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We consider the network of citations of scientific papers and use a combination of the theoretical and
experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic
model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary
and coherent way, the model accounts both for statistics of references of scientific papers and for their citation
dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified
quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers.
The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network
topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging
citation trajectories of similar papers, runaways or “immortal papers” with infinite citation lifetime, etc. Thus
nonlinearity in complex network growth is our most important finding. In a more specific context, our results can
be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal
impact factor.
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I. INTRODUCTION

Complex networks became objects of physics research after
appearance of the Internet, large information databases, and
mapping of genetic and metabolic networks. The research in
networks focused initially on network topology [1,2] while
presently it focuses more on temporal and evolving networks
[3] and dynamic processes such as network growth. The
paradigm for complex network growth is the cumulative
advantage mechanism invented by de Solla Price [4]. The most
quantified complex network in his time was citation network
which exhibited an intriguing power-law degree distribution
which was considered as evidence of the scale-free behavior.
de Solla Price sought to explain it, so he postulated that citation
network grows by addition of new papers that cite older papers
with probability

λi ∝ (Ki + K0), (1)

where Ki is the number of citations of the target paper i and K0

is an unspecified constant. de Solla Price showed that the linear
growth rule captured by Eq. (1) generates networks with the
power-law degree distribution. With appearance of the Internet
and vigorous advent of network science, a similar rule was
invented by Barabasi [5] who suggested that Eq. (1) is the most
generic growth rule of complex networks. The Barabasi-Albert
model or preferential attachment is also known colloquially as
a “rich get richer” or Matthew effect [6]. Equation (1) was
soon generalized to include aging and nonlinearity [7,8],

λi = A(t)[Ki + K0]δ. (2)

Here, A(t) is the aging function, common to all nodes, K0

is the initial attractivity, and δ is the growth exponent. The
measurements on many complex networks [6] verified Eq. (2)
and showed ubiquity of networks with δ ∼ 1.

Although Eq. (2) successfully describes the complex
network growth, it is associated with several conceptual
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difficulties. Indeed, this equation encodes an empirical rule
assuming that each node in the network garners new links
with the rate proportional to its current degree; in other words,
Eqs. (1) and (2) assume that all nodes differ only in one
dimension—degree. This assumption results in similar growth
dynamics of the nodes of the same age, while in reality there
is a huge diversity in their growth trajectories.

To solve this difficulty, Bianconi and Barabasi [9] added a
different dimension to node description—fitness. This notion
replaced the egalitarian picture, according to which all nodes
are born equal, by the picture where each node is born
with some intrinsic propensity of growth. The corresponding
growth rule [10] (see also Refs. [11,12]) becomes

λi = ηiA(t)[Ki + K0], (3)

where ηi is the node fitness—an empirical parameter intro-
duced on top of the preferential attachment. To be less empiric,
several authors [13–16] added a more physical sense to Eq. (3)
and replaced ηi by node similarity (homophily). The latter
notion captures the fact that a new node tends to link to the
nodes with similar content rather than to randomly chosen
nodes. Technically, this line of reasoning results in Eq. (3)
where ηi is replaced by ηij , the latter quantifying the similarity
between the two connecting nodes [17].

Still, Eq. (3) contains too many empirical parameters
that prompt for microscopic explanation. The need for such
explanation becomes even more evident after realizing that
Eqs. (1)–(3) are global. In order for a new node to attach
preferentially to most popular nodes it shall be familiar with
the whole network. This global picture is unrealistic and many
efforts have been spent to elucidate the local microscopic
mechanism staying behind Eqs. (1)–(3).

The most popular local mechanism is the copying rule [18]
which is also known as recursive search [19], link copying or
redirection [8,20,21], random walk or local search [22,23],
triple or triangle formation [24], transitive triples [25], or
triadic closure [26]. A similar rule operates in social networks
[22,27], propagation of ideas [28–30], diffusion of innovations
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[31], and citation dynamics [32]. This rule assumes that a new
node performs random and recursive searches: first, it attaches
to a randomly chosen node, second, it copies some links of the
latter. This results in the following dynamic equation:

λi = A(t)[cKi + (1 − c)K0], (4)

where A(t) is the aging factor, the first and the second
addends in the parentheses correspond to the recursive and
random searches, respectively, and the parameter c regulates
the relative weights of the two. Similar two-term growth
equations were suggested by Refs. [13,27,33,34]. Equation (4)
is formally identical to Eq. (1) in which K0 captures the
probability of random search. The intuition behind the first
addend in Eq. (4) is as follows: if some node i has Ki

links, the probability to find it through recursive search is
increased by a factor Ki . Thus Eq. (4) seems to provide a
natural explanation for the preferential attachment mechanism.
Indeed, Refs. [35,36] rigorously demonstrated that Eq. (1) can
evolve from the copying rule.

However, the parameters of Eq. (4) were never measured
systematically: it is not known whether time dependencies of
the random and recursive search are the same or differ, whether
the probability of recursive search is identical for all nodes of
the same age or not. Our goal is to measure dynamic parameters
of some complex network, to establish its microscopic growth
rules, and to compare them to existing models. To this end we
consider an iconic example of a growing network—citations to
scientific papers—having in mind that the models of network
growth were originally suggested in relation to this very
network [37]. Despite some specificity (it is ordered, acyclic,
and does not allow rewiring and link deletion), citation network
is a well-documented prototypical directed network. Following
Ref. [38] we adopt a comprehensive approach, namely, we
consider the network growth from two perspectives: that of
an author and that of a cited paper. The former approach
focuses on the composition of the reference list of a paper,
the latter one focuses on the papers that cite a given paper. We
establish duality between these two approaches and formulate
a stochastic model that accounts both for citation dynamics of
scientific papers and for the age composition of their reference
lists.

The paper is organized as follows. Section II focuses on
references. We propose there a plausible scenario that the
authors follow when they compose the reference lists of
their papers. On the basis of this scenario we develop the
model accounting for the age distribution of references in
the reference list of scientific papers. The model contains
empirical functions which we find in dedicated measurements.
Section III focuses on the reference-citation duality. We
develop here a mean-field model of citation dynamics which is
based on this duality and on the model for age distribution of
references introduced in Sec. II. This macroscopic approach
captures the mean citation dynamics of a single research
field. In Sec. IV we develop an “individualized” mean-field
model that captures citation dynamics of the groups of
similar papers. This mesoscopic approach focuses on the
deterministic component of citation dynamics and leaves out
its stochastic component. Section V deals with stochastic
model of citation dynamics of individual papers and its
validation. This represents a truly microscopic approach and

it is the main message of the paper. The readers who want
to skip intermediate steps can read Sec. II A (scenario),
Sec. IV A (definitions), and jump to Sec. V. The logical flow
of the paper is discussed in more detail in the Supplemental
Material (SM I) [39].

II. CITATION DYNAMICS FROM
THE AUTHORS’ PERSPECTIVE

We discuss here how the authors compose the reference
lists of their papers, then we formulate a model of the age
composition of the reference list of papers and calibrate it in
measurements with physics papers.

A. Recursive search algorithm

The composition of the reference lists of scientific papers
is the clue to citation analysis. While citation dynamics of
a paper is determined by several factors: popularity of the
research field, journal impact factor, preferences and tastes of
citing authors, etc., the reference list derives from only one
source: decision of an author (research team) who chooses the
references on the basis of their content and age. We focus here
on the age of the references and do not consider their content,
although this can be very important [13].

Our goal is to measure and to model the age composition of
the reference lists of papers. To this end we distinguish between
two kinds of references: the direct references are those that are
not cited by any other paper in the reference list of the source
paper, the indirect references are those cited by one or several
preselected references (see Fig. 1).

What is the source of indirect references? If the author
cites some old seminal studies, his most recent references will
probably cite them as well. In our parlance these old papers are
indirect references. On the other hand, indirect references may
result from copying. Indeed, consider an author who writes a

FIG. 1. Cartoon scenario of the referencing process which is the
basis of our model. Consider a paper i published in the year t0
and its list of references A,B,C . . . e,f,g arranged in descending
chronological order. The author of i found some references (such as
A,B,C) independently and copied some others (such as e) from the
reference lists of already selected papers (for example, from B). We
assume that the probability of the paper e to be copied into reference
list of i is determined by the time lag τ between publication years of
its parent paper B and of its grandparent paper i.
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research paper. He reads scientific journals or media articles,
searches databases, finds relevant papers, and includes some
of them in his reference list. These are direct references [40].
Then he studies the reference lists of these papers, picks up
relevant references, reads them, and adds some of them into his
reference list. These are indirect references. Then he studies
the reference lists of the newly added papers, copies some
references, and continues recursively. All those papers that
were found through reference lists of the already selected
papers are indirect references. In what follows we analyze
the age composition of the reference list of papers generated
by this copying (recursive search) mechanism. Our analysis
is based on the causality principle that requires the indirect
references to be older than their preselected sources.

