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In this work, we use the approximate-master-equation approach to study the dynamics of the Kinouchi-Copelli
neural model on various networks. By categorizing each neuron in terms of its state and also the states of its
neighbors, we are able to uncover how the coupled system evolves with respective to time by directly solving
a set of ordinary differential equations. In particular, we can easily calculate the statistical properties of the
time evolution of the network instantaneous response, the network response curve, the dynamic range, and the
critical point in the framework of the approximate-master-equation approach. The possible usage of the proposed
theoretical approach to other spreading phenomena is briefly discussed.
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I. INTRODUCTION

Most experimental studