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Double inverse stochastic resonance with dynamic synapses
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We investigate the behavior of a model neuron that receives a biophysically realistic noisy postsynaptic current
based on uncorrelated spiking activity from a large number of afferents. We show that, with static synapses, such
noise can give rise to inverse stochastic resonance (ISR) as a function of the presynaptic firing rate. We compare
this to the case with dynamic synapses that feature short-term synaptic plasticity and show that the interval
of presynaptic firing rate over which ISR exists can be extended or diminished. We consider both short-term
depression and facilitation. Interestingly, we find that a double inverse stochastic resonance (DISR), with two
distinct wells centered at different presynaptic firing rates, can appear.
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I. INTRODUCTION

It is widely accepted that noise can facilitate the informa-
tion processing capabilities of neurons [1–5]. A well-known
example is stochastic resonance (SR), where a certain amount
of noise can enhance the detection of weak signals in a neural
medium [5–9]. More precisely, for low noise levels the system
is not able to detect a weak signal due to its small amplitude.
For moderate noise levels, however, the noise enhances the
signal up to a detection threshold. This makes the neurons
respond in a manner that is strongly correlated with the signal.
Conversely, for strong noise, neural activity is highly variable
and little correlated with the signal. This behavior of the
neural response results in a bell-shaped dependence on noise,
indicating that the correlation between the signal and neural
activity is maximal around a moderate level of noise.

On the other hand, the repetitive spiking behavior of a
single neuron driven just above its spiking threshold can be
inhibited by the presence of noise, as was demonstrated by
a series of theoretical studies [10–15]. In these works, the
existence of a pronounced minimum in the average firing rate
as a function of the noise level was reported. This noise-driven
inhibitory effect has also been shown experimentally in in vitro
preparations of squid axons which operate as pacemakers [16].
Since the dependence of the neuronal response on noise is the
opposite of that in the SR mechanism, this phenomenon is
called inverse stochastic resonance (ISR).

It is widely assumed that neurons transmit information
and communicate with each other through spikes. Thus,
the emergence of ISR can be seen as a limitation for
information processing in neural systems. However, ISR might
play an important role in computational mechanisms that
require reduced firing activity without chemical inhibitory
neuromodulation, or alternatively, when other computational
mechanisms require on-off bursts of activity [15]. In this sense,
ISR may be advantageous for such particular cases.
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In recent years, there has been a growing interest in studying
different aspects of the ISR phenomenon. For instance,
Guo [11] investigated the influence of temporal noise cor-
relations on ISR, showing that colored noise suppresses neural
activity more strongly than white (Gaussian) noise. Tuckwell
and Jost [17] considered ISR in a more realistic neuron
model with spatial extent. They showed that if the signal
and noise inputs overlap spatially on the neuron, then weak
noise may inhibit spiking. If, however, the signal and noise
are non-uniformly applied, then the noise has no effect on the
spiking activity, no matter how large its region of application is.

Previous works on ISR focused on external rather than
endogenous noise sources [10–12]. However, insofar as in
vivo neural activity is inherently noisy [18,19], those works
failed to account for the actual biophysical conditions and
did not provide a clear understanding of the phenomenon
under realistic conditions. In this context, recent studies have
examined the possible biological mechanisms that might give
rise to ISR in actual neural systems. For instance, in Ref. [14],
noise was considered to arise from the stochastic nature of
voltage gated ion channels embedded in neural membranes.
Under this biophysically realistic scenario, the authors showed
that ISR can indeed arise in a single neuron due to ion channel
noise, where its strength is proportional to cell membrane
area (see also Ref. [15]). In addition, the authors clarified
the dynamical structure underlying the ISR phenomenon. In
another recent work [13], ISR was studied using a detailed
modeling approach for the synaptic background activity by
assuming that spike transmission from presynaptic afferents
to the postsynaptic neuron is unreliable, and it was shown
that unreliable synaptic transmission might be a potential
biophysical mechanism that gives rise to ISR.

In the present study, we continue to investigate the ISR
phenomenon in a single neuron under more realistic conditions
by considering the underlying noise as originating from the
presynaptic background activity. Stochastic neurotransmitter
release, varying quantities of neurotransmitter resources at
different synapses, and spatial heterogeneity of synaptic
transmission along the dendritic tree [20] can all modulate the
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neuron’s postsynaptic response. Collectively, these processes
contribute to short-term synaptic plasticity, that is, the transient
change of synaptic efficiency on time scales from millisecond
to minutes. Short-term plasticity may come in different flavors,
i.e., short-term depression (STD) and/or facilitation (STF).
From a mechanistic point of view in particular, STD refers to
the progressive reduction of synaptic neurotransmitter release
by depletion of available neurotransmitter resources at the
synapse [21–24]. STF refers instead to transient increases
of neurotransmitter release probability by activity-dependent
presynaptic accumulation of intracellular Ca2+ [22,23,25,26].

Since these two synaptic mechanisms have been widely
reported to be relevant for dynamics of neural circuits [27–38]
and various brain functions [39–45], here we investigate
how short-term synaptic plasticity can influence the ISR
phenomenon. With this aim we analyze the response of a
postsynaptic neuron that receives presynaptic inputs from a
set of afferents through dynamic synapses with short-term
synaptic plasticity and examine the influence of various pa-
rameters of the dynamic synapse mechanisms on different ISR
features. We show that when both STD and STF mechanisms
are included, an intriguing phenomenon may be observed
consisting of two ISRs occurring at distinct presynaptic firing
rates. We call this phenomenon double inverse stochastic
resonance (DISR). We conclude with a discussion of the
possible computational implications of our findings for an
actual neural system.

II. MODELS AND METHODS

The system under study consists of a postsynaptic neuron
that receives uncorrelated network activity from a finite
number of excitatory and inhibitory presynaptic neurons
through dynamical synapses. The temporal dynamics of the
postsynaptic membrane potential is modeled according to
Hodgkin and Huxley [46] and reads

C
dV

dt
= I0 − gNam

3h(V − ENa) − gKn4(V − EK )

− gL(V − EL) + Isyn, (1)

where V denotes the membrane potential in millivolts and
C is the membrane capacitance per unit of membrane area.
I0 is an injected external bias current density and is used
for the modulation of neuronal excitability. Unless stated
otherwise, we set I0 to a value (see Table I) for which the
neuron exhibits bistability between a silent (equilibrium) and

TABLE I. Neuron model parameters.

Symbol Description Value Units

C Membrane capacitance 1 μF/cm2

gNa Maximum sodium conductance 120 mS/cm2

gK Maximum potasium conductance 36 mS/cm2

gL Leakage conductance 0.3 mS/cm2

ENa Sodium reversal potential 115 mV
EK Potassium reversal potential −12 mV
EL Leakage reversal potential 10.6 mV
I0 Injected bias current 6.8 μA/cm2

a spiking (limit cycle) state [10,11,14]. gNa , gK , and gL

are the maximum conductances for sodium, potassium, and
leak channels, respectively. ENa , EK , and EL denote the
corresponding sodium, potassium, and leak reversal potentials.
The values used for all parameters, unless otherwise noted, are
listed in Table I.

The gating variables m, h, and n model the activation
and inactivation of the sodium channels and the activation of
the potassium channels, respectively, and obey the following
differential equations [46]:

dm

dt
= αm(V )(1 − m) − βm(V )m,

dn

dt
= αn(V )(1 − n) − βn(V )n, (2)

dh

dt
= αh(V )(1 − h) − βh(V )h,

where αρ and βρ (ρ = m, n, h) are experimentally determined
voltage-dependent rate functions, defined by [46,47]

αm(V ) = 0.1
(25 − V )

exp[(25 − V )/10] − 1
,

βm(V ) = 4 exp[−V/10],

αn(V ) = 0.01
(10 − V )

exp[(10 − V )/10] − 1
(3)

βn(V ) = 0.125 exp[−V/80],

αh(V ) = 0.07 exp[−V/20],

βh(V ) = 1

exp[(30 − V )/10] + 1
.

In our setup, presynaptic neurons are modeled as inde-
pendent Poisson spike generators emitting uncorrelated spikes
with frequency f . For synaptic transmission to the postsy-
naptic neuron, we adopt the dynamic synapse formulation
of Tsodyks and Markram [27]. This model considers the
total amount of neurotransmitter resources at synapse i to
be proportioned among three states: available xi(t), active
yi(t), and inactive zi(t), normalized such that xi + yi + zi = 1.
When a spike arrives at synapse i at time t , there is an
instantaneous transfer of a fraction ui(t) ∈ [0,1] of available
resources xi(t) to the active state. Active resources then
deactivate over a time on the order of a few milliseconds,
characterized by the time constant τin, and recover over a
time period characterized by τrec, which can vary from tens of
milliseconds to seconds depending on the type of neuron and
the type of synapse. The dynamical behavior of these synaptic
states is governed by a system of three coupled differential
equations as follows [27]:

dxi(t)

dt
= zi(t)

τrec
− ui(t)xi(t)δ

(
t − t ispike

)
, (4)

dyi(t)

dt
= −yi(t)

τin
+ ui(t)xi(t)δ

(
t − t ispike

)
, (5)

dzi(t)

dt
= yi(t)

τin
− zi(t)

τrec
, (6)

where the δ function refers to the arrival time of a spike at
synapse i at t = t ispike. The model described by Eqs. (3)–(5)
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reproduces short-term depression (STD) phenomena in cor-
tical neurons for relatively long τrec, assuming a constant
transmitter release fraction ui(t) = U [27,48].

To include short-term facilitation (STF) in the model, the
release fraction ui(t) is allowed to vary in time. The equation
below models the dependence of ui(t) on the intracellular
calcium concentration, which increases due to calcium influx
through voltage-sensitive calcium channels after the arrival of
successive spikes [25]:

dui(t)

dt
= U − ui(t)

τfac
+ U[1 − ui(t)]δ

(
t − t ispike

)
. (7)

Here,U is the release fraction at rest, and the calcium dynamics
enters through τfac, the characteristic time for the calcium
channel gates to transition from the open to the closed state
(which terminates the calcium influx) [27]. In this model, the
level of STD and STF at a synapse can be controlled by the
corresponding time constants, so that larger values of τrec and
τfac respectively result in stronger synaptic depression and
facilitation effects. For facilitating synapses, a larger value of
U produces a larger increase in the release fraction after each
spike, thus inducing stronger and faster facilitation. However,
note that larger values of U in a depressing synapse mean that
more synaptic resources are used per spike, which can lead to
faster depletion and more depression for subsequent spikes,
particularly at high presynaptic firing rates.

In Eq. (1), Isyn represents the total synaptic current gen-
erated by N = Ne + Ni = 1000 presynaptic excitatory and
inhibitory inputs, where the ratio Ne : Ni is set to 4:1, as
observed in vivo conditions [49]. Then, based on the synaptic
dynamics described above, the postsynaptic current generated
at synapse i is taken to be proportional to the amount of
active neurotransmitter, namely Ii(t) = Ayi(t). Here, A is
the maximum postsynaptic current which can be generated at
the synapse by activating all resources. Accordingly, the total
postsynaptic current introduced into the postsynaptic neuron
due to the arrival of both excitatory and inhibitory presynaptic
inputs is

Isyn(t) =
Ne∑

p=1

Ayp(t) − K

Ni∑
q=1

Ayq(t), (8)

where K is the relative strength between inhibitory and
excitatory connections. We set K = 4 so that the average post-
synaptic current is zero, corresponding to the physiological
range of balanced states of cortical neurons [50]. Such a state
allows us to control the excitability of the postsynaptic neuron
using only I0. We denote the standard deviation of Isyn by σI .

To characterize ISR quantitively, we follow the procedures
used in [10,14,51]. For trial j (j = 1 . . . L), an initial condition
is randomly selected for the postsynaptic neuron with uniform
probability within a fixed region of the four-dimensional state
space (V,m, n, and h). Specifically, this region ranges from
−10 to 80 mV for the membrane voltage variable V , and from
0 to 1 for the each of the gating variables m, n, and h. Then, the
system equations are integrated for a transient time T = 1 s.
After this, we count the number of spikes generated by the
postsynaptic neuron Nspikes that occur in an additional time
interval of duration �t = 5 s. This entire procedure is repeated

L times, and the mean firing rate is calculated as follows:

ν = 1

L�t

⎛
⎝

L∑
j=1

N
j

spikes

⎞
⎠. (9)

The results presented in the next sections are obtained over
L = 1000 independent runs for each set of parameter values
to warrant appropriate statistical accuracy with respect to the
stochastic fluctuations in background activity.

III. RESULTS

A. ISR with static synapses

As a first step towards understanding the implications
of short-term synaptic plasticity on ISR, we first review
the phenomenon for the case of static synapses. Because
we consider a postsynaptic neuron that receives balanced
excitatory and inhibitory inputs, the resulting postsynaptic
current has a mean of zero, independent of the presynaptic
firing rate f . However, fluctuations about this mean grow
monotonically with f . These fluctuations constitute a noisy
input that is delivered to the postsynaptic neuron. Thus, we plot
the mean firing rate as a function of f , over a biophysically
reasonable range, in our analysis of the emergence of ISR.
This is presented in Fig. 1(a).

The mean firing rate of the postsynaptic neuron, ν,
exhibits a pronounced minimum as a function of f : We will
refer hereafter to the shape of this curve as the ISR well.
The fundamental mechanism underlying this nonmonotonic
behavior was described in detail in [14]. We briefly summarize
the main points here, and we visualize the spiking behavior of
the postsynaptic neuron in Figs. 1(b)–1(f) at specific regions
along the ISR curve marked in Fig. 1(a).

In region b, the high average firing rate is due to what we call
the initial condition effect. This applies when the amplitude
of the fluctuations in the noisy input into the postsynaptic
neuron is very small. Depending on the randomlychosen initial
condition, the neuron is attracted to either the spiking state or
the resting state. It then remains there, because the background
fluctuation level is too low at such f values to kick the system
into the other state. This initial condition effect can be seen
in Fig. 1(b), which shows that the neuron remains in its initial
state over the course of each trial. Given the manner in which
the initial condition is selected (described above), the neuron
is most likely to be initiated within the basin of attraction of
the spiking state [10,14]. Therefore, the mean firing rate value
calculated over many trials is high in this region of the ISR
curve [52].

In region c, the postsynaptic current fluctuations induced
by background activity are slightly larger. At these levels,
the fluctutations become effective at changing the neuron’s
trajectory from the spiking to the resting state. However, they
are not large enough to cause a change from the resting state
to the spiking state. This effect, which we call the trapping
effect, is due to the dynamical structure of the neuron model
as described in Ref. [14]. The resulting activity patterns of the
postsynaptic neuron are shown in Fig. 1(c). In almost all trials,
the neuron stops firing within the time interval shown. Thus,
the contribution of the spiking state to ν decreases, resulting
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FIG. 1. (a) ISR in the response of the postsynaptic neuron with static synapses. The mean firing rate ν is plotted vs the presynaptic firing rate
f . Vertical dashed lines correspond to presynaptic firing frequencies where the firing behavior of the postsynaptic neuron exhibits transitions
as follows: For f < fIC , only the initial condition effect exists (region b). For fIC < f < fT , the trapping effect begins to appear (region c).
For fT < f < fK , trapping occurs immediately and in all trials (region d). For f > fK , the kickout effect increasingly dominates (regions e
and f). (b)–(f) Sample raster plots of postsynaptic neuron spiking activity across 50 trials for different regions (marked with the corresponding
letters and colors) of the ISR curve in panel (a). The panels are constructed by plotting a dot to indicate the occurrence of a postsynaptic spike
at a given time in a given trial. The mean frequencies of the Poissonian presynaptic spike trains that generate the background activity are (b)
f = 0.1 Hz, (c) f = 1 Hz, (d) f = 10 Hz, (e) f = 50 Hz, and (f) f = 200 Hz.

in the falling phase of the ISR curve. An extreme case of the
trapping effect is seen in Fig. 1(d), in which the neuron stops
firing almost immediately in every trial. Thus, ν effectively
falls to zero; see region d in Fig. 1(a).

For values of f in regions e and f of Fig. 1(a), the
postsynaptic current fluctuations become strong enough to
change the state of the neuron bidirectionally, i.e., from spiking
to resting and vice versa. Thus the neuron exhibits on-off bursts
of tonic firing as seen in Fig. 1(e). We call this the kickout
effect, and the kickouts (and kick-ins) occur more frequently
as f increases, resulting in the increase in the average firing
rate ν as seen in Fig. 1(a); compare also Figs. 1(e) and 1(f).

Finally, for f > 1000 Hz, ν eventually saturates at a value
somewhat higher than the spiking rate of an isolated, noise-free
spiking neuron, which is approximately 58 Hz (not shown, but
see Ref. [14]).

B. ISR with depressing synapses

Next, we investigate the effects of short-term plasticity on
the emergence of ISR. We begin by fixing the facilitation time
constant τfac at zero in order to consider only the effects of
STD. We then compute ν vs f for various values of the synaptic
depression control parameter τrec. The results are presented in
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FIG. 2. Changes in the ISR behavior of a postsynaptic neuron
that receives background activity through depressing synapses. The
level of short-term depression at the synapses is controlled by the
recovery time constant τrec. Here, τfac = 0 ms, indicating the absence
of synaptic facilitation. The figures show the average firing rate ν vs
the presynaptic firing rate f for relatively low (a) and high (b) levels
of depression. Other synapse model parameters are as in Fig. 1.

Fig. 2, which shows the effects of STD at low [Fig. 2(a)] and
high [Fig. 2(b)] levels. We see that STD mainly influences ν at
high f values. More precisely, for values of τrec � 100 ms, the
right side of the ISR curve found in the case of static synapses
(τrec = 0 ms; solid curve) tends to shift lower as τrec increases,
with a more pronounced effect as τrec approaches 100 ms.
Nevertheless, for τrec around 100 ms, ν suddenly increases
for very large values of f , resulting in ISR behavior again.
Figure 2(b) shows that for values of τrec > 100 ms, ISR is
present but the width and depth of the ISR well is modulated
by τrec. In particular, the range of small ν values shrinks as τrec

increases, and the lowest values of ν increase for very large
values of τrec. Moreover, for large f , ν saturates and attains a
value similar to what is observed in the region of low f . Note
that this is different from the static synapse case: Compare the
right sides of the ISR curves in Fig. 2(b) with the τrec = 0 ms
solid curve in Fig. 2(a).
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FIG. 3. The influence of both short-term depression and facilita-
tion on ISR. (a) ν vs f for various values of τfac for a fixed level of STD
at synapses defined by τrec = 100 ms. (b) ν vs f for various values
of τrec for a fixed level of STF at synapses defined by τfac = 1000 ms.
Other synapse model parameters are as in Fig. 1.

C. ISR in the presence of competing short-term
depression and facilitation

In actual synapses, both STD and STF can coexist, resulting
in a nontrivial postsynaptic response [21,23,53–55]. Therefore,
we may expect that the competition between these mechanisms
could influence the ISR phenomenon significantly. To examine
this effect, we first fixed the level of depression by setting the
recovery time constant τrec to 100 ms [see Fig. 2(a)]. Then we
systematically varied the facilitation via τfac to investigate the
implications of the competition between STF and STD on ISR.
The results are shown in Fig. 3(a).

We see that as τfac increases, the local maximum of ν located
around f = 100 ms increases and shifts to lower values of
f . This increase in ν at midfrequencies is more pronounced
for large values of τfac, and we see the emergence of two
clearly separated wells, that is, double ISR (DISR). We see
that STF affects the width and location of the low-frequency
well, making it narrower and shifting it towards lower f as τfac

increases. However, it does not affect the location of the high
frequency well.

We fixed the level of facilitation instead at τfac = 1000 ms,
where the DISR is most obvious in our previous analysis (with
τrec = 100 ms), and varied the level of depression by tuning
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FIG. 4. A qualitative depiction of the standard deviation σI of
the synaptic current versus the presynaptic firing rate f for static
(curve a), competing (curve b), and depressing (curve c) synapses. The
vertical axis is schematic, and the three horizontal lines marked σIC ,
σT , and σK separate regions [colored as in Fig. 1(a)] that correspond
to the different dynamic mechanisms described in the main text. The
vertical dashed lines are the same as those in Fig. 1(a). Synaptic
parameter sets for curve (a) τrec = 0 ms, τfac = 0 ms, curve (b) τrec =
100 ms, τfac = 1000 ms, and curve (c) τrec = 1000 ms, τfac = 0 ms.
Other synapse model parameters are as in Fig. 1.

τrec. The results are shown in Fig. 3(b). We see that the height
of the local maximum at middle f values decreases as τrec

increases, and at the same time the high-frequency wells in
the DISR curves shift to lower f values. For τrec > 600 ms,
the central peak disappears and the DISR wells merge into a
wide single ISR well. Note that the low-frequency wells of
the DISR curves are not significantly affected by the level
of depression. Thus, our findings for the case of competing
synapses demonstrate that STF favors the appearance of DISR,
whereas STD tends to work oppositely, favoring single ISR
behavior.

D. Mechanism of ISR and DISR with dynamic synapses

A qualitative understanding of the results reported above
can be gained by considering the nature of the postsynaptic
current fluctuations and their dependence on the presynaptic
firing rate f . In the case of static synapses, the standard
deviation of the postsynaptic current σI rises monotonically
with f , since the presynaptic firing events are Poisson-
distributed. This is shown in Fig. 4, curve a.

In contrast, when the synapses feature short-term plasticity,
the postsynaptic current fluctuations exhibit nonmonotonic
behavior. This is due to synaptic depression, which is strongest
for higher presynaptic firing rates. Under such circumstances,
neurotransmitter resources are quickly depleted, and the
postsynaptic current is attenuated and eventually eliminated.
Correspondingly, the current fluctuations also decrease to zero,
as can be seen in Fig. 4, curves b and c. Including facilitation
leads to a similar unimodal curve, but with the central region
shifted higher (curve b). This is because facilitation is strongest
for intermediate presynaptic firing rates, and leads to more
reliable synaptic transmission. Thus the postsynaptic current
is enhanced, and it reflects more closely the fluctuations in the

Poissonian presynaptic firing pattern, leading to an increase
in σI . However, this effect can lead to particularly efficient
transmitter depletion for high presynaptic firing rates and
hence depression. Therefore, the postsynaptic current and its
fluctuations again decrease to zero for high f .

The horizontal lines labeled σIC , σT , and σK in Fig. 4
schematically indicate the ranges of σI that correspond to
the different dynamic mechanisms listed above. To determine
these noise levels, we follow the monotonically increasing
curve a in Fig. 4 for the case of static synapses as f increases,
and compare it to the ISR curve in Fig. 1(a). By using the
intersections of the vertical lines corresponding to fIC , fT ,
and fK [that separate different postsynaptic neuron behaviors
as defined in Fig. 1(a)] with σI curve a for static synapses, we
respectively determine σIC , σT , and σK . Values of σI below
the horizontal line at σIC correspond to the initial condition
effect, and to the region marked b in Fig. 1(a). For σI between
the horizontal lines at σIC and σT , the trapping effect is
observed. As σI increases through the region between these
lines, trapping becomes increasingly probable, and there is
a transition from the initial condition effect to full trapping.
This corresponds to the decrease in ν observed in region c of
Fig. 1(a). For σI between the horizontal lines at σT and σK ,
trapping occurs in essentially all trials, and ν decreases to zero;
see region d of Fig. 1(a). Finally, current fluctuations above
the horizontal line at σK are large enough to cause the kickout
effect and lead to the increasing phase of the ISR curve seen
in regions e and f of Fig. 1(a).

This schematic description provides a heuristic understand-
ing of how DISR arises. If the unimodal variation of σI crosses
the schematic horizontal lines shown in Fig. 4, then we can
expect a plot of ν vs f to display the following features, in
order as f increases, as can be observed (for example) in
the τfac = 1000 ms data of Fig. 3(a): First, ν will be high,
corresponding to the initial condition effect and values of σI

below the the σIC horizontal line. Then ν will decrease to zero,
corresponding to the trapping effect and values of σI between
the horizontal lines at σIC and σK . After this, ν will increase
due to the kickout effect as σI crosses the upper horizontal line
at σK . As f continues to increase, kickout effects become more
frequent, ν increases, and σI attains its maximum value. After
this, σI decreases with increasing f , kickout events become
less frequent, and ν decreases. As σI returns to the region
between the horizontal lines, trapping events once again occur,
and ν again decreases to zero. Finally, for the highest values
of f , σI returns to low values, and the re-emerging initial
condition effect causes ν to rise once again. Therefore, the
plot of ν vs f displays two wells, and hence DISR.

Depending on parameters, especially for cases with little
or no facilitation, it is possible for the unimodal σI curve
to cross only the lowest horizontal line, as in curve c in
Fig. 4. In this case, a similar scenario arises, but without the
occurrence of kickout effects. Thus a plot of ν vs f would
begin high (initial condition effect), decrease, perhaps to near
zero (trapping effect), and then increase again (initial condition
effect), yielding a single-well ISR curve. This behavior is seen
in Figs. 2(b) and 3(b) for τrec > 600 ms. Note also that the
symmetry in this heuristic perspective explains the similarity
of the values of ν observed at low and high values of f in these
figures, as both are due to the same initial condition effect.
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FIG. 5. Effects of the baseline fraction of released neurotransmitter U on synaptic current fluctuations and the postsynaptic mean firing
rate. (a) Variation of σI as a function of f for different values of U when only STD is present, with τrec = 1000 ms and τfac = 0 ms. (b) Similar
analysis as in panel (a) for the case of competing STD and STF, with τrec = 100 ms and τfac = 1000 ms. Note that the three schematic horizontal
lines marked σIC , σT , and σK separate regions [as in Fig. 1(a)] that correspond to the different dynamic mechanisms described in the main text.
(c) Variation of ν as a function of f for different values of U in the case of depressing synapses. This shows the transition from no ISR to a
single-well ISR and then to a weak DISR as U increases. (d) Variation of ν as a function of f for different values of U . In this case, the plots
show the transition from DISR to a single-well ISR when STD and STF are both present at synapses.