B. Model: Age distribution of references

To quantitatively account for the age composition of the
reference lists of research papers we develop an analytical
model based on the causality principle and recursive search
algorithm. Consider a source paper i published in the year t0
and one of its references B published in the year t0 − τ (Figs. 1
and 2). We assume that once i cites B, it can copy any paper e

from its reference list with equal probability. This probability
depends on a variety of factors, such as the local structure
of citation network, the age difference between the papers i,
B, and e, and their similarity (although the latter is already
captured by the parental relations: e is a descendant of i).

Publication year Source
paperi

B

A

C

f

ge

t0

t0-t

t0 -t

FIG. 2. Direct and indirect references. Consider a source paper
i published in the year t0 and its list of references A,B,C . . . e,f,g

arranged in descending chronological order. The papers A,B,C are
not cited by any other papers in the reference list of i and they are
direct references. The papers e and f are copied from the references
lists of the direct references B and C, correspondingly, and they
are indirect references. The paper g is copied from the reference
list of f and it is also an indirect reference. Each indirect reference
closes a triangle in which the source paper i is one of the vertices.
The solid and dashed lines connect, correspondingly, the direct and
indirect references to their parent papers. The references published
in each year include direct and indirect references. In particular, the
references published in the year t0 − t consist of A, e, and g.

Following Ref. [24] we develop this scenario into an
analytical model accounting for the average age composition
of the reference lists of papers. Indeed, consider a set of papers
in one scientific field that were published in one year t0. We
denote by R(t0,t0 − t) the average number of references in the
reference list of these papers that were published in the year
t0 − t . These consist of the direct and indirect references,

R(t0,t0 − t) = Rdir(t0,t0 − t) + Rindir(t0,t0 − t). (5)

The function Rdir(t0,t0 − t) is exogenous to our model. Once
it is known, the model calculates Rindir(t0,t0 − t). To find
Rindir(t0,t0 − t) we consider a source paper i published in
the year t0 and one of its references B published in the
year t0 − τ (Fig. 2). The reference list of the latter contains
R(t0 − τ,t0 − t) references published in the year t0 − t . We
assume that each of them can be copied to the reference list of
the source paper i with equal probability P (t0,t0 − τ ) which
is an empirical time-dependent function. P (t0,t0 − τ ) is the
probability that the second-generation reference picked up
from the first-generation reference that was published in the
year t0 − τ is copied to the reference list of the source paper
which was published in the year t0. The number of indirect
references in the reference list of i that were published in the
year t0 − t is the sum of contributions made by all references
of i that were published earlier,

Rindir(t0,t0 − t)

=
t∑

τ=0

R(t0 − τ,t0 − t)P (t0,t0 − τ )R(t0,t0 − τ ). (6)

Figure 2 visualizes these reference cascades. At the head of a
cascade there is a direct reference. It entails an indirect refer-
ence that can entail another indirect reference and so on. All
these cascades could have been captured by Eq. (6) if instead
of R(t0,t0 − τ ) we were using Rdir(t0,t0 − τ ) in the kernel.
Nevertheless, we prefer to write Eq. (6) with R(t0,t0 − τ )
as a source, since in this form Eq. (6) embodies the recursive
search algorithm more straightforwardly.

So far, Eq. (6) does not contain new information since
almost any function R(t) can be decomposed into the sum
of two functions Rdir(t) and Rindir(t) that satisfy Eqs. (5) and
(6) (if one chooses the appropriate kernel P ). While we do not
make any statement with respect to the function Rdir(t0,t0 − t),
our model assumes that the kernel P (t0,t0 − τ ) has a simple
functional form reflecting the author’s psychology. In what fol-
lows we measure the functions Rdir(t0,t0 − τ ),Rindir(t0,t0 − τ ),
and R(t0,t0 − τ ), solve integral Eq. (6), and determine
P (t0,t0 − τ ). We find that the latter function is indeed a simple
exponential which can be conveniently interpreted in the
framework of the copying mechanism. Thus our measurements
of references validate the copying mechanism and justify it as
a foundation of the model of citation dynamics.

C. Measurements: Direct and indirect references

1. Reduced age distribution of references

To develop our measurement protocol we note that the
age distribution of references R(t0,t0 − t) depends on two
variables: t0 and t . To exclude dependence on the publication
year t0 we follow Refs. [41–48] and consider the reduced age
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FIG. 3. r(t), reduced age distribution of references (a fraction of
references published in the year t0 − t that appear in the reference
list of a paper published in the year t0). Red, blue, and green circles
stay for three sets of research papers published in July issues of
Physical Review B in 1998, 2004, and 2014, correspondingly. Similar
to previous studies [41,44], we observe that r(t) dependencies for all
publication years collapse onto a single curve (with possible exception
of t = 0). Continuous line was obtained by averaging and smoothing
the data.

distribution of references

r(t) = R(t0,t0 − t)

R0(t0)
, (7)

where R0(t0) is the average reference list length of the papers
published in the year t0. Figure 3 shows r(t) dependence.
After a sharp growth for t = 0–2 it slowly decays with t as
R(t) ∼ 1

(t+0.2)1.5 (the publication year corresponds to t = 0).
We note a remarkable fact: r(t) is almost independent of

the publication year t0. Therefore, we can write R(t0,t0 − t) =
r(t)R0(t0). This means that R(t0,t0 − t) dependence on t0
results only from the R0(t0) dependence. Since R0 grows with
time exponentially, R0(t0) ∝ eβt0 (SM III [39]), then Eq. (6)
can be recast as follows:

Rindir(t0,t0 − t) =
t∑

τ=0

R(t0,t0 − t + τ )P (t0,t0 − τ )

× e−βτR(t0,t0 − τ ). (8)

Now all functions in Eq. (8) belong to the same publication
year t0. Hence, they can be considered as functions of only
one independent variable—t . We cut short our notation and
instead of R(t0,t0 − t),Rindir(t0,t0 − t) and P (t0,t0 − t) we
write R(t), Rindir(t), and P (t), correspondingly. Thus we come
to a compact expression

Rindir(t) =
t∑

τ=0

R(t − τ )P (τ )e−βτR(τ ). (9)

Although the kernel of Eq. (9) includes the product of R(t − τ )
and R(τ ) this is still a linear equation [as well as Eqs. (6)

FIG. 4. Time dependence of Rdir, Rindir, and R = Rdir + Rindir,
the numbers of direct, indirect, and total references in a typical
reference list of the Physical Review B papers. The data show the
average values for 21 PRB papers published in 2014. Empty squares
show model prediction based on Eq. (6) with exponential kernel
P (τ ) = P0e

−(γ+β)τ where P0 = 0.19 and γ + β = 1.2 yr−1.

and (8)]. The reason is that Rindir(t) ∝ R0 and R(t) ∝ R0, but
P (t) ∝ R−1

0 (we will show this in Sec. II C 3), in such a way
that in fact both sides of Eq. (8) linearly depend on the number
of references.

2. Measurement of Rdir(t),Rindir(t)

In what follows we measure R(t), Rdir(t), and Rindir(t),
compare our results to Eq. (8), and determine P (τ ). Figure 4
shows the results of such measurements for a set of 21 physics
papers published in Physical Review B in 2014 (SM II [39]).
Rdir(t) sharply increases during first couple of years after
publication and then slowly decays while Rindir(t) at first
slowly increases and then decays even more slowly. Do these
observations make sense from the viewpoint of the copying
model (Fig. 1)? Reference [49], which was the first to suggest
the decomposition of the reference list of a paper into direct and
indirect contributions, assumed that Rdir(t) decays fast. This
extreme picture reduces the referencing process to ridicule:
the author reads only few recent papers and copies all other
references from them. Our measurements reveal a much more
realistic scenario of the referencing process. Indeed, the long
tail of Rdir(t) implies that the author reads the recent and old
papers as well, and copies only few references from each of
them.

To find the kernel P (τ ) we assumed exponential time
dependence P (τ ) = P0e

−γ τ . We substituted into Eq. (8) this
kernel and the measured function R(t). By varying fitting
parameters P0 and γ we searched for the best correspondence
between the calculated and the measured Rindir(t) depen-
dencies. Figure 4 shows that it occurs for P0 = 0.19 and
γ + β = 1.2 yr−1 (SM VI [39]). Fast exponential decrease
of P (τ ) suggests that if the references are copied, this is
done preferably from recent references, as expected. The large
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proportion of indirect references in the reference list of papers
as implied by a rather big P0 (we found that the average
reference list of a Physical Review B paper includes 65%
indirect references) conforms well with previous estimates of
Refs. [15,23,49–51] (see also SM V [39]). Thus our findings
support the copying mechanism.

