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Traffic congestion and the lifetime of networks with moving nodes
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For many power-limited networks, such as wireless sensor networks and mobile ad hoc networks, maximizing
the network lifetime is the first concern in the related designing and maintaining activities. We study the network
lifetime from the perspective of network science. In our model, nodes are initially assigned a fixed amount of
energy moving in a square area and consume the energy when delivering packets. We obtain four different traffic
regimes: no, slow, fast, and absolute congestion regimes, which are basically dependent on the packet generation
rate. We derive the network lifetime by considering the specific regime of the traffic flow. We find that traffic
congestion inversely affects network lifetime in the sense that high traffic congestion results in short network
lifetime. We also discuss the impacts of factors such as communication radius, node moving speed, routing
strategy, etc., on network lifetime and traffic congestion.
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I. INTRODUCTION

Nowadays, human life is increasingly dependent on a
variety of information infrastructures, such as the Internet,
mobile communication networks, sensor networks, ad hoc
networks, and others. Meanwhile, these technological net-
works face challenging problems including traffic congestion
[1–3], cascading failures [4–7], errors and attacks [8–11], and
virus spreading [12–17], which have been widely discussed
in the network science community. In those communication
networks, when the nodes’ packet generation rate is small, the
volume of traffic going into the network and coming out of
the network achieve equilibrium. However, when the packet
generation rate exceeds a critical value, nodes cannot manage
to deliver their buffered packets, and thus the overall network
traffic load increases with time, which is recognized as the
general congestion state of traffic flows. The critical packet
generation rate corresponding to the onset of traffic congestion
is often used as an indicator of the maximum capacity of the
network [18–21].

Essentially, the network capacity is mostly determined
by the network topological structures. It was found that
scale-free networks are more susceptible to traffic congestion
than homogenous networks [22,23]. The heterogeneous degree
distribution of scale-free networks is prone to cause uneven
traffic load distribution, in which large-degree nodes usually
process a larger amount of traffic load than small-degree nodes.
Thus, the congestion phenomenon usually starts at large degree
nodes and then spreads to the whole network. Since many real-
world complex networks especially communication networks
are scale-free networks [24], researchers proposed various
improved strategies [18], which can be classified into “hard”
and “soft” strategies in order to alleviate traffic congestion
and enhance the capacity of scale-free networks. The hard
strategies are about optimizing network topological structures
by removing some links or nodes such as the high-degree-
first (HDF) strategy [25], the high-betweenness-first (HBF)
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strategy [26], and the variance-of-neighbor-degree-reduction
(VNDR) strategy [27], or by adding some links between nodes
with long distance or nodes in the same neighborhood of
large-degree nodes [28]. The limitation of the hard strategies
is that in real situation it is often costly or even impossi-
ble to modify the network topological structures. The soft
strategies are various routing protocols more applicable to
real-world communication networks. The well-known shortest
path protocol [29] transmits packets along the shortest paths to
destination nodes. However, the shortest paths usually intersect
on a few large-degree nodes, which are vulnerable to traffic
congestion. The other improved routing protocols consider not
only path length when choosing the optimal delivery paths,
but also node degree [22,30,31], node load [32–36], memory
information [37], next-nearest neighbors [38,39], and the like.
Generally, the more information considered in path selection,
the better performance the protocol has and the larger the
computational cost is. In addition, some of those improved
protocols use tunable control parameters in their cost functions
to explore the maximum transmission performance. Recently,
researchers began to study transport processes on multilayer
[40–43] or multiplex networks [44–46] with emphasis on
optimizing the network capacity and transmission efficiency.

