds to the mean first-passage time and
can be calculated accordingly. Let ρ be its probability density,
then the average time for translocation is the first moment of
ρ given by

τ (N,n0) =
∫ ∞

0
t ρ(N,t | n0,0) dt . (14)

In order to calculate ρ, we shall consider the probability q of
not reaching n = N − 1 at time t . This is,

q =
∫ N−1

1
P (n,t | n0,0) dn . (15)

By its definition, q can also be computed by means of ρ.
Integration of ρ on a time interval is the probability of reaching
n at that interval, then, the complementary probability, the
probability of not reaching n = N − 1 at that interval, is q:

q =
∫ ∞

t

ρ(N,t | n0,0) dt . (16)

The derivative of q, Eq. (16), over t gives ρ as a function
of q

ρ(N,t | n0,0) = −∂q(n0,t)

∂t
(17)

and substitution of q, Eq. (15), in ρ, Eq. (17), gives ρ in terms
of P :

ρ(N,t | n0,0) = −
∫ N−1

1

∂P (n,t | n0,0)

∂t
dn . (18)

The translocation time τ , in terms of P , is obtained after
substitution of ρ Eq. (18), back in Eq. (14), and after integration
over t , to give

τ (N,n0) =
∫ N−1

1

∫ ∞

0
P (n,t | n0,0) dt dn . (19)

In order to obtain τ in terms only of D(n) and F(n), the adjoint
Fokker-Plank operator is applied to both sides of Eq. (19)
giving

L†
FPτ (N,n0) =

∫ N−1

1

∫ ∞

0
L†

FPP (n,t | n0,0) dt dn . (20)

Substitution of the integrand, by the left-hand side of Eq. (13),
and after integration, it results in a second-order differential
equation for the translocation time τ [21] given by

L†
FP τ (N,n0) = −1. (21)

Finally, integration of the last expression over n0, Eq. (21),
applying reflecting and absorbing boundary conditions at n0 =

1 and n0 = N − 1, results in [15]

τ =
∫ N−1

1
dn

b2

D(n)
exp

(F(n)

kBT

) ∫ n

1
dm exp

(
−F(m)

kBT

)
.

(22)

Here, the translocation time τ depends on the following
parameters: b, N , and ω, U , and ε by means of the free energy
F . Appropriate values for these parameters are discussed in the
Appendix and throughout this work. Translocation time also
depends on the chain diffusivity D(n) during translocation.
In this work we shall consider D = 10 mμ2/s which is a
representative value within the order of magnitude of protein
and protein-like molecules diffusing inside cells. For a non-
constant D the interested reader is referred to [23].

III. RESULTS

A. Free energy for homopolymer translocation:
The energy barrier

We computed the free energy of translocation for poly-X
chains, where X represents any of the 20 proteinogenic
amino acids. To compute the free energy from Eq. (10) first,
we assigned values for the monomer length b, the helical
propensity of amino acids ω’s, the energy penalty U , and
the native energy −ε, as discussed in the Appendix. To
show the general behavior of physical variables we choose
a poly-T (poly-threonine) chain. Threonine helical propensity
is ωTHR = 0.14, a value in between the smallest and the largest
helical propensities of amino acids proline wPRO = 0.001 and
wALA = 1.64, according to the scale proposed in [20]. Results
for poly-proline (poly-P) and poly-alanine (poly-A) are also
analyzed as limiting cases. The free energy of translocation
F as a function of the percentage of translocated monomers
n/N is shown in Fig. 2 for a poly-T chain of size N = 500.
The F profile obtained is in agreement with an umbrella-like
profile reported in other works [10,11,15]. Associated with the
free energy F profile, an energy barrier �F can be defined

FIG. 2. Free energy F of translocation as a function of the
percentage of translocated monomers for a poly-T chain of N = 500
monomers. Fmin = F(1) was used as a reference point. We set the
monomer energy penalty U = 1 kJ mol−1 and the helical propensity
ωTHR = 0.14. Different values of the ground state energy ε were
considered. Dashed line shows the free energy F for a Gaussian
chain.
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FIG. 3. (a) Free energy barrier �F as a function of energy penalty U for a poly-T chain of size N = 500 monomers. Based on the profile
of �F , we defined three regimes: flexible, transition, and rodlike (delimited by lines). A threshold energy penalty U delimits the flexible regime
where �F abruptly decreases. Inset shows U as a function of the helical propensity ω. (b) and (c) show the free energy barrier �F for poly-T
chains for different chain size N and energy penalty U , respectively. In all plots we set the ground state energy ε = 40 kJ mol−1. Dashed line
shows the free energy barrier �F for a Gaussian chain.

as the difference between the maximum Fmax and minimum
Fmin observed during translocation, where Fmin = F(1) is set
as a reference and corresponds to free energy F when only
one residue has been translocated.