E. The influence of U on ISR and DISR

We now consider the effects of varying U , which appears in
Eq. (7) and represents the fraction of available neurotransmitter
resources that transitions to the active state upon the arrival of
a presynaptic spike, when the synapse is in its resting state. We
follow the schematic description developed above and plot σI

vs f for various values of U , for the cases that we previously
considered: synapses with just depression [Fig. 5(a)] and with
both depression and facilitation [Fig. 5(b)].

We observe that variation of U results in similar effects
on σI in both cases, namely, an amplification of σI at low
and moderate f values, while σI does not change at high
values of f . The reason for this latter effect is that at high
frequencies, U becomes irrelevant because neurotransmitter
resources rapidly deplete, especially if the recovery time is
relatively long [τrec = 1000 ms in Fig. 5(a) and τrec = 100 ms
in Fig. 5(b)]. In contrast, at low and moderate f values, there
is more time for neurotransmitter resources to recover, and U
has more significant effects. Thus we see that as U increases,

the curves for the various cases change position in relation
to the horizontal lines that indicate the onset of the initial
condition, trapping, and kickout effects described above.

More specifically, for the STD case, we see that increasing
U leads to a transition, as shown in Fig. 5(c), from no ISR
(circle) to a single-well ISR (square and triangle) and then to
a weak double-well ISR (star). On the other hand, for the case
with both STD and STF, we observe that increasing U results
in the disappearance of the low-frequency DISR well, thus
leading to a transition from double ISR (circle and square) to
a single-well ISR (star and triangle) as shown in Fig. 5(d).
Such transitions arise in both cases from the sensitivity of
σI to U at low frequencies. As seen in Figs. 5(a) and 5(b),
the left ends of the σI vs f curves increase with increasing
U at the low-frequency end starting at f = 0.1 Hz, while
the high-frequency ends of σI vs f curves are not affected.
For instance, in the case of only STD, the leftmost values
for U = 0.8 lie close to the σT horizontal line, indicating
essentially full trapping. Accordingly, the corresponding ν

values at f = 0.1 Hz decrease to zero as U increases, and
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(a) (b)

FIG. 6. Panel (a) shows the bifurcation diagram of the Hodgkin-
Huxley neuron as a function of the bias current I0. Thick (thin) solid
lines represent stable (unstable) fixed points, marked SFP and UFP.
Solid (open) circles represent the minimum and maximum values
of the voltage during stable (unstable) spiking behavior. These are
marked SLC and ULC. Panel (b) shows a magnification of panel (a),
revealing the multistable region.

the left ISR well gradually disappears. This observation also
explains the transition from DISR to single-well ISR as U
increases in the case of competing STD and STF [compare
Figs. 5(c) and 5(d)].

F. Role of neuronal excitability on ISR and DISR

Finally, we examine the effect of changing I0. ISR
emerges when the system dynamics exhibits bistability that
includes a stable fixed point (SFP), an unstable limit cycle
(ULC), and a stable limit cycle (SLC) [10,11,13–15]. For the
Hodgkin-Huxley neuron, this situtation is present for a modest
range of constant input current I0. Figure 6 illustrates the
corresponding bifurcation diagram. Specifically, the bistable
range extends—in the absence of other current inputs—
from approximately I0 = 6.26 μA/cm2, where the SLC and
ULC are born by saddle-node bifurcation, to approximately
9.78 μA/cm2, where the ULC and SFP merge in a Hopf
bifurcation [see Fig. 6(b)]. At this point, the SFP loses stability
becomes an unstable fixed point (UFP).

The ISR and DISR results reported above were obtained
with I0 = 6.8 μA/cm2. In the neuronal context, the SFP and
SLC correspond to resting and spiking behaviors, respectively,
and the ULC mediates the boundary between the basins of
attraction of these two stable states [56]. Within the bistable
regime, the SFP and SLC are not significantly affected
by variation in the excitability control parameter I0, but it
does significantly change the ULC, and correspondingly, the
basin boundary [14,57]. In particular, the basin of the SFP
dramatically decreases in size as the ULC converges to the
SFP as the Hopf bifurcation is approached. Therefore, we
investigated the emergence of ISR and DISR for various values
of I0 near and within the bistable range. The results of our
analysis are shown in Fig. 7 for the case of (a) ISR with STD
and (b) DISR with both STD and STF.