Besides the fixed communication infrastructures well dis-
cussed in the field of network science, there is another
broad type of communication networks, which are usually
deployed in adverse environments to perform special tasks
[47–52]. The nodes in such kinds of networks can be mobile
or have a certain level of mobility and are dynamically
self-organized without fixed infrastructure. In addition, the
nodes are often powered by small battery and die when they
run out of power [53]. The most straightforward examples
are sensor nodes in wireless sensor networks and robots in
the multirobot networks. Recently, Yang et al. [54] proposed
an adaptive routing strategy to improve traffic capacity of
dynamical networks, in which the nodes are moving, and the
links can exist only when the distances of nodes meet the
communication constraints. However, for those power-limited
networks, the biggest concern is how to make good use of
the energy and prolong the network lifetime, which needs to
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be further explored from the perspective of network science.
In this paper, we study traffic congestion and the lifetime
of networks consisting of power-limited mobile nodes. We
further look into the traffic congestion phenomenon and obtain
four different congestion states. Then we derive the network
lifetime based on the state of traffic congestion. We also study
how factors such as packet generation rate, communication
radius, and node speed affect the network lifetime and traffic
congestion.

II. THE NETWORK MODEL

We generate the dynamical networks following Ref. [54].
We first set a L × L square area with periodic boundary
conditions in the Euclidean space. At time t = 0, we randomly
add N moving nodes into the square area. Assuming that xi(t)
[yi(t)] is the x coordinate (y coordinate) of node i at time t ,
and θi(t) denotes the moving direction of node i at time t . xi(0)
[yi(0)] is randomly selected from the interval [0,L]. θi(0) is
randomly selected from the interval [−π,π ]. Since the nodes
are moving, their positions change with time t . For instance,
the evolution of node i’s coordinates are the following:

xi(t + 1) = xi(t) + v cos θi(t),

yi(t + 1) = yi(t) + v sin θi(t), (1)

θi(t + 1) = θi(t) + φi(t).

Where v (a constant value) represents the moving speed, which
is identical for all the nodes. φi(t) represents the change of
moving direction of node i between time t + 1 and time t ,
which is randomly selected from the interval [−π,π ]. Then
the Euclidean distance between two nodes i and j at time t is
calculated as follows:

lij (t) =
√

[xi(t) − xj (t)]2 + [yi(t) − yj (t)]2. (2)

All nodes have the same communication radius r , and any
two nodes are connected by a temporal link (communication
channel) when their instantaneous distance is no greater than
r . Then the temporal neighbor set of node i contains all the
nodes in node i’s current communication area.

III. THE TRAFFIC MODEL

In our traffic model, the role of all nodes is identical, which
can create, buffer, deliver, and receive packets. Specifically,
every node generates packets with rate ρ, thus at each time
step there are on average Nρ packets inserted into the network.
The packets’ destination nodes are randomly selected from the
network. Every node has an infinite queue with the first-in-
first-out (FIFO) rule for buffering packets. Each node has E0

units of energy at the beginning. A node can deliver at most
C packets at each time step. The one-hop delivery of a packet
costs �E units of energy. If the destination node is a neighbor
of the node the packet currently visits, at the next time step
the packet will be directly delivered to the destination node
and then be removed immediately. Otherwise the current node
needs to deliver the packet to the appropriate neighbor node
chosen based on a given routing strategy. Assuming that at
time t the packet is in node s, and the destination node d is
not a neighbor of s, then node s will send the packet to its

neighbor node i with the following probability:

Psi(t) =
[

Ei(t)∑
j Ej (t)

]1−α/[
lid (t)∑
j ljd (t)

]α

, α ∈ [0,1], (3)

where Ei(t) is the residual energy of i at time t . The sums in
the equation run over the temporal neighbors of node s, and
α is a tunable parameter ranging from 0 to 1. When α = 0,
the probability of selecting neighbor node i is proportional to
i’s residual energy. When α = 1, the probability of selecting
neighbor node i is inversely proportional to the distance
between node i and node d. When 0 < α < 1, the node
distance and residual energy together determine the next hop
node. If there are currently no neighbor nodes, node s will keep
the packet and deliver it later. As time goes by, the residual
energy of nodes decreases. The definition of network lifetime
is flexible and usually application specific. For simplification
purposes, we assume that the lifetime of the network is from
the beginning until the first-dying node appears, which follows
Ref. [55] closely.