Results obtained here show that the energy barrier �F
increases with ground state energy ε. For the poly-T chain
�F increases one order of magnitude, from 5.2 to 14.7
kcal/mol, as ε increases from 20 to 60 kJ/mol. In comparison,
the energy barrier observed for the Gaussian chain (GC)
saturates approximately at 1.5 kcal/mol, which is almost one
order of magnitude smaller than the ones predicted when
the helical propensity is taken into account as shown in this
work. It is worth to underline that the Gaussian chain is a
single-parameter theory with the monomer length b as its only
variable.

Results shown in Fig. 2 for a poly-T chain refer to the
case when the energy penalty is U = 1 kJ/mol. Changing the
energy penalty U has a great impact on the energy barrier as
shown in Fig. 3(a) for the ground state energy ε = 40 kJ/mol.
Behavior observed for �F as a function of U suggests it
is possible to identify three regimes depending on the value
of variable U . For small U , �F is an increasing function
up till it reaches a maximum at a threshold U , U . From U ,
in a range of ≈ 3 kJ/mol, �F abruptly decreases up to a

constant value. For any U greater than U + 3 kJ/mol, the free
energy barrier remains constant. Large values of U refer to
stiff chains while small ones refer to flexible chains, therefore,
according to the behavior of the free energy barrier �F we
define these as the regimes of flexible (large �F), transition
(steep decreasing �F), and rodlike (small �F) poly-X chains.
The main result here is that poly-X chains in the flexible regime
would experience the highest energy barrier �F , in contrast
to poly-X chains in the rodlike regime that would face the
smallest energy barrier �F .

To know whether the presence of the three regimes in the
free energy barrier is a feature of this model we analyzed
if any helical propensity ω gives rise to the U that delimits
the flexible regime. Figure 3(a) inset indeed shows there
exists a U in a wide range of helical propensities ω’s, that
includes proteinogenic chains and poly-X chains with larger
helical propensities.U is decreased by the helical propensity as
U � ω−1, this means that for poly-X chains with larger helical
propensities, like poly-alanine chains, the flexible regime
is shortened to a smaller range of U ’s. We also analyzed
dependency on chain size. Figure 3(b) shows the free energy
barrier for poly-T chains N = 10,50,100,500,1000,5000.
Chains of size N > 10 possess the three regimes. The free
energy barrier is strengthened by chain size, therefore the
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flexible regime is lengthened. These results combined imply
that poly-X chains possess the three regimes of the free energy
barrier and that they may be shortened or lengthened by
specific combinations of (ω,N ).

From the results of Fig. 3(b) we can also analyze the free
energy barrier �F as a function of the chain size N at fixed
U . Points indicated by A, B, and C in Fig. 3(b) refer to the free
energy barrier for selected U ’s, 1, 6 y 25 kJ/mol, respectively.
As a function of N , points in A show a transition between
the transition regime and the flexible regime for small N . The
huge distance between points for small N indicates an abrupt
increase in the free energy barrier. Points in B indicate that
first there is a transition between the rodlike regime and the
transition regime, followed by the transition to the flexible
regime. The same change is expected as in points of case A.
For points in C, there is only one regime, the rodlike regime,
independent of the chain size. In this case, the distance between
points indicates a smooth and small increase in the free energy
barrier as a function of N . Computation of the free energy
barrier �F as a function of N for cases A, B, and C, in
Fig. 3(c), corroborates this behavior. Indeed, there is a huge
increase for the energy barrier for cases A and B for chains

up to a few tens of monomers, and the increase of the energy
barrier for case C is smooth and monotonic. Interestingly, it
seems that the main contribution to the free energy for small
chains comes from the anchoring of the chain to the pore, as the
free energy barrier is similar to that of the GC model (dashed
line). Similarly case C occurs for any chain size in the rodlike
regime, in this case the main impediment for a rodlike chain
to translocate is its anchoring to the pore. The choice of the
penalty energy U has a deep effect on the free energy barrier
�F as a function of the number of monomers N . The free
energy barrier �F can display an increase up to two orders
of magnitude for small poly-X chains for N < 10 residues
in comparison to poly-X chains with N � 103 residues. Such
high increase is a central feature of our model, in comparison
with the GC model which does not show such behavior. A
more technical and detailed discussion on the role of penalty
energy U and the values allowed for this parameter is added
to the Appendix for further details.