3. Dependence on the publication year

In what follows we explore how the functions Rdir(t0,t0−t),
Rindir(t0,t0 − t), and P (t0,t0 − t) depend on the publication
year t0. To this end we introduce rdir(t) = Rdir(t0,t0−t)

R0(t0) and

rindir(t) = Rindir(t0,t0−t)
R0(t0) and recast Eq. (5) as follows:

r(t) = rdir(t) + rindir(t). (10)

Since r(t) does not depend on the publication year t0 (Fig. 3),
we make a plausible assumption that rdir(t) and rindir(t) do not
either, in such a way that Rdir(t0,t0 − t) and Rindir(t0,t0 − t)
dependencies on t0 reduce to R0(t0) dependence. This allows
making certain conclusions on how P (t0,t0 − t) depends on
the publication year t0. To this end we divide both parts of
Eq. (8) by R0(t0) and come to

rindir(t) =
t∑

τ=0

r(t − τ )T (t0,t0 − τ )r(τ ), (11)

where T (t0,t0 − τ ) = P (t0,t0 − τ )R0(t0 − τ ) = T0e
−(γ+β)τ

and T0 = P0(t0)R0(t0).
Since neither rindir(t) nor r(t) depend on t0, then T0 should

not depend on t0 either. We infer from Fig. 4 that T0 = 7.6,
γ + β = 1.2 yr−1. This means that the author of a paper
published in the year t0 copies on average 7.6 references from
each preselected reference published in the same year, 2.3
references from each one-year-old preselected reference, 0.7
references from each two-year-old preselected reference, and
so on.

With respect to the probability of indirect citation P , we
note that P0(t0) = T0

R0(t0) . While T0 does not depend on the
publication year, R0 slowly increases with growing t0 (SM III
[39]). This means that P0 decreases with t0.

III. REFERENCE-CITATION DUALITY

Our further task is the extension of the recursive search
(copying) model (Fig. 1) to citation dynamics. This can be
done by two complementary approaches: reformulation of the
model from the perspective of a citing paper or by exploration
of the reference-citation duality. We focus here on the latter
approach and leave the former one for the next section, Sec. IV.
In this section we develop the mean-field model of citation
dynamics for the papers in the same field published in one year.

A. Duality

Scientific papers represent a directed complex network.
Figure 5 shows a part of this network consisting of two sets of
papers published in the years t0 and t0 + t , correspondingly.
The papers are nodes while the links between them can be
considered either as citations or references since one paper’s
citation is another paper’s reference. To explore mathematical
consequences of this duality we introduce Npubl(t0) and

FIG. 5. Reference-citation duality. The filled and the empty
circles show all papers in one research field that were published
in the years t0 and t1 = t0 + t , correspondingly. The links between
the two sets are shown by red lines. With respect to the first set these
links are citations, with respect to the second set they are references.
Green lines show interdisciplinary citations and references.

Npubl(t0 + t), the number of papers in each set; M(t0,t0 + t),
the mean number of citations garnered in the year t0 + t

by a paper of the first set published in t0; and R(t0 + t,t0),
the average number of references published in the year t0
that appear in the reference list of the papers of the second
set which is published in the year t1 = t0 + t . We assume
that all citing papers belong to the same research field and
neglect interdisciplinary papers, books, and other references or
citations which are not research papers. Under this assumption,
the number of papers that cite the first set and that were
published in the year t0 + t is equal to the number of references
published in the year t0 that appear in the reference lists of the
papers of the second set, namely,

Npubl(t0)M(t0,t1) = Npubl(t1)R(t1,t0). (12)

Since the annual growth of the number of publications is
nearly exponential, Npubl(t0 + t) ≈ Npubl(t0)eαt (SM III [39]),
Eq. (12) yields

M(t0,t0 + t) = R(t0 + t,t0)eαt . (13)

We replace here R(t0 + t,t0) by r(t)R0(t0 + t) = r(t)R0(t0)eβt

where r(t) is the reduced distribution of references (Sec.
II C 1). Since r(t) does not depend on the publication year,
then R(t0 + t,t0) = R(t0,t0 − t)R0(t0+t)

R0(t0) = R(t0,t0 − t)eβt . We
substitute this expression into Eq. (13) and find

M(t0,t0 + t) = R(t0,t0 − t)e(α+β)t . (14)

Equation (14) captures the reference-citation duality. It
relates synchronous (retrospective) and diachronous (prospec-
tive) citation distributions [41–48] for the same publication
year. To compare these distributions for different publication
years t0 and t1 one only needs to introduce a constant factor
R0(t1)
R0(t0) , in such a way that R(t1,t1 − t) = R(t0,t0 − t)R0(t1)

R0(t0) ,

M(t1,t1 + t) = M(t0,t0 + t)R0(t1)
R0(t0) .

Figure 6 validates Eq. (14) and proves that M(t0,t0 + t) and
R(t1,t1 − t) are related to one another through the exponential
factor e(α+β)t . Although this factor grows very slowly with
time, it is responsible for a subtle qualitative difference
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FIG. 6. Reference-citation duality. M(t0,t0 + t) is mean annual
number of citations of 48 168 physics papers published in t0 = 1984.
R(t1,t1 − t) is the age composition of the reference list of the Physical
Review B papers published in t1 = 2014 (the data are from Fig. 3).
Both dependencies are qualitatively similar and almost obey mirror
symmetry. The inset shows the ratio of M(t0,t0 + t) to R(t1,t1 − t).
The straight line indicates exponential dependence e(α+β)t suggested
by Eq. (14) with α = 0.046 yr−1 and β = 0.02 yr−1 as found in
SM III [39].

between M(t0,t0 + t) and R(t1,t1 − t) dependencies. Indeed,
we infer from Figs. 3 and 6 that the integral

∫ t

0 R(t1,t1 − τ )dτ

converges to R0(t1) as t → ∞. However, the function
M(t0,t0 + t) decays slower due to exponential factor e(α+β)t .
Thus, the integral

∫ t

0 M(t0,t0 + τ )dτ can diverge as t → ∞.
This is exactly the situation with physics papers.

B. Mean-field citation dynamics

The reference-citation duality naturally leads to a dynamic
equation for M(t0,t0 + t), an average number of citations
garnered by a paper in the year t after publication, where the
averaging is performed over all papers in one field published in
one year. Indeed, we represent M(t0,t0 + t) as a sum of direct
and indirect citations,

M(t0,t0 + t) = Mdir(t0,t0 + t) + Mindir(t0,t0 + t), (15)

replace t0 by t0 + t in Eq. (6), substitute there R by M using
Eq. (14), and arrive at

Mdir(t0,t0 + t) = rdir(t)R0(t0)e(α+β)t , (16)

Mindir(t0,t0 + t) =
t∑

τ=0

M(t0 + τ,t0 + t)P (t0 + t,t0 + τ )

×M(t0,t0 + τ ). (17)

Although dynamic equations for citations [Eqs. (15)
and (17)] are very similar to Eqs. (5) and (6) for references,
there is a dramatic difference in their statistics (in and out
degrees in network language). Figure 7 shows that citation

FIG. 7. Cumulative distribution of the reference list lengths R0

and of the long-time limit of citations K∞ for the same set of papers
(all 2078 Physical Review B papers published in 1984). Citations
were counted in 2014. While both distributions have almost the same
mean, R0 exhibits a relatively narrow bell-shaped distribution while
K∞ distribution is very wide and has a fat tail.

distribution is extremely broad, while the reference list length
distribution for the same set of papers is a relatively narrow
bell-shaped curve. (The World Wide Web exhibits a similar
asymmetry between in- and out-degree distributions [52].)
Narrow R0 distribution implies that R(t) truly represents the
age composition of the reference list of an average paper. Broad
citation distribution indicates that Eqs. (15) and (17) describe
citation dynamics only in the mean-field approximation;
citation dynamics of individual papers can be qualitatively
different from the mean.

What is the source of asymmetry between R0 and K∞
distributions? To our opinion, this derives from the fact that
references are compiled by one author while citations derive
from many authors. Indeed, while journal style requirements
do not standardize the reference list length, the authors try to
comply with what is accepted in their research field. This
means that there is a feedback mechanism that forces the
authors to adhere to some average reference list length and this
results in a relatively narrow distribution of R0. However, if we
consider citation dynamics of a paper, the decision on whether
to cite it comes from many uncoordinated authors. There is no
feedback mechanism regulating the number of citations of a
paper and this is the source of enormous variability in citation
dynamics of individual papers.

All these considerations suggest that the modeling of the
citation dynamics of individual papers requires a special
approach. However, any such approach shall be compatible
with Eqs. (15) and (17) which capture citation dynamics of
papers in the mean-field approximation. In what follows we
develop a model of citation dynamics based on recursive search
mechanism (Fig. 1) that satisfies this requirement.
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FIG. 8. A fragment of a citation network showing a source paper
i and its citing papers. The papers A,B,C are direct citations since
they cite i and do not cite any other paper citing i. The papers e,f

cite papers B,C, correspondingly, and they are indirect citations. The
paper g is also an indirect citation since it cites f that cites i. The
solid and dashed lines link the source paper with its direct and indirect
citing papers, correspondingly. Each indirect citation closes a triangle
in which the source paper i is one of the vertices.

IV. CITATION DYNAMICS FROM THE PERSPECTIVE
OF CITED PAPER

In this section we consider our scenario (Fig. 1) from the
perspective of a cited paper rather than from the author’s
perspective and formulate the model of citation dynamics.
This is equivalent to moving from the mean-field approach
to the paper-specific approach. The model contains empirical
functions that shall be taken from measurements. To find these
functions we perform measurements of citation dynamics of
a small set of physics papers and come to the conclusion
that our linear model misses some important ingredient. We
perform a series of microscopic measurements, pinpoint the
missing ingredient (nonlinearity), and reformulate the model
correspondingly.