IV. NETWORK CONGESTION

Ideally, when the delivery capacity of nodes is infinite, there
is no traffic congestion phenomenon. However, the delivery
capacity is always limited in real situations, and the traffic
congestion arises when the network is unable to deal with
the continuously injected traffic. Previously, traffic flow was
considered with only two states [18–20]. When the packet
generation rate ρ is not greater than the critical value, the
number of packets S(t) in the network is generally constant
after a very short transition time, and the traffic is under a
free flow state. When ρ is larger than the critical value, S(t)
increases with time, which is taken as the traffic congestion
state. However, when we consider more real-world constraints
in the traffic model, we may obtain more traffic states. For
instance, if we assume that the node queue has finite size with
a last-in-first-out rule, three traffic states, free-flow, jamming,
and congested traffic regimes, are obtained [56].

In our work, we consider the energy-limited dynamical
network, and obtain four different traffic states, of which the
definition is as follows:

(1) No congestion state: The number of packets is constant
during the lifetime of the network. There is no congested node
during the lifetime of the network. Note that there might be
temporal congested node, and the number of packets may show
some fluctuation. When ρ is very small, the network is under
no congestion state.

(2) Slow congestion state: The number of packets increases
nonlinearly during the lifetime of the network. The number of
congested nodes gradually increases until the network dies,
but some nodes are not congested at the end. When ρ is larger
than the critical value ρs of slow congestion state, the network
will undergo the slow congestion state.

(3) Fast congestion state: The number of packets increases
nonlinearly first and then linearly until the network dies. The
number of congested nodes increases with time, and all nodes
become congested at the end of the network. When ρ is larger
than the critical value ρf of fast congestion state, the network
will undergo the fast congestion state.
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FIG. 1. S vs t in different traffic states: (a) no congestion state,
(b) slow congestion state, (c) fast congestion state, and (d) absolute
congestion state. The simulation parameters are N = 1000, L = 20,
r = 3, v = 0.5, α = 0.5, τ0 = 3.275, C = 5, E0 = 1000, and �E=1.
The curves are placed so that the curve of a smaller ρ is in a lower
position.

(4) Absolute congestion state: The number of packets
increases linearly from the beginning until the end. After the
first few steps, all nodes are congested until the network dies.
When ρ is larger than the critical value ρa of the absolute
congestion state, the network will undergo the absolute
congestion state.

We show the different congestion states with simulation
results in Figs. 1 and 2. In Fig. 1(a), when ρ is very small,
S(t) increases abruptly at the first few time steps and then
generally keeps constant until the network dies, which is the no
congestion state. According to Fig. 2(a), in the no congestion
state, the number of congested nodes nc is 0, but the temporal
congestion of nodes is allowed, which is why there are small
fluctuations in the results of nc and S(t). As ρ increases and
surpasses the first critical value ρs , S(t) increases nonlinearly

FIG. 2. nc vs t in different traffic states: (a) no congestion state,
(b) slow congestion state, (c) fast congestion state, and (d) absolute
congestion state. The simulation parameters are as in Fig. 1. The
curves are placed so that the curve of a smaller ρ is in a lower
position.

TABLE I. Possible time periods in the whole network lifetime.

Number of congested
Time period nodes nc Number of packets S

T1 nc = 0 Constant
T2 0 < nc < N Nonlinear increase
T3 nc = N Linear increase

until the network dies, which is the slow congestion state,
shown in Fig. 1(b). We see from Fig. 2(b) that in the slow
congestion state, a fraction of nodes becomes congested first,
and then more and more nodes become congested, but when the
network dies there are still noncongested nodes. Note that there
are “tilting tails” in the curves for the no and slow congestion
states as demonstrated in Figs. 1(a), 1(b), 2(a), and 2(b). The
cause of the tilt-tail effect is that, in the last several steps,
the residual energy of most nodes is very low, and according
to our routing strategy, the packets will be delivered to a
few nodes of relatively high residual energy, which makes
the traffic load of those nodes substantially increase. When ρ

further increases and surpasses the second critical value ρf ,
S(t) increases nonlinearly and then linearly with time, which
is the fast congestion state, as shown in Fig. 1(c). We see from
Fig. 2(c) that in the fast congestion state, first a fraction of
nodes becomes congested, and then the congestion gradually
spreads to all nodes. When ρ is larger than the third critical
value ρa , S(t) almost increases linearly from the beginning,
which is the “absolute congestion” state, as shown in Fig. 1(d).
We see from Fig. 2(d) that in the absolute congestion sate,
almost all nodes are congested at the beginning. Note that for
the fast and absolute congestion states, there are no tilt-tail
effects, because near the end of the life of the network, all
nodes are congested and the residual energy of nodes has no
significant difference.