We see that increasing I0 results, in both cases, in an overall
increase of ν over the whole range of f . This is as expected,
since as the basin of the SFP shrinks to zero for increasing I0, a
neuron in the resting state is more and more likely to be kicked
into the basin of the spiking state (i.e., the SLC) and remain
there [14,57]. This increase of ν is most dramatic where the
minima of the ISR or DISR curves are located, leading to a
gradual flattening of the curve and the suppression of the ISR or
DISR effect. It is interesting to note that for I0 = 6.2 μA/cm2,
only the SFP exists, and the system is not bistable (in the
absence of other current inputs). Accordingly, Fig. 7(a) shows
that for this case, ν = 0 Hz over the entire range of f . However,
in Fig. 7(b), with both STD and STF, we see that ν is not zero
for intermediate values of f for this case. The background
activity triggers STF in this range, increasing Isyn such that
the overall current input effectively places the neuron into the
bistable regime where spiking behavior can occur. The firing
frequency ν decreases back to zero for even higher frequencies
due to the increasing STD, which essentially cancels this effect.

IV. DISCUSSION

The aim of this work was to examine a neuron subject to a
large number of presynaptic inputs, where presynaptic events
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FIG. 7. The effect of the excitability control parameter I0 on the behavior of ISR and DISR. (a) ν vs f for different values of I0 in the case
of purely depressing synapses (τrec = 1000 ms and τfac = 0 ms) that induce ISR at I0 ∼ 6.8 μA/cm2. (b) Similar analysis as in panel (a) for
the case of competing STD and STF mechanisms (τrec = 100 ms and τfac = 400 ms) that result in DISR for I0 ∼ 6.8 μA/cm2. Other synapse
parameters are as in Fig. 1.
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occur stochastically. It has been shown that this source of noisy
input gives rise to ISR, and here we focused on the effects of
dynamic synapses that exhibit short-term facilitation and de-
pression. The key observation is that these synaptic dynamics
lead to a nonmonotonic relationship between the fluctuations
in the postsynaptic current and the rate at which presynaptic
events occur. Then, with the qualitative understanding of the
neuronal dynamics for varying values of noise, we developed
a heuristic understanding of how ISR rises, finding that, with
the proper biophysical conditions, double ISR could also be
found.

Recent experimental works indeed reported the existence
of ISR in individual neurons [16,58], but the functional
implications of such phenomena remain unknown partly
because the experimental conditions for the observation of ISR
have not been systematically explored. In this regard, our study
argues in favor of the emergence of ISR by short-term synaptic
plasticity, and suggests that experimental manipulation of
the mechanisms underpinning such plasticity could lead to
observable changes in biophysical correlates for ISR in real
neurons [59,60].

Although it is widely assumed that information is processed
by spikes, the silent periods characterizing ISR may also have
functional relevance. For instance, ISR may play a role in
shortening the periods of anomalous working memory [61].
It has also been suggested that Purkinje cells involved
in cerebellar computation could use ISR to switch among
different operating regimes depending on input current fluctu-
ations [58]. This leads to the speculation that ISR mechanisms
may generally provide a way for a neuron (or a population
thereof) to be modulated by noisy inputs either without, or

perhaps in conjunction with, stimulus-evoked signals. In this
fashion, the low average firing rate of postsynaptic neurons in
the ISR well could allow filtering of irrelevant information.
This would facilitate neuronal tuning insofar as neurons could
selectively process relevant information arriving from different
inputs. And double ISR may provide a mechanism in this
direction that extends the possible biophysical conditions for
which such selective tuning and multiplexing can be achieved.

In our study, we used the Tsodyks-Markham model of
dynamic synapses, but we expect that any model that captures
biophysical synaptic depression would lead to similar results.
On the other hand, other biophysical factors can regulate
synaptic activity in complex ways, such as in two-way synapse-
astrocyte interactions [62,63]. Thus it might be interesting
to explore the role of the mechanisms involved in such
interactions (i.e., calcium dynamics) on the emergence of
ISR and DISR. It may also be possible to extend our
study to investigate ISR in simpler neuron models, such as
two-dimensional models, to allow for theoretical analysis to
determine, for example, the dependence of critical noise levels
on different neuronal behaviors.
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