A full perspective on the behavior of �F as a function of
size N and helical propensity ω is provided simultaneously
by Fig. 4 in a three-dimensional plot. For a fixed N , Fig. 4(a)
shows that �F increases slightly as the helical propensity

FIG. 4. (a) and (b) 3D plots of the free energy barrier �F as a function of helical propensity ω and chain size N or ln N , respectively.
(c) Contour plot of the free energy barrier �F in terms of both relevant variables N and ω. In all plots we set U = 1 kJ mol−1 and
ε = 40 kJ mol−1.
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FIG. 5. Translocation time τ as a function of poly-X chain size N for different (a) ground state energy ε, (b) helical propensity ω, and
(c) energy penalty U . (a) and (c) refer to poly-T chains at fixed U = 1 kJ mol−1 and ε = 40 kJ mol−1, respectively. (b) shows results for
poly-ALA, poly-THR, and poly-PRO chains at fixed ε = 40 kJ mol−1 and U = 1 kJ mol−1. (d) experimental data of translocation times (dots)
for poly(ethylene oxide) chains are from Ref. [17] along with the β exponents. Lines were drawn through points to highlight the transition
jump predicted in our model.

also increases. The increase for an average size chain ranges
from 12 kJ mol−1 up to 18 kJ mol−1 by changing the
helical propensity from that of proline (ωPRO = 0.001) to that
of alanine (ωALA = 1.64). For small chains, the number of
residues N also plays a significant role in �F as Fig. 4(b)
shows. The free energy barrier increases from a few kJ mol−1

for chains with N � 10 residues up to �20 kJ mol−1 for chains
with larger sizes N > 102–103 residues. Interestingly, there is
a plateau in the increase of the free energy barrier. Once an
upper bound is reached in �F for a particular poly-X chain, a
further increase in the number of residues N does not imply a
significant further increase in �F . Figure 4(b) also shows that
threshold size N∗ where this plateau is reached increases as
the helical propensity w also increases. Figure 4(c) is a contour
plot of the free energy barrier, it shows that a combination of
(w,N ) may modulate the free energy barrier. Larger values of
�F can arise as a combination of larger values of N and
ω. On the contrary, small poly-X chains with less helical
propensity have small free energy barriers and therefore would
be expected to translocate faster.

B. Translocation time τ for homopolymers: The transition jump

Translocation time τ for ideal poly-X chains is computed
according to Eq. (22). Figure 5 shows the translocation time

τ as a function of chain size N . Panels (a), (b), and (c) show
results for different values of one of the variables ε, ω, or
U , respectively, while the rest of the variables are kept fixed.
The central result obtained in this work shows that τ exhibits
a transition, which is characterized by a sudden and steep
increase of several orders of magnitude as N approaches a
critical value N . Location of the transition N occurs at small
N . Location N for poly-T chains is N ∼ 10, and this value
is barely increased by the ground state energy in the range
20 < ε < 60 kJ mol−1, see Fig. 5(a). Helical propensity ω has
a larger effect on the location of the transition. Location N
is increased from a few to a few tens of monomers whether
the helical propensity is increased from the smallest, wPRO =
0.001, to the highest, wALA = 1.64, Fig. 5(b). In comparing ε

and ω, the helical propensity mainly determines the location
of the transition.

The steep increase in the translocation time, i.e., the jump of
the transition, may span several orders of magnitude. For poly-
T chains at fixed ε = 40 kJ mol−1, the jump from τ ∼ 10−6 s
to τ ∼ 100 s spans six orders of magnitude, see Fig. 5(a). At
fixed ε = 60 kJ mol−1, the jump from τ ∼ 10−6 s to τ ∼ 103 s
spans nine orders of magnitude. For poly-X chains ranging
from the smallest to the largest helical propensities, the jump
spans 3 and 6 orders of magnitude, respectively, see Fig. 5(b).
Both the ground state energy ε and the helical propensity ω
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TABLE I. Range of values for exponent ξ and constant A. Values
of ξ and A were obtained by fitting the translocation time to the
power law τ = ANξ after the transition jump. Values of ξ and A

were computed by changing one parameter while maintaining the
rest fixed. For ω, we fixed U = 1 kJ mol−1 and ε = 40 kJ mol−1. For
U and ε, we considered poly-T chains, at fixed ε = 40 kJ mol−1 or
fixed U = 1 kJ mol−1, respectively. Arrows indicate variation of the
parameter range or the variable range.