To further illustrate the different congestion states, we
divide the whole network lifetime T into three periods of
time, T1, T2, and T3, which are shown in Table I. We have
T = T1 + T2 + T3. Then the different congestion states for
the whole network lifetime are shown in Table II.

In addition, we provide the analytical results of S(t) and
nc(t) in the Appendix, based on which we can also obtain the
different traffic states.

V. NETWORK LIFETIME

According to Eq. (3), nodes deliver the packets to the
neighbor nodes of high residual energy with large probability.
In this case, high residual energy nodes consume their energy
faster than low residual energy nodes, which leads to a
relatively even distribution of the residual energy. We define
the range of energy at time t as

R(t) = Emax(t) − Emin(t), (4)

where Emax(t) (Emin(t)) is the maximum (minimum) node
residual energy at time t . At the time T when the network
dies, we have Emin(T ) = 0 and R(T ) = Emax(T ). Then, the
network lifetime T is calculated as follows:

T = Etotal(0) − Etotal(T )

D ∗ �E
, (5)
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TABLE II. Types of congestion state.

Congestion state T1 T2 T3 T nc S Critical value of ρ

No �= 0 0 0 T = T1 nc = 0 Constant 0
Slow 0 �= 0 0 T = T2 0 < nc < N Nonlinear increase ρs

Fast 0 �= 0 �= 0 T = T2 + T3 0 < nc � N Nonlinear+linear increase ρf

Absolute 0 0 �= 0 T = T3 nc = N Linear increase ρa

where Etotal(t) is the total units of energy at time t . Etotal(0) =
NE0. Since the residual energy is approximately evenly dis-
tributed among nodes, Etotal(T )≈N × [Emax(T )+Emin(T )]/
2 = NR(T )/2. D is the average number of packets sent by
all the nodes in a time step.

In the no congestion state, D = Nρτ0, where τ0 is the
characteristic transmission time, which equals the average
number of transmission hops from source node to destination
node. Note that τ0 is generally not equal to the average
transmission time, which usually contains the time waiting for
delivery. Then the network lifetime T for the no congestion
state is calculated as follows:

T = Etotal(0) − Etotal(T )

D ∗ �E
= NE0 − NR(T )/2

Nρτ0 ∗ �E

= E0 − R(T )/2

ρτ0�E
. (6)

In the absolute congestion state, we have S(t) > D = N ∗
C. Almost all nodes are congested from the beginning, and
every node delivers C packets at each time step, Therefore,
all nodes consume the energy with the same rate. When the
network dies, the total residual energy of nodes is close to zero:
Etotal(T ) ≈ 0 or R(T ) ≈ 0. Note that when ρ > C, all nodes
are congested at the very beginning, and in this case, Etotal(T )
and R(T ) are definitely 0. Then the network lifetime T for the
absolute congestion state is

T = Etotal(0) − Etotal(T )

D ∗ �E
≈ NE0

NC�E
≈ E0

C�E
. (7)

For the slow and fast congestion states, there are time pe-
riods of nonlinear increase of S(t), when D (Nρτ0<D<NC)
increases with time, but this is hard to estimate precisely.
In addition, it is not possible to calculate the duration time
of the tilt-tail effects in the slow congestion state. For all
these reasons, we set a nonlinear parameter k to measure the
compositive effects of those unpredictable factors on network
lifetime T . The general formula of T for all the traffic states
is given as follows:

T = k
E0

	 ∗ �E
, 	 = min{ρτ0,C}. (8)

For the no congestion state, D = Nρτ0 < NC, ρτ0 < C, we
have k = E0−R(T )/2

E0
→ 1. For the absolute congestion state,

D = NC < Nρτ0, C < ρτ0, we have k = 1. For the slow and
fast congestion states, k depends on the nonlinear factors. For
the slow congestion state, ρτ0 < C, then 	 = ρτ0. For the

fast congestion state, 	 is dependent on ρ. When ρ < C/τ0,
	 = ρτ0, otherwise, 	 = C.