A. Model: Citation dynamics of individual papers

To model citation dynamics of individual papers we
reformulate our scenario (Fig. 1) in terms of citations. Figure 8
shows a source paper i published in the year t0 and its citations
garnered in subsequent years. A direct citation is the paper
that cites paper i and does not cite any other paper that cites i,
while an indirect citation is the paper that cites both i and one
or more of its citing papers. For example, the papers A,B,C

cite paper i and these are direct citations. The papers e,g,f

cite, correspondingly, the papers B,f,C that cite paper i and
these are indirect citations.

To quantify this scenario we designate by ki(t0,t0 + t) the
number of citations garnered by a paper i in the year t0 + t .
Our basic assumption is that ki(t0,t0 + t) is a discrete random
variable that follows a time-inhomogeneous Poisson process
[53] with the time-dependent Poissonian rate λi(t0,t0 + t) and
the probability distribution

Poiss(ki) = λ
ki

i

ki!
e−λi . (18)

Our aim is to model λi(t0,t0 + t). We assume that λi(t0,t0 + t)
consists of the direct and indirect contributions,

λi(t0,t0 + t) = λdir
i (t0,t0 + t) + λindir

i (t0,t0 + t). (19)

We do not make any assumptions with respect to the functional
form of λdir

i (t0,t0 + t) but seek consistency with Sec. III B,
namely, we require that

λdir
i (t0,t0 + t) = Mdir(t0,t0 + t), (20)

where Mdir(t0,t0 + t) is given by Eq. (16) and the averaging
is performed over all papers in one research field published in
one year.

With respect to indirect citations, we assume that their
dynamics is captured by the “individualized” version of
Eq. (17), namely

λindir
i (t0,t0 + t) =

t∑

τ=0

M(t0 + τ,t0 + t)P (t0 + t,t0 + τ )

× ki(t0,t0 + τ ), (21)

where ki(t0,t0 + τ ) is the number of previous citations of
the source paper i garnered in the year t0 + τ . We assume
that functions M and P are the same for all papers in one
field and published in one year (this will be revised soon).
Under these assumptions Eq. (21) is consistent with Eq. (17)
since ki(t0,t0 + τ ) = M(t0,t0 + τ ) and thus λindir

i (t0,t0 + t) =
Mindir(t0,t0 + t).

To cast Eq. (21) into a more concise form we substituted
there exponential kernel P (t0 + t,t0 + τ ) = P0(t0 + t)e−γ (t−τ )

found in our studies of references (Sec. II C 2). To reduce
all functions to the same publication year t0 we used
the relations P0(t0 + t) = P0(t0)e−βt and M(t0 + τ,t0 + t) =
M(t0,t0 + t − τ )eβτ where β accounts for the growth of the
reference list length with time (see Secs. II C 1 and II C 3). We
exclude t0 from our notation and come to

λindir
i (t) =

t∑

τ=0

M(t − τ )P0e
−(γ+β)(t−τ )ki(τ ). (22)

Our purpose is to measure λdir
i (t) and λindir

i (t) for individual
papers and to compare our measurements to Eqs. (19), (20),
and (22), correspondingly.

B. Methodology: Citation dynamics of the groups
of similar papers

Comparison of citation dynamics of a single paper to
model prediction is not very instructive since this dynamics
has too much variability for individual papers. To make
meaningful comparison and to minimize scatter we considered
average citation dynamics of the groups of similar papers.
We assumed that the papers that belong to the same research
field, were published in the same year, and garnered the same
number of citations in the long-time limit—K∞—have similar
citation dynamics. In other words, we assumed that the paper’s
individuality is captured by K∞. In particular, we measured
citation dynamics of four groups of papers that garnered,
correspondingly, 10, 20, 30, and 100 citations in the long-time
limit and assumed that λi(t) = ki(t) where ki(t) is the mean
citation rate of the papers with the same K∞. To reduce noise,
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(a) (b)

FIG. 9. (a) Direct citations for 37 Physical Review B papers published in 1984. Each set of points represents cumulative direct citations
averaged over a group of papers that garnered the same number of citations by the end of 2013, namely K∞ = 10, 20, 30, and 100. Continuous
lines show Kdir(t) = η(K∞)

∑t

τ=0 mdir(τ ) dependencies where mdir(t) is the same function for all groups and η(K∞) is the fitting parameter for
each group. (b) Scaled data of (a). Continuous black line shows

∑t

τ=0 mdir(τ ) dependence which was obtained by averaging and smoothing the
scaled data. The inset shows η(K∞). The line there is a guide to the eye.

comparison to the model was performed using cumulative
citations Ki(t) = ∑t

τ=0 ki(τ ). Our aim is to find λi(t) and to
verify whether the function M(t − τ ) and the parameters P0

and γ are the same for all papers.
This approach is equivalent to replacing Eqs. (19) and (21)

by Eqs. (15) and (17) where averaging is performed not
over a whole set of papers in the field, but over a subset
consisting of papers having the same number of citations in the
long-time limit. Although this mesoscopic approach is much
more specific than the mean-field one analyzed in Sec. III,
still it captures only the deterministic component of citation
dynamics while washing away its variability. The variable,
stochastic component of citation dynamics, will be considered
in Sec. V.

C. Direct citations

Figure 9 shows time dependence of Kdir(t) = ∑t
τ=0 kdir

i (τ ),
cumulative direct citations for several groups of papers that
were published in the same year. Kdir(t) dependencies for all
groups are qualitatively similar and after scaling they collapse
onto a single curve. This means that they can be represented
as Kdir(t) = η(K∞)

∑t
τ=0 mdir(τ ) where K∞ is the long-time

limit of the number of citations, η(K∞) is the scaling factor,
and mdir(t) is the universal function for all groups (see Fig. 10).
Since Kdir(t) does not come to saturation even at t = 30 years,
in order to uniquely define mdir(t) we adopted the following
constraint:

∑t=30
τ=0 mdir(τ ) = 1. Under this constraint ηi is the

number of direct citations that paper i garners after 30 years.
We name it fitness. Then

λdir
i (t) = ηimdir(t). (23)

Thus, the average annual number of direct citations for all
papers in one field and published in one year is kdir

i (t) =
ηimdir(t). According to our model [Eq. (16)] this expression

shall be equal to Mdir(t) = rdir(t)R0(t0)e(α+β)t where r(t) is
the reduced reference age and R0 is the average reference
list length. Figure 9(c) validates this relation—the functions
mdir(t) and rdir(t) are very similar and their ratio is close to
expected exponential dependence.

D. Indirect citations

Figure 11 plots Kindir(t), cumulative indirect citations for
the groups of papers shown in Fig. 9. In our calculation we

FIG. 10. Time dependence of reduced direct citations mdir(t)
[Eq. (23), Fig. 9(b)] and of reduced direct references rdir(t) (from
Fig. 4). The inset shows mdir(t) to rdir(t) ratio. The straight line
indicates exponential dependence e(α+β)t suggested by Eq. (14) with
α = 0.046 yr−1 and β = 0.02 yr−1 as found in SM III [39].
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FIG. 11. Indirect citations for 37 Physical Review B papers
published in 1984. Each set of points represents cumulative indirect
citations averaged over a group of papers that garnered the same
number of citations K∞ (10, 20, 30, and 100) by the end of 2013.
Continuous lines are fits to Eq. (22) with γ = 1.2 yr−1, β = 0.02 yr−1,
M(t − τ ) from Fig. 6 and P0 as a fitting parameter for each group.
The inset shows P0(K∞) dependence. The line there is a guide to
the eye.

used Eq. (22) where instead of ki(τ ) we substituted ki(τ ), the
mean citation rate for the group of papers with the same K∞.
The function M(t) was taken from Fig. 6 while P0, γ , and β

were taken from our measurements of references. (Note that
P0 depends on the publication year. Our studies of references
of the physics papers published in 2014 yielded P0 = 0.19.
Extrapolation to 1984 based on the results of Sec. II C 3
yields P0 = 0.31.) The model prediction satisfactorily fits
Kindir(t) dependence for low-cited papers with K∞ = 10 and
is inconsistent with our measurements for the papers with
K∞ > 10. However, if P0 is considered as a fitting parameter
for each group, then a good agreement between the measured
and calculated Kindir(t) dependencies is achieved (Fig. 11). The
inset to Fig. 11 shows that the fitting parameter P0 increases
with K∞. In fact, Eq. (21) implies that K∞ dependence may
be attributed either to P0, or to M(t − τ ), or to both of them.
It is important to note that M(t − τ ) in Eq. (22) is the mean
number of citations of the papers that cite the source paper, i.e.,
it is the nearest-neighbor connectivity Mnn which is associated
with the second-generation citing papers. The probability
of indirect citations is also related to the second-generation
citing papers (next-nearest neighbors). Therefore, to find the
origin of the P0(K∞) dependence we decided to study the
second-generation citations and citing papers more closely.

E. Second-generation citations and citing papers

We again considered several groups of physics papers
published in one year (1984) and having the same number

of citations in the long-time limit (2014). For each of these
source papers we counted their first- and second-generation
citing papers and citations garnered by 2014. Obviously,
for each source paper the numbers of the first-generation
citations and citing papers are equal. However, the number
of the second-generation citations generally exceeds the
number of the second-generation citing papers since one
second-generation paper can cite several first-generation citing
papers. We denote by Mnn

i and Nnn
i , correspondingly, the

number of the second-generation citations and the number of
the second-generation citing papers per one first-generation
citing paper. In the language of network science Mnn

i is
the average nearest-neighbor connectivity while Nnn

i is the
average number of next-nearest neighbors per one nearest
neighbor. Both Mnn

i and Nnn
i increase with time and for most of

the papers these parameters achieve saturation in the long-time
limit. We calculated Mnn(K∞) = Mnn

i and Nnn(K∞) = Nnn
i

where the averaging was performed over a group of papers
with the same K∞, the number of citations in the long-time
limit. Figure 12 shows that Mnn(K∞) slowly increases, while
Nnn(K∞) is nearly independent of K∞. Increasing Mnn(K∞)
dependence indicates that highly cited papers have highly cited
descendants, i.e., citation network is assortative. Reference [2]
made a similar observation for the network of Physical Review
to Physical Review citations. It is important to note that Mnn

i

and Nnn
i for the same paper are correlated and large Nnn

i

usually means large Mnn
i . To account for this correlation

we introduced a new parameter si = Mnn
i

Nnn
i

that characterizes
the mean number of paths connecting the source paper to
its next-nearest neighbors and which is closely related to
the so-called quadrangle coefficient [54]. Figure 12(b) shows
s = si where the averaging was performed over the groups of
papers with the same K∞. The error bars indicate the spread
of si values within each group. This spread is much smaller
than those of Mnn

i and Nnn
i [Fig. 12(a)], as expected.

Figure 12(b) suggests that s grows logarithmically with K∞
and increases from s ≈ 1 for low-cited papers to s = 1.55 for
highly cited papers. This means that the former are connected
to their second-generation descendants mostly by single paths,
while the latter are connected to their second-generation
descendants by multiple paths. The difference between the
network neighborhoods of the lowly and highly cited papers
may arise from the saturation effect: the descendants of lowly
cited papers constitute only a small fraction of all papers in
the corresponding research field, while the descendants of
highly cited papers constitute a considerable fraction of it
(see Appendix A).

F. Probability of indirect citation

Although Mnn(K∞) dependence (assortativity) introduces
some K∞ dependence into the kernel of Eq. (22), this
dependence is too weak and cannot qualitatively explain
the K∞-dependent factor (which we attributed to P0) that
was invoked in order to make our measurements of indirect
citations consistent with Eq. (22) (see Fig. 11). This indicates
that not only is M(t − τ ) [which is in fact Mnn(t − τ )] K∞
dependent, but the factor P0 should also depend on K∞. In
view of Fig. 12 we speculate that P0(K∞) dependence can be
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(a) (b)

FIG. 12. (a) Second-generation citations and citing papers for 108 Physical Review B papers published in 1984. The filled circles show the
average nearest-neighbor connectivity, Mnn(K∞) = Mnn

i . The empty circles show the average number of next-nearest neighbors per one nearest
neighbor, Nnn(K∞) = Nnn

i . The averaging was performed over the groups of papers with the same K∞, the number of citations garnered by the
end of 2013. While Nnn(K∞) is nearly independent of K∞, Mnn(K∞) increases with K∞, indicating that citation network is assortative. The
dashed lines are the guides to the eye. (b) The mean number of paths connecting a second-generation citing paper to the source paper, s = si ,

where si = Mnn
i

Nnn
i

. The straight line shows empirical logarithmic dependence s = 0.925 + 0.21 log10 K∞.

traced to the fact that the network neighborhoods of the lowly
and highly cited papers differ.

Figure 13 illustrates how this can occur. It shows some
source paper i and its first- and second-generation descendants.
The decision on whether to cite indirectly (to copy) the source

FIG. 13. Probability of indirect citation depends on the number of
paths connecting the citing and cited papers. With respect to the source
paper i the papers A,B,C and e,f,g are, correspondingly, the first-
generation and second-generation citing papers. The probabilities
that the papers e,f cite the source paper i are determined by the
paths e-A-i and f -B-i. Since the papers e and f are written by
different authors these paths do not interfere and the corresponding
probabilities sum up. The paper g cites two first-generation citing
papers C and D; the probability that it cites the source paper i is
determined by the paths f -C-i and f -D-i. Since the decision on
copying is made by the same author these paths interfere and the
corresponding probabilities mix nonlinearly.

paper or not is made at the second-generation node rather
than by the second-generation link. This prompts us to modify
Eq. (22): we replace there Mnn

i (t − τ ) by Nnn
i (t − τ ). The

probability P0 is replaced, correspondingly, by P̃0 = Mnn
i

Nnn
i

P0 =
siP0. While P0 is the probability of copying the source paper
which is induced by a second-generation citation, P̃0 is the
probability of copying the source paper by a second-generation
citing paper. P̃0 takes into account that one second-generation
citing paper can cite several first-generation citing papers.
After this replacement Eq. (22) reduces to

λindir
i (t) =

t∑

τ=0

Nnn(t − τ )P̃0(K∞)e−(γ+β)(t−τ )ki(τ ). (24)

Since Nnn is almost independent of K∞ [Fig. 12(a)] then
P̃0(K∞) absorbs all K∞-dependent factors. Thus, the inset
to Fig. 11 shows in fact the P̃0(K∞) dependence. To find
the origin of this dependence we shall consider the copying
mechanism at the microscopic level.

Our basic assumption is that P̃0 is sensitive to the network
neighborhood of the source paper. To study this issue in detail
we chose three representative Physical Review B papers that
were published in 1984 and gained 100 citations by the end of
2013. For each source paper we considered two generations
of citing papers, limited ourselves only to descendants of the
direct citations, and disregarded indirect citations inducing
other indirect citations. We designated the number of direct
citations of a source paper by Kdir. The number of papers that
cite these Kdir papers is designated by NII and the number
of corresponding citations is MII (all citations were counted
by the end of 2013). Among these NII papers we counted the
number of network motifs (j -multiplets; see Fig. 14) which
we designated by NII

j . The fraction of the second-generation
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FIG. 14. Network motifs. The circles show papers, the contin-
uous lines show direct citations, the dashed lines show indirect
citations. i: the source paper; A,B,C: first-generation citing papers;
e,g,h: second-generation citing papers. We distinguish between
j -multiplet such as singlet (j = 1), doublet (j = 2), triplet, (j = 3),
etc. Figure 15 indicates that the probability of papers e,g,h to
cite the source paper i (indirectly) increases nonlinearly with the
multiplicity j .

citing papers associated with j -multiplets is fj , in such a way
that NII = ∑

j fjN
II
j and MII = ∑

j jfjN
II
j . Among each

group of NII
j papers we counted those that cite the source paper

(indirect citations) and designated their number as (NII
j )indir.

Thus, the probability of indirect citation of the source paper
by a second-generation citing paper which is a part of a

j -multiplet is πj = (NII
j )indir

NII
j

.

Figure 15 shows that πj (j ) dependence is nonlinear and
this is highly nontrivial. Indeed, if each second-generation
citation were having the same probability of inducing indirect
citation of the parent paper, this probability should increase
linearly with the number of paths connecting the citing paper

FIG. 15. Probability of indirect citation in network motifs vs j ,
the number of paths connecting the citing and cited paper. For each
source paper we plot the linear (πj ∝ j , dashed line) and quadratic
(πj ∝ j 2, continuous line) dependencies. Quadratic dependence,
suggestive of interference, fits the data much better than the linear
one. The inset shows that fj , the fraction of network motifs (Fig. 14)
among all second-generation citing papers, decreases with increasing
multiplicity j as fj ∼ j−d where d = 3–4. The data are for three
Physical Review B papers that were published in 1984 and gained
100 citations by the end of 2013.

to its ancestor, namely, πj ∝ j . Figure 15 indicates that πj

rather follows quadratic dependence, πj ∝ j 2, suggestive of
multipath interference. Thus, the probability of citing the
source paper by any second-generation citing paper which is
a part of a high-order multiplet (quadrangle, pentagon, etc.) is
disproportionately high. Is this effect important? Although fj ,
the fraction of higher-order j -multiplets, decreases with j , the
contribution of these higher-order multiplets to the number
of indirect citations is by no means negligible. Consider
the papers shown in Fig. 15. While higher-order multiplets
j = 2,3 . . . constitute only 12% of the second-generation
citing papers they contribute 44% of indirect citations.