Parameter Variable range

Parameter range Exponent ξ Constant A

ω 0.001 → 1.61 1.50 – 1.53 65 μs → 37 ms
U (kJ/mol) 1 → 25 1.50 – 2.00 2.5 ms → 7.7 ns
ε (kJ/mol) 60 → 20 1.50 → 1.60 6 s → 0.6 μs

are related to the transition jump as well. Figure 5(c) shows
the transition of τ at a critical length N may be overridden
by large U . Poly-T chains at U = 25 kJ mol−1 do not exhibit
such transition. Indeed, poly-X chains in the rodlike regime
lack such transition. For poly-T chains, the rodlike regime is
defined by U � 20 kJ mol−1, as shown in Fig. 3(b), therefore
U ’s within this range will render translocation times without
transition. The translocation time of the poly-T chain lacking
the transition matches the translocation time of the GC model,
dashed line in Fig. 5(c). This means that the main contribution
to the translocation time of poly-T chains in the rodlike regime
comes primarily from the anchoring to the wall. Similar results
are expected for any poly-X chain in the rodlike regime.

Translocation time profiles show the transition separates
two regions defined by N � N and N � N . Our results
shown in Fig. 5 suggest that the translocation time τ in each
region follows an exponential law τ ∼ ANξ . Exponent ξ and
constant A were computed by fitting the power law for each
region. For N � N , the translocation time of poly-X chains
follows the power law of the Gaussian chain, ξ = 2 [15].
According to the parameters used in this work, for the Gaussian
chain A is 9 ps. For N � N , the transition observed for the
translocation time τ determines the characteristic exponent
ξ . Table I shows exponent ξ after the transition in varying
ε, U , and w. Exponent ξ for poly-T chains ranges from
1.65 to 1.50 for 20 kJ mol−1 < ε < 60 kJ mol−1, at U = 1 kJ
mol−1. Changing U from small to large U , from the flexible
to the rodlike regime, increases ξ . For poly-T chains at ε =
40 kJ mol−1, ξ ranges from 1.50 to 2.00. The helical propensity
ω barely changes the characteristic exponent, ranging from
ξ = 1.50–1.53, in varying w from that of poly-P to that of
Poly-A chains. For poly-T chains the exponent is ξ ∼ 1.5,
at fixed U = 1 kJ mol−1 and ε = 40 kJ mol−1. Exponent ξ

depends primarily on ground state energy ε, and penalty energy
U , as shown in Table I, in comparing, the energy penalty U

has the deepest effect on ξ .
Constant A also was analyzed as a function of ε, U ,

and w, as summarized in Table I. A spans several time
scales according to a combination of the parameters used in
this work. For the cases considered in Fig. 5(a), for poly-T
chains of different ε, from 20 to 60 kJ mol−1, constant A

is located between 0.6 μs < A < 6 s. This range covers the
usual experimental polypeptide translocation times. Changing

U shifts the time scale of A to range from nanoseconds to
milliseconds, the smaller scale obtained for rodlike chains.
Helical propensity has a lesser effect on A, changing the time
scale from microseconds to milliseconds, with large ω’s giving
rise to slow translocation. The values predicted for A within
our model span several orders of magnitude and are larger than
the one predicted for the Gaussian chain model.

In our model, τ spans several orders of magnitude due to
a combination of helical propensity ω, energy penalty U , and
ground state energy ε. Each variable has a substantial effect
on the onset of the transition and the order of magnitude of
the translocation time after the transition jump, a phenomenon
that is absent in Gaussian chain models. In terms of variations
in helical propensity ω, constant A spans three orders of
magnitude after the transition jump suggesting that poly-
X chains of different residues X might exhibit observable
variations for the translocation times. Additionally, poly-X
chains of small ω will be prone to translocate faster after the
transition jump.