VI. SIMULATION RESULTS

We study the impacts of factors on traffic congestion and
network lifetime through simulation. The key factors of our
model include packet generation rate ρ, communication radius
r , node speed v, routing parameter α, area size L, and network
size N . φi(t) is bounded in range [−π/3,π/3] in the simulation
for simplification purpose. Previously, we usually have used
the typical order parameter [21] to quantify the phase transition

FIG. 3. (a) η, (b) T , and (c) k vs ρ. ρs , ρf , and ρa are the critical
values for slow, fast, and absolute congestion states, respectively. The
simulation parameters are as in Fig. 1. The results are the average of
1000 independent runs.
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of traffic load in the network. Here we slightly modify the
typical order parameter to apply it to our model, which is
given as follows:

η = 1

ρN�t

t=T −�t∑
t=0

S(t + �t) − S(t)

T − �t + 1
, (9)

where the meaning of ρ, S(t), N , and T is the same as above.
�t is the elementary time slot for comparing traffic load,
1 � �t � T . Note that in our model, the network lifetime T is
always a finite value, and in the simulation, we set �t = 1. η is
in fact the ratio of the average increment of traffic load during
time �t to the amount of traffic inserted into the network
during time �t . We know that 0 � η � 1. When ρ is no greater
than ρs , there is no traffic congestion, and we have η = 0, while
when ρ is larger than ρs , η > 0, and there is traffic congestion.

According to the above analytic results, packet generation
rate ρ has significant influence on the traffic congestion and
network lifetime. We first study the impact of ρ by fixing the
other parameters as follows: network size N = 1000, routing
parameter α = 0.5, node speed v = 0.5, communication ra-
dius r = 3, area size L = 20, node delivery capacity C = 5,
and node’s initial units of energy E0 = 1000, per node energy
consumption rate �E = 1. Based on these parameters, we
obtain the characteristic transmission time τ0 = 3.275 through
simulation.

In Fig. 3(a) we see that in the no congestion state (ρ � ρs),
η = 0, when ρ surpasses ρs , η increases and then converges
with ρ. In Fig. 3(b), with the increase of ρ, T first decreases
greatly, and then gradually converges to the minimum value
T = 200. The reason for the results in Fig. 3(b) is that, when we
increase the packet generation rate, more packets are injected
into the network at each time step, and thus more energy is

consumed in each time step, so therefore the network lifetime
decreases accordingly. When the network is under the absolute
congestion state (ρ > ρa), the energy consumed in each time
step is nearly constant, and thus the network lifetime is a
constant value, which can also be inferred from Eq. (7).
Moreover, in Fig. 3(b) the analytical and simulation results
agree very well with each other. In Fig. 3(c), we see that
when the network is in the no congestion state, the nonlinear
parameter k is smaller than but very close to 1. When the
network is in the absolute congestion state, k is equal to 1.
When the network is in the slow or fast congestion state, k

deviates from 1, which are consistent with the above analytical
analysis.

The other factors, such as the communication radius r , node
speed v, and routing parameter α, do not appear in the above
derivation of network lifetime [Eq. (8)]. However, they affect
the characteristic transmission time and the range of energy,
and thus indirectly affect the network lifetime. Note that when
the traffic is under the absolute congestion state, the network
lifetime is almost constant and independent of these factors,
which can be inferred from Eq. (7). Therefore, we mainly
study the impact of these factors when there is almost no traffic
congestion in the network. Figures 4(a), 4(b), and 4(c) show
the impact of r . In Fig. 4(b), η is very small, which means that
there is almost no traffic congestion in the network. In Fig. 4(a),
τ0 decreases with r quickly and then tends to 1. When the
communication radius increases, nodes have more neighbor
nodes, which makes the transmission hops decrease, and when
the communication radius is large enough, each node is directly
connected to all the other nodes, and then just one hop is needed
to deliver a packet. In Fig. 4(c), T increases with r first and then
converges. Since the transmission hops decrease with r , the
average energy for delivering a packet decreases, which leads