These microscopic measurements allow quantitative as-
sessment of the P̃0(K) dependence. Indeed, we note that
P̃0 ∝ ∑

j πjfj where fj is the fraction of the higher-order
multiplets. For simplicity, we limit ourselves only to singlets
and doublets, in such a way that f1 + f2 = 1. Since π ∝ j 2

(Fig. 15) then π2 ≈ 4π1 and P̃0 ∝ π1(1 + 3f2). We note
that s = ∑

j jfj where s was introduced in Sec. IV E. Then
s = 1 + f2 and

P̃0 ∝ π1[1 + 3(s − 1)]. (25)

If the multipath interference were absent, then πj ∼ j , in such
a way that π2 = 2π1 and

P̃0 ∝ π1s. (26)

Our microscopic measurements with 37 physics papers
[Fig. 16(a)] are consistent with Eq. (25) rather than with
Eq. (26) and for K∞ > 10 they yield P̃0 ≈ 0.42[1 + 3(s − 1)].
This is another proof of the multipath interference.

Since s depends on K∞, the P̃0(s) dependence captured
by Eq. (25) is translated into P̃0(K∞) dependence. Indeed,
consider Fig. 16(b) which is the combination of Fig. 12(b) and
the inset to Fig. 11. We scale the vertical axes as suggested by
Eq. (25) and find that both P̃0(K∞) and 1 + 3(s − 1) vs K∞
dependencies collapse. This proves that the underlying cause
for the P̃0(K∞) dependence is s(K∞) dependence amplified
by multipath interference.

Now we make a crucial assumption. Although Fig. 16(b)
shows P̃0(K∞) dependence for K∞ = K(t = 30), we note that
there is nothing special about t = 30 and the same dependence
should hold for any year t . If we adopt this conjecture then
Fig. 16(b) yields

P̃0(K) = 0.34(1 + 0.82 log10 K), (27)

where K is the number of citations of the paper at year t .
Since K(t) grows with time, so does P̃0(K). Thus we found an
explanation of the puzzling P̃0(K) dependence shown in the
inset of the Fig. 11. Now we can extend our citation model from
the mesoscopic (groups of similar papers) to the microscopic
(individual papers) level.

V. STOCHASTIC MODEL OF CITATION DYNAMICS

In the previous section we formulated the model of citation
dynamics for individual papers. The model contained several
empirical functions. To calibrate the model we considered
several groups of similar papers, measured average citation
dynamics of the papers in each group, fitted them using
the model, and found the corresponding empirical functions.
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(a) (b)

FIG. 16. (a) P̃0, the probability of indirect citation of the source paper by a second-generation citing paper, vs s, the average number of
paths connecting these two papers. The data are for 37 papers shown in Fig. 11. The straight blue line shows a fairly good fit to Eq. (25) with
π1 as a fitting parameter. The dashed green line shows fit to Eq. (26). Clearly, this fit is unsatisfactory. (b) P̃0 vs K∞, the number of citations
garnered by a paper after 30 years (filled circles). Empty triangles show 1 + 3(s − 1) where s values were taken from Fig. 12. The straight line
shows logarithmic dependence given by Eq. (27).

The calibrated model captures the deterministic component of
citation dynamics of papers. However, it is not clear whether
it reproduces its random, fluctuating component.

The aim of this section is the validation of the model.
This shall be done for two reasons. First, since we measured
empirical functions appearing in the model by studying citation
dynamics of the papers that garnered only 10–100 citations in
the long-time limit we need to verify that our model can be
extrapolated to all papers, namely, to those that garnered many
more and many fewer citations. Second, we need to check
to what extent our model captures stochastic component of
citation dynamics of papers.

A. Model formulation

For pedagogical reasons we summarize here our model
[Eqs. (23), (24), and (27)] and present our key result—the
nonlinear stochastic dynamic equation for the latent citation
rate of a paper i at year t after publication,

λi(t) = ηimdir(t) +
t∑

τ=0

Nnn(t − τ )P̃0(Ki)e
−(γ+β)(t−τ )ki(τ ).

(28)

Here, ηi is the paper’s fitness, an empirical parameter, unique
for each paper; mdir(t) is the time-dependent direct citation
rate; ki(τ ) is the actual number of citations that the paper i

garnered earlier in the year τ ; Nnn(t − τ ) is the average number
of the second-generation citing papers (per one first-generation
citing paper) published in the year t − τ ; P̃0(Ki)e−(γ+β)(t−τ )

is the probability of indirect citation of the paper i by a
second-generation citing paper published in the year t − τ ;
γ is the obsolescence exponent, and β is the exponent
characterizing the growth of the reference list length with time.

ki(t) is given by the Poisson distribution, Poiss(ki) = λ
ki
i

ki !
e−λi .

The exponents γ and β, the functions mdir(t), Nnn(t − τ ), and

P̃0(K) are the same for all papers in one field published in one
year.

Equation (28) relates λi(t), the latent citation rate of a paper,
to its past citation rate ki(τ ) and to the number of previous ci-
tations Ki(τ ) at all previous years, in other words, Eq. (28) de-
scribes a non-Markovian process with memory [55]. Viewing it
from a different perspective we notice that Eq. (28) describes
a self-exciting Hawkes process. Similar equations appear in
the renewal theory, in the context of Bellman-Harris branch-
ing (cascade) processes [56], in population dynamics (the
age-dependent birth-death process with immigration [57]),
dynamics of viewing behavior of YouTube users [58], so-
cial networking sites (resharing) [59], and viral information
spreading [60]. In distinction to these well-known cases,
Eq. (28) is nonlinear, the nonlinearity arising from the P̃0(K)
dependence.

B. Model validation

1. Methodology

If citation dynamics of individual papers were following
a homogeneous stochastic process we could compare it to
the model prediction on the paper-by-paper basis. However,
citation dynamics of scientific papers is an inhomogeneous
stochastic process which cannot be decomposed into mean
and random parts. To perform a meaningful comparison to
the model we adopted the following strategy. We considered a
large ensemble of papers in the same field that were published
in the same year (40 195 physics papers published in 83 leading
physics journals in 1984) and measured citation dynamics
of all these papers using Thomson-Reuters Web of Science
database. In the framework of our model, the papers in this set
differ only by their fitness. Then we designed a synthetic set
of papers with the same number of papers and the same fitness
distribution, performed numerical simulations of their citation
dynamics, and compared them to model prediction.
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FIG. 17. (a) Annual cumulative citation distributions for 40 195 physics papers published in 1984. Red circles show measured data, blue
circles show results of stochastic simulation based on the Poisson process with the rate given by Eq. (28). Hatched area shows the subset of
papers with the same range of K∞ = 10–100 as the sets of papers that were used in Sec. IV C to calibrate our model. (b) The set of fitnesses
used in our simulation is described by the log-normal distribution with μ = 1.62 and σ = 1.1 (green circles). The red and blue circles show
the measured and simulated citation distributions for the year 1986, i.e., two to three years after publication. The fitness distribution mimics
these distributions and deviates from them only for highly cited papers.

How to organize such comparison is by no means obvious.
While earlier models of complex networks growth were
validated mostly by comparing measured and simulated
aggregate characteristics, such as degree distribution, Eq. (28)
is the next-generation model which is much more detailed and
the comparison to measurements is more demanding. To the
best of our knowledge, the methodology of comparing the
stochastic model or simulation to stochastic data is not well
established. Following Ref. [61] we believe that the proper
validation of a stochastic model shall include multidimensional
analysis. In particular, we validated our model in several
dimensions:

(1) cumulative citation distributions;
(2) stochastic component of the citation dynamics;
(3) citation trajectories of individual papers;
(4) autocorrelation of citation trajectories;
(5) the number of uncited papers.
In what follows we address items (1) and (3) and consider

the rest in the Supplemental Material (SM IX [39]).

2. Citation distributions

Figure 17 shows measured citation distributions for the set
of 40 195 physics papers published in 1984. To simulate these
distributions we need to find the corresponding fitnesses. In
the framework of our model, the probabilistic estimate of the
paper’s fitness ηi can be done based on the expression ηi ≈

Kdir
i (t)∑t

τ=0 mi (τ )
where Kdir

i (t) is the number of direct citations of the

paper at some moment t [see Eq. (28)]. To measure Kdir
i (t)

for each paper in our set proved to be too time-consuming,
hence we found the fitness distribution indirectly. Namely, we
run the simulation [Eq. (28)] for 40 195 papers assuming a
log-normal fitness distribution, 1√

2πσηi

exp −( (ln ηi−μ)2

2σ 2 ) where
μ and σ were fitting parameters. Our aim was to achieve the

best correspondence to a measured citation distribution at t =
1986. Figure 17 shows that the thus found fitness distribution
mimics the early citation distribution for all but the highly
cited papers. This is not unexpected since citations garnered
during the first two to three years after publication are mostly
direct.

The other parameters of the simulation were as follows.
We used γ + β = 1.2 yr−1, as found in our measurements
of indirect references and citations; mdir(t) from Fig. 10, and
P̃0(K) from Eq. (27). We assumed that Nnn(t) dependence
mimics M(t), namely Nnn(t) = M(t)

s
where s = 1.2 is the av-

erage over all physics papers published in 1984 (see Sec. IV E)
and M(t) is shown in Fig. 6.

Figure 17(a) shows excellent agreement between the
measured and simulated citation distributions at all years.
Moreover, it shows that our model, which was calibrated
using the papers with K∞ = 10–100 citations, can indeed be
extrapolated to the papers having more or fewer citations.