Results predicted by our model were compared with data
from experimental work of diffusion-driven translocation of
poly(ethylene oxide) (PEO) chains [17]. Data of perme-
ation rate constants kex of PEO chains translocating through
nanopores of hollow polymeric capsules showed two regimes
as a function of size N . In each regime, the permeation
constants seemed to follow a power-law dependence on N ,
kex ∼ Nβ . We used the PEO permeation constants and plotted
the translocation times as a function of N obtained from
the exchange rates as τex = 1/kex(N ), see Fig. 5(d). Results
exhibit the transition jump predicted by our model at small
N followed by a monotonic increase according to the power
law τ ∼ Nβ as a function of N . Exponents β were obtained
by fitting kex to the power law kex ∼ Nβ according to the data
reported in [17]. The profile predicted for the translocation
time as confirmed by PEO chains is a feature expected for
poly-X chains in diffusion-driven translocation.

IV. CONCLUSIONS

In this work we proposed a model for poly-X translo-
cation based on equilibrium statistical mechanics and the
Focker-Planck equation. We computed the free energy F ,
the free energy barrier �F , and the translocation time τ of
translocation for poly-X proteinogenic chains as a function of
ground state energy ε, energy penalty U , and helical propensity
ω. In this work, ε refers to the energy of the chain when all
monomers are in native contacts, U is the energy penalty for
one monomer in a non-native contact, and ω is a measure of the
tendency of one monomer to participate in a helical structure.
The model proposed includes the folding propensity of the
chain and the reduction of configurational degrees of freedom
due to anchorage of the chain to the pore through which it
translocates. The inclusion of the helical propensity ω and the
energy scales U and ε is a novel feature not present in other
works on the subject.

The first result showed the free energy F of translocation
exhibits a characteristic umbrella-like profile as observed in
other works. Such profile imposes an energy barrier for poly-X
translocation. The free energy maximum and minimum were
used to characterize the free energy barrier �F required for
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translocation. To provide a detailed exploration of the phase
space of this model, we analyzed how the energy barrier �F
and the translocation time τ depend on the ground state energy
ε, the energy penalty U , and the helical propensity ω. As shown
in Fig. 2, the free energy barrier �F is increased by the ground
state energy ε. This is an expected feature since in the partition
function Q for poly-X proteinogenic chains the ground state
energy ε is a measure of its location within the folded energy
landscape. The free energy barrier �F showed a particular
sensitive dependence on U , which gives rise to three different
regimes according to the profile of the free energy barrier.
We have called these regimes flexible, transition, and rodlike
regimes. The central feature observed is that poly-X chains
in the flexible regime show the largest energy barriers while
those in the rodlike regime show the smallest. Occurrence
of the flexible regime, limited to a range of small U ’s, was
modulated by ω and N . The flexible regime was shortened
by the helical propensity w and stretched by chain size N .
The free energy barrier �F showed an increasing dependency
on chain size N . For small N , there was a jump of almost
two orders of magnitude as N approached a critical value N
reaching a plateau for N � N . A direct implication of these
results is that a combination of helical propensities ω’s and
chain size N could change drastically the free energy barrier
�F . Since ω is a measure of the tendency of a residue to be
in a folded state, poly-X chains with larger values of ω would
tend to be in the folded structure therefore requiring a higher
energy to translocate.

Translocation time τ was also analyzed in terms of the set
(ε,ω,U ) and N . Our results showed that τ (N ) exhibits a sudden
transition of several orders of magnitude as N approaches a
critical value N similarly to the free energy barrier �F . As
discussed along this work, the transition is enhanced when
large values of ε and ω are considered, the critical length
N is increased and the transition jump is enlarged. This result
implies that for two poly-X chains of the same size N , poly-X1

and poly-X2, with ω1 	= ω2, the translocation times τ1 and
τ2 will differ depending on whether the size of the chain is
below or above the critical sizes N1 and N2. If ω1 > ω2 then
N1 > N2, therefore, the translocation of poly-X1 would be
faster than that of poly-X2 after the transition of poly-X2, only
if the chain size is larger than N2. Energy penalty U had a
drastic effect on the occurrence of the transition. Chains in
the rodlike regime, large U , lack such transition, in this case
the main contribution to the translocation time comes from
the anchorage of the chain to the pore. As discussed in the
Appendix, U must be a few kBT to enable poly-X chains to
fold within physiological times, in order to avoid Levinthal’s
paradox [18]. U cannot be zero nor have an exceedingly small
value, which provides a criterion for the U ’s used throughout
this work.