FIG. 4. (a) τ0, (b) η, and (c) T vs r , N = 1000,L = 20. (d) τ0, (e) η, and (f) T vs L, N = 1000,r = 3. (g) τ0, (h) η, and (i) T vs N , L = 20,

r = 3. The other parameters are as follows: v = 0.5, α = 0.5, ρ = 0.1, C = 5, E0 = 1000, and �E = 1 for all the subfigures. The results are
the average of 1000 independent runs.
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FIG. 5. (a) τ0, (b) η, (c) T , and (d) R(T ) vs v. N = 1000, L = 20
for (a), (c), and (d), r = 3, α = 0.5, ρ = 0.1, C = 1, E0 = 1000, and
�E = 1. The results are the average of 1000 independent runs. The
inserts show the results of v ranging from 0.01 to 0.1.

to the increase of network lifetime. Figures 4(d), 4(e), and 4(f)
show the results of L. Both η and τ0 increase with L, and thus
T decreases with L accordingly. The effect of increasing L is
equivalent to decreasing r . Figures 4(g), 4(h), and 4(i) show
the impact of N . With the increase of N , η and τ0 decrease, and
thus T increases. When there are more nodes in the fixed square
area, the network will become more dense, which causes the
decrease of the characteristic transmission time.

In Fig. 5(a), when v increases from very small value, τ0

decreases slightly (amplified in the insert) and then increases
significantly and converges. In Fig. 5(b), when v is small,
η = 0, but when v is larger than the critical value, η increases
abruptly. There is an obvious phase transition of η. In addition,
we can see from Fig. 5(b) that the larger L, the smaller
the critical value of v and the larger η, which means that a
larger square area is more susceptible to traffic congestion.
In Fig. 5(c), T first slightly increases with v, then decreases

FIG. 6. (a) τ0, (b) η, (c) T , and (d) R(T ) vs α. N = 1000, L = 20,
r = 3, v = 0.01, ρ = 0.1, C = 5, E0 = 1000, and �E = 1. The
results are the average of 1000 independent runs.

quickly and converges. In Fig. 5(d), R(T ) decreases with v

abruptly, then converges. The decrease of τ0 and R(T ) leads
to the increase of T . However, when v increases further, traffic
congestion becomes more and more serious, resulting in the
increase of τ0 and η, and this further leads to the decrease of T .

In Fig. 6 when α increases from zero to nonzero, τ0 and η

decrease abruptly, leading to a substantial increase of T . R(T )
first decreases quickly with α and then increases, which causes
T first to increase and then to decrease with α.

VII. CONCLUSION

For a wide range of power-limited communication net-
works, the biggest concern is network lifetime, which has not
received enough attention in network science. In this paper, we
discuss both network lifetime and traffic congestion based on
the methodology of complex network theory. In our model, all
nodes move in a spatial area and have limited communication
radius, energy, and delivery capacity, but an infinite queue for
simplification purposes. Previously, we considered only the
presence of traffic congestion in a network. In this paper, we
further study the level of traffic congestion, which is divided
into no, slow, fast, and absolute congestion states. Moreover,
we derive the network lifetime by considering the level of
traffic congestion. Generally, network lifetime is opposite to
traffic congestion in that a high level of network congestion
corresponds to a small network lifetime. Through analytical
and simulation results, we find that when the traffic congestion
is slight, network lifetime is mainly determined by packet
generation rate, characteristic transmission time, and range of
energy. When the traffic congestion level is high, network
lifetime is constant and determined by the node delivery
capacity. Also, an increase of communication radius causes
a decrease of the possibility of traffic congestion and thus
increases the network lifetime. The influence of the routing
parameter and node speed is not monotonic in that there are
optimal routing parameter and optimal node speed leading to
the maximum network lifetime. It is worth mentioning that
future research may consider other definitions of network
lifetime such as the time till a fraction of nodes die or the
network partitions.
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APPENDIX: ANALYTICAL RESULTS OF THE NUMBER
OF PACKETS AND THE NUMBER OF CONGESTED NODES