3. Citation trajectories

At the next step we compared the measured and simulated
citation trajectories. It should be noted that citation dynamics
of papers follows a self-exciting Hawkes process which
amplifies past fluctuations. Therefore, even for the same
initial conditions, the spread of simulated citation trajectories
is so wide that the comparison of measured and simulated
trajectories on the paper-by-paper basis is meaningless. There-
fore, we compared citation trajectories for the sets of similar
papers.

Figures 18 and 19 show citation trajectories for the
sets of papers that garnered the same number of citations
in the long-time limit. If we perform averaging for each
set, the measured and simulated citation trajectories agree
well. This is not unexpected since the empirical function
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(a) (b)

FIG. 18. Citation dynamics of the physics papers that were published in 1984 and accrued 99 citations in subsequent 25 years. Stochastic
numerical simulation based on our model correctly predicts the shape and the spread of citation trajectories.

P̃0(Ki)e−(γ+β)(t−τ ) [Eq. (28)] was established from the re-
quirement that the model fits the average citation dynamics
of similar papers. Thus, comparison of the shapes of the
measured and simulated citation trajectories of individual
papers in each group tells an independent story since the
model does not contain free parameters to tailor these
trajectories.

Figure 18 shows that for moderately cited papers the
measured and simulated trajectories look very similar—they
are jerky, and the fluctuations are of the same size. Figure 19
shows that for highly cited papers both sets of trajectories are
smooth, but the spread of the measured trajectories exceeds
that of the simulated ones.

4. Short summary

We found that Eq. (28) with log-normal fitness distribution
reproduces citation dynamics of the physics papers fairly well.

This includes aggregate characteristics (citation distributions)
and microscopic dynamics (the number of uncited papers,
the mean and the fluctuating parts of citation trajectories of
individual papers, citation lifetime, etc.; see SM IX [39]).
While our model correctly reproduces citation trajectories of
the lowly and moderately cited papers, it underestimates the
variability of citation trajectories of the highly cited papers.

VI. DISCUSSION

A. Comparison to previous studies

The closest predecessor of our model is the Simkin-
Roychowdhury mathematical theory of citing [49] which is
based on the copying algorithm of Krapivsky and Redner
[20]. This theory is based on the following scenario: when
a scientist writes a manuscript, he picks several recent papers
published in the preceding year, cites them, and copies some

(a) (b)

FIG. 19. Citation dynamics of the physics papers that were published in 1984 and accrued 600–750 citations in subsequent 25 years. For
most of the papers the model correctly predicts the shape and smoothness of citation trajectories. However, the model does not capture extreme
cases such as a sleeping beauty—the paper with delayed recognition—or a shooting star—the paper that is highly popular at the beginning of
its citation career but then dies quickly.
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of their references with equal probability. Thus, this model
suggests a quickly decaying obsolescence function for direct
pickup and age-independent probability of copying. This
is the first-generation qualitative model—it provides clever
insight, the basic scenario, but it cannot be used for qualitative
estimates since the aging functions are speculative rather than
taken from measurements. Our model is based on a much
more detailed scenario: when a scientist writes a manuscript,
he picks several papers with the probability depending on
their publication year, cites them, and copies some of their
references with the probability depending on the publication
year of the parent paper and on the local structure of citation
network associated with the copied paper. These probabilities
are not speculative but are taken from measurements. Thus,
our well-calibrated model builds on Refs. [20,49] but belongs
to the next generation of models, those that can be used
for quantitative estimates. Moreover, our model contains an
additional ingredient—dynamic nonlinearity.

B. Nonlinearity and “power-law” degree distributions

Citations of scientific papers were one of the first examples
of the power-law (fat-tailed) distribution [4]. The prevailing
notion then was that all papers are created equal and the
power-law distribution of their citations is created dynamically.
Our results tell a different story: the fat-tail citation distribution
is mostly inherited. Indeed, Fig. 17 shows that citation
distribution at small t mimics fitness distribution which is
already a fat-tailed distribution. As time goes on, citation
distribution shifts towards higher K . Since the kernel in
Eq. (28) is nonlinear and increases with K (the latter grows
with time for each paper) the tail of the distribution shifts
faster than its body. If the initial citation distribution was
concave in the log-log coordinates, it straightens with time and
approaches the power-law distribution. The ever decreasing
slope of the fat-tail of citation distributions shown in Fig. 17
is a precursor of this transition from the convex to concave
shape. This observation beats the intuition assuming that the
power-law degree distribution is an evidence of the scale-free
network. We show here that at least for citations, the power-law
distribution is not the ultimate but a transient distribution.

Another consequence of nonlinearity is the appearance of
runaways or “immortal papers” with infinite citation lifetime.
As we already mentioned above, citation distribution shifts
with time towards higher K whereas the tail of the distribution
shifts faster than its body. Due to obsolescence, the body
of the distribution eventually comes to stop but the tail may
continue to shift. Thus, the papers in the tail exhibit “runaway”
behavior—their citation career does not come to saturation
even after a long time.

C. Preferential attachment

At the beginning of this research we believed that the
citation network grows following Eqs. (2)–(4), which capture
the preferential attachment rule. Hence, we based our model
on a recursive search which is a specific implementation of the
preferential attachment. Our measurements yielded Eq. (28)
which is very different from the classical preferential attach-
ment and rather follows the line of thought of Refs. [49,62]

who focused entirely on fitness. Do our results invalidate the
common understanding of the preferential attachment as an
algorithm according to which a new node performs a global
search in the whole network to find the most connected nodes?
Not at all. In fact, our results suggest that the preferential
attachment mechanism is indeed involved in citation network
growth but it operates in a more subtle way than it was
commonly believed.

Our measurements and modeling suggest the following
mechanism of citation network growth. A new node in the
network attaches to several older target nodes that become its
nearest neighbors. Then the new node explores its next-nearest
neighbors and preferentially connects to those of them that
are linked to it through several nearest neighbors rather than
through one of them. This procedure is similar to acquaintance
immunization [63] and it finds the most connected nodes
in the vicinity of the source node. Although this algorithm
is based on the local search, it is one step towards the
global search, since it analyzes not only the nearest, but
also the next-nearest neighbors of the source node. Hence,
the preferential attachment mechanism pops out explicitly
in our model but in a different guise—it is captured by the
kernel P̃0(K) in Eq. (28). Taken together with the assortativity
of citation network, this algorithm results in the nonlinear
attachment probability.

D. Prediction of citation trajectory of papers

The models of citation dynamics find application in
predicting future citation trajectories of papers [10,64,65] and
citation career of the authors [66–68]. Our calibrated model can
be used for probabilistic prediction of the number of citations
that a regular paper can garner in the future. Our formalism
can be also used to pinpoint sleeping beauties or shooting
stars at the earliest stage of their citation career. This task
is usually solved by applying some model that extrapolates
citation dynamics of papers from their citation history and then
focuses on those papers that deviate from model prediction
[61,69,70]. Our model is well suited for this purpose since it
predicts not only the mean citation dynamic of a paper but the
probability of its deviation from the mean as well. We leave
for further studies application of our model for forecasting
citation behavior of scientific papers.

What are the limitations of our model? One particularly
strong assumption is the constancy of fitness along the whole
citation career of the paper. Reference [11] in its description
of the web pages popularity also used this assumption and
justified it by measurements. While the assumption of constant
fitness is reasonable for the majority of scientific papers and
is validated by our measurements, there are sleeping beauties
[Fig. 19(a)] that can be dormant for a long time and then
achieve a burst of popularity. Although these papers are
rare, they are often associated with scientific breakthroughs,
and their importance is incomparable to their abundance.
References [45,71] analyzed such papers and found that their
peculiar citation trajectory (burst) has content-based explana-
tion [65]. Is it possible that such citation bursts can appear
by chance? Although our model describes a Hawkes process
where small deviations from the mean-field behavior can be
amplified during prolonged time period and thus produce
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bursts [72], we do not believe that our model can generate
strong bursts. The reason is exponentially strong obsolescence
γ [Eq. (28)] that prevents continuous amplification of small
fluctuations. Thus we believe that our model describes a regular
science in the sense of Kuhn [73] and does not capture excep-
tional papers associated with serendipitous discoveries, bursts
of scientific activity, emergence of new and disappearance of
old fields—everything that makes the science fun.

Equation (28) can be used for the prediction of citation
rate of a regular paper. To do this we need to know the
functions mdir(t), Nnn(t), P̃0(K), parameters γ,β (which are
not paper-specific but depend on the research field and on
the publication year), the past citation history of the paper,
ki(τ ), and most important of all, its fitness. The function
P̃0(K) and the exponent γ do not probably change with the
publication year and can be estimated using citation histories of
old papers in the field; the functions Nnn(t) and mdir(t) can be
estimated on the basis of Eqs. (13) and (16), correspondingly;
the exponents α and β, characterizing the annual growth of the
number of publications and of the average reference list length,
can be measured in the past and extrapolated to the future. The
most tricky task is fitness estimation. Although the paper’s
fitness ηi shall be measured a posteriori when its citation
career is ripe, some estimate of the paper’s fitness can be done
a priori on the basis of the number of direct or total citations
garnered by a paper during the first two to three years after
publication, which is nothing else but the paper’s impact factor.