The translocation time τ (N ) for large chains, after the
transition jump, follows the exponential law τ = Aτξ , where
exponent ξ and constant A depended on the transition. Main
dependence of exponent ξ and constant A relied on the energy
penalty U and the ground state energy ε. The fitted exponent
ξ ranges between 1.50–2.00 according to the parameters used.
Constant A spanned several orders of magnitude according to
a combination of the set (U , ε, ω), from the nanoseconds
to the seconds scale. The main feature of these results is

that the transition imposes the time scale of translocation for
large chains indicated by constant A. These facts strongly
suggest that the inclusion of helical propensity and adequate
energy scales for the unfolded and folded states of the
chain can provide a consistent formalism to explain the time
scale observed in translocation experiments of polypeptide
chains. By using experimental data from diffusion-driven
translocation of poly(ethylene oxide) chains we confirmed
the transition jump in the translocation time predicted by
our model for small chains. We expect the transition in the
translocation time predicted in our model is a feature spread
through the translocation of any poly-X chain.
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APPENDIX: VALUES OF PARAMETERS

To analyze homopolymer translocation, we consider poly-
X chains, where X represents any of the 20 proteinogenic
amino acids. In the case of Gaussian chains (GC), we used
for the monomer length b the distance between consecutive
monomers along the backbone chain. This is the distance
between two consecutive Cα atoms, set by the amide plane,
b ≈ 3.8 Å. The helical propensity was obtained according
to the scale proposed in [20], which is an experimental scale
measured taking as a reference alanine-based peptides. Helical
propensities for the 20 proteinogenic amino acids are delimited
by proline ωPRO = 0.001 and alanine ωALA = 1.61, which
spans over three orders of magnitude. For most amino acids
the helical propensity is a few times 0.1, therefore, as a
reference over all orders of magnitude we use the helical
propensity of threonine, ωTHR = 0.14. In our calculations,
we also include the upper and lower bounds ωPRO and ωALA.
Polymers of physiological interest that translocate are diverse
in size. Proteins such as preprocecropin (63 amino acids) [24]
and prepromielitin (70 amino acids) [25] are considered as
small translocating proteins whereas proteins such as LifA
(3223 amino acids) [26] and ApoB (4536 amino acids) [27]
are among the largest. Average size of most proteins is a few
hundred amino acids. We set N = 500 as an average size for
poly-X chains.

Folded state energies for proteins usually range from −60 to
−20 kJ/mol. As a reference, we use for the ground state energy
ε = 40 kJ/mol. In analyzing the dependency on the native
energy we use for the ground state energy ε = 20,30,40,50,
and 60 kJ/mol. The energy scale for the penalty energy U is
based on the Zwanzig et al. model [18]. Within this model,
penalty energy U and the chain size N play a fundamental
role in determining the mean first-passage time (MFPT) of
folding τf, i.e., the average time for a poly-X chain to reach
for the first time its native conformation [18]. Starting from a
configuration with s incorrect bonds, the MFPT to reach the
native state with all residues in their native location can be
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VÉLEZ-PÉREZ AND OLIVARES-QUIROZ PHYSICAL REVIEW E 95, 012407 (2017)

written as [18]

τf(s) = 1

k0
(1 + K)NK

∫ 1

0
dy

(
1 − ys

1 − y

)
(1 + Ky)−N−1,

(A1)
where k0 represents the rate at which a native bond can be
converted into a non-native bond and k1 is the rate at which
non-native bonds convert into native bonds. The quantity K

is the ratio K = k0/k1 = ν exp (−U/RT ) and in general is
different from unity. For a chain of size N = 100 to have a τf

in the scale of seconds, the energy penalty must be U ≈ 2 kBT

whether k0 = 2 × 109 exp(−U/kBT ) s−1 and the number of

incorrect native bonds is ν = 2 [18]. Larger chains require
larger energy penalties or smaller rate constants for τf to be
in the same time scale. The role played by the energy penalty
U becomes evident if there were no penalties for a non-native
contact, i.e., if U = 0. In such a case, the MFPT of folding will
scale as τf ∼ (1 + ν)N which is the mathematical formulation
of the so-called Levinthal’s paradox [18,28,29]. In this case
τf increases exponentially as the number N of residues. Thus,
U plays a fundamental role in decreasing the time needed
to reach a thermodynamically stable ground state. Following
the results of the Zwanzig et al. model we set U to be a
few kBT .
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