In the main text, we provide the simulation results of the
number of packets and the number of congested nodes to
illustrate the different traffic states. Here we take a further

012322-6



TRAFFIC CONGESTION AND THE LIFETIME OF . . . PHYSICAL REVIEW E 95, 012322 (2017)

FIG. 7. Number of packets S vs time step t for various ρ for (a) no
congestion state, (b) slow congestion state, (c) fast congestion state,
and (d) absolute congestion state. The results are obtained through
analytical calculation. The parameters are N = 1000, L = 20, r = 3,
v = 0.5, α = 0.5, τ0 = 3.275, C = 5, E0 = 1000, and �E = 1. The
curves are placed so that the curve of a smaller ρ is in a lower position.

step to derive the number of packets S and the number of
congested nodes nc as a function of time t . We assume that,
at each time step, each node generates Nρ packets, deliver X

packets, and a total of βX packets arrive at their destinations,
where 0 � β � 1. Furthermore, β is a function of t . During the
stage T1, nc = 0, and β(t) is constant and equals 1/τ0. During
the stage T2, nc increases, and β changes with t . During the
stage T3, nc = N , and β is constant with t . Then we assume
that the average number of packets in each node queue is λ(t),
and we have S(t) = Nλ(t). For ρ > C, we have

S(0) = Nρ, λ(0) = ρ,

nc(t) = N, X(t) = NC, (A1)

dS

dt
= N

dλ

dt
= Nρ − βX.

Through integration, we get S(t)=Nλ(t)=Nρ+(Nρ−βX)t=
Nρ + N (ρ − βC)t .

For ρ � C, we have

S(0) = Nρ, λ(0) = ρ,

nc(0) = 0, X(0) = Nρ, (A2)

β(0) = 1

τ0
.

Then we get S(1) = N (2ρ − ρ

τ0
) and λ(1) = 2ρ − ρ

τ0
. For

simplification purposes, we assume that each node queue has
n units of buffers, n → ∞, and each buffer has a packet with
the probability p, p → 0. Then λ = np. The distribution of
number of packets in each queue follows the Poisson distribu-
tion, P (l) = e−λ λl

l! . Then we have nc(t) = N
∑∞

l=C+1 P (l) =

FIG. 8. Number of congested nodes nc vs. time step t for
various ρ for (a) no congestion state, (b) slow congestion state,
(c) fast congestion state, and (d) absolute congestion state. The
results are obtained through analytical calculation. The parameters
are N = 1000, L = 20, r = 3, v = 0.5, α = 0.5, τ0 = 3.275, C = 5,
E0 = 1000, and �E = 1. The curves are placed so that the curve of
a smaller ρ is in a lower position.

N (1 − ∑C
l=0 e−λ λl

l! ). Furthermore, we obtain that

X(t) = nc(t)C +
C∑

l=0

NP (l)l

= nc(t)C +
C∑

l=1

Ne−λ λl

l!
l

= nc(t)C + λ[N − nc(t)] − Ne−λ λC+1

C!
. (A3)

Then for t � 1, we have

S(1) = N

(
2ρ − ρ

τ0

)
, λ(1) = 2ρ − ρ

τ0
,

nc(t) = N

(
1 −

C∑
l=0

e−λ λl

l!

)
,

X(t) = nc(t)C + λ[N − nc(t)] − Ne−λ λC+1

C!
,

dS

dt
= N

dλ

dt
= Nρ − βX. (A4)

We assume that β = 1
τ0(

∑C
l=0 P (l)+∑∞

l=C+1 P (l) l
C

)
, and based on

Eqs. (A1) and (A4), we obtain S(t) and nc(t) through numerical
simulation, which are shown in Figs. 7 and 8, respectively. We
see that these results are generally consistent with those in
Figs. 1 and 2. Note that the shape of the curves is slightly
different between Figs. 2(c) and 8(c). The reason is that in
the calculation we assume the number of packets in the queue
follows a Poisson distribution, while it might not be always
like this in real situations.
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