E. Comparison to other research fields

How general is our model? While it was calibrated using
physics papers published in 1984, we performed similar
measurements for mathematics and economics papers also
published in 1984 and found very similar citation dynamics,
including the nonlinear kernel. Hence we have a good reason
to believe that our model describes these fields as well, albeit
with different parameters. Namely:

(1) We found lognormal fitness distributions for physics,
mathematics, and economics papers. The parameter μ, which
characterizes the mean of the distribution, was different
for these three fields. This obviously results from different
citation practices: the reference list of a typical math paper is
considerably shorter than that of a physics paper. Surprisingly,
the parameter σ , characterizing the width of the distribution,
was almost the same for all three fields.

(2) Indirect citations. Nonlinear kernel P̃0(K) with loga-
rithmic dependence on the number of citations was found for
all three fields.

(3) While we did not measure mdir(t) for mathematics
and economics, we expect that it is not the same as that for
physics. mdir(t) is determined by r(t), age composition of the
references in the references list, and α and β by the growth
rates of the number of publications and the reference list length.
While the r(t) function seems to be very similar for different
fields, the exponents α and β do differ.

F. Extension to other networks

We consider now a more general question—whether our
network growth model, which is based on a recursive search

with a nonlinear kernel, can describe other phenomena besides
citations of scientific papers. Indeed, the mechanisms identical
to a recursive search were invoked to account for spreading of
ideas, rumors, diseases, and viral marketing [28,30,74–76].
Generally, these processes are modeled using linear dynamic
equations assuming pairwise interactions between the neigh-
bors in the network. The studies of Centola [77,78] of the
spreading in social networks revealed complex propagation
with social reinforcement where simultaneous exposure to
several active neighbors in the network is important. Such
synergistic effects in propagation on networks were also
considered theoretically [79,80] and found experimentally
in epidemiology [81], where susceptibility of a person to
infection may depend on the number of infected neighbors.
Our studies suggest that such multiple-node interactions result
in nonlinear dynamics of complex propagation in networks.
Indeed, Ref. [60] found nonlinearity in the dynamics of
viral marketing. (Namely, it observed a correlation between
transmittivity and fan-out coefficient which is very similar
to our observation of the correlation between the number
of second-generation citations and the probability of indirect
citation; see Fig. 16. We showed that this correlation results
in nonlinear dynamics.) References [82–84] found nonlin-
earity in citation dynamics of U.S. patents; Ref. [54] found
nonlinearity in their studies of the Internet connectivity and
growth.

VII. SUMMARY

We report a nonlinear stochastic model of citation dynamics
of scientific papers. The model is fully calibrated by mea-
surements of citations dynamics and statistics of references
of physics papers. The model assumes that the author of a
new scientific paper finds relevant papers from the media or
journals and cites them. Then he studies the reference lists of
these preselected papers, picks up relevant papers, cites them
as well, and continues this process recursively. If some paper is
cited by several preselected papers, the author chooses it with
higher probability than those cited by only one preselected
paper. This local rule enables the author to sample the global
connectivity of the network.

This recursive search algorithm results in dynamic non-
linearity which is the reason why the ideas advocated in
highly cited papers undergo viral propagation in the scientific
community, while the low-cited papers affect only a small part
of it. Such dynamic nonlinearity can play an important role in
viral propagation in social media.
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FIG. 20. A fragment of citation network showing a parent paper
i and its first- and second-generation citations. There are K first-
generation citing papers published during the period of t years after
the publication of the source paper. These represent a subset of all S

papers published in this field by year t . There are Q papers in this field,
published in the year t + 1, which cite some of S papers published
earlier. Among these Q papers there are N second-generation citing
papers that cite one of the K first-generation citing papers, and there
are Q′ papers that do not cite them. M is the number of the second-
generation citations of the paper i published in the year t + 1.

APPENDIX A: A HAND-WAVING EXPLANATION OF THE
NONLINEAR PROBABILITY OF INDIRECT CITATION

We consider one possible source of nonlinear citation
dynamics arising from the fact that P̃0(K), the probability
of indirect citations of a paper, depends on the number of its
previous citations K . We found that at the core of nonlinearity
is the assortativity of citation network. We present here a
toy model explaining this assortativity. Consider a parent
paper i that has K citing papers published by year t (see
Fig. 20). These K first-generation citing papers constitute a
small part of a large set of all S papers that were published
in this research field by year t . We denote by Q the total
number of papers in this field that were published in the
year t + 1. We neglect obsolescence and assume that each
of these Q papers issues on average ∼m citations to the
papers published previously. The total number of citations of
all first-generation citing papers is M ≈ mQK

S
. With respect

to the parent paper i these are second-generation citations. The
number of the corresponding second-generation citing papers
is N = Q − Q′ where Q′ is the number of papers published in
the year t + 1 that do not cite our K papers. (These definitions
of M and N differ from those in the main text.) Assuming
Poissonian distribution of citations issued by each paper
from the Q set, we find Q′ = Q

∑∞
n=0(1 − K

S
)n mn

n! e−m =
Qe−mK/S

∑∞
n=0

[m(1− K
S

)]n

n! e−m(1−K/S). According to the proper-

ties of the Poisson distribution,
∑∞

n=0
[m(1− K

S
)]n

n! e−m(1−K/S)=1,
hence N = Q(1 − e−mK/S).

We consider now the parameter s which is the average
number of paths connecting a second-generation citing paper

to the source paper i, namely, s = M
N

= m K
S

1−e−m(K/S) . We assume

that mK
S

	 1. We perform the series expansion of the above
expression in small parameter mK

S
and retain the leading term

in K: s ≈ 1 + K m
2S

. Thus s increases with K and this means
that the highly cited papers have an increased proportion of
multiple paths than the lowly cited papers. The source of
nonlinear citation dynamics is this s(K) dependence.

Of course, this hand-waving explanation of the s(K)
dependence does not account for all our results. It assumes
that the number of second-generation citations of a given
paper grows linearly with K while the number of its second-
generation citing papers grows more slowly than linear with K .
Our measurements indicate exactly the opposite behavior—the
number of second-generating citing papers grows linearly with
K and the number of second-generation citations grows faster
than linear. Thus this toy model serves for purely illustrative
purposes and cannot be used for calculations.

APPENDIX B: OUR RESULTS IN THE CONTEXT
OF NETWORK SCIENCE

We consider our measurements of the direct and indirect
citations in the context of network science. On the one hand,
the number of second-generation citations MII is nothing else
but the average nearest-neighbor connectivity knn. Increasing
MII (K) dependence indicates assortativity of citation net-
work. On another hand, the number of indirect citations is
related to the local clustering coefficient CK , which is the ratio
of the number of transitive triples to the total number of triples
connected to a certain parent node. Indeed, consider a parent
paper i that garnered K citations. The number of all triples
connected to this paper is NIIK where NII is the average
number of citing papers per one first-generation citing paper.
Among these NIIK papers there are some associated with
indirect citations that participate in j -multiplets (Fig. 17). The
number of the latter is jfjπjN

IIK , where fj is the fraction
of j -multiplets among second-generation citing papers, πj is
the probability of indirect citation, and the factor j in the
sum appears because each indirect citation in the j -multiplet
is associated with j triangles. The number of all possible

FIG. 21. Ck , local clustering coefficient. The filled circles show
CK calculated using Eq. (B2) and s from the Fig. 12(b). The straight
line shows the power-law approximation.
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triangles associated with the parent paper is K(K − 1)/2. Then

CK = 2NII
∑

j=1 jπjfj

K − 1
. (B1)

If we limit ourselves only to singlets and doublets and ne-
glect higher-order multiplets, then f1+f2 ≈ 1 and s ≈ 1 + f2,
where s is the ratio of the second generation citations to the
second-generation citing papers, s = MII

NII . Our measurements
suggest multipath interference, namely π2 = 4π1. Thus,

CK ≈ 2NIIπ1[1 + 7(s − 1)]

K − 1
. (B2)

Our measurements indicate that NII is almost independent
of K . If s were independent of K , we expect that C(K) ∝ K−1.

Our measurements show that s increases logarithmically with
K [Fig. 12(b)]. Figure 21 shows that CK , which was calculated
according to Eq. (B2) using the data of Fig. 12(b), follows
K−0.75 dependence. This power-law dependence agrees with
the findings of Ref. [2] for PR (Physical Review) to PR citation
network.

Equation (B2) suggests an alternative interpretation of
the probability of indirect citation P̃0. Indeed, in Sec. IV F
we showed that P̃0 is determined by s, namely, P̃0 ∝ π1

[1 + 3(s − 1)]. By excluding s − 1 from this equation and
Eq. (B2) we find that P̃0 ∝ CK (K − 1) + const. This relation
indicates that among the papers with the same number of
previous citations, those with high clustering coefficient are
cited more intensively—the possibility already considered
theoretically by Bagrow and Brockmann [85].
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Krioukov, Nature (London) 489, 537 (2012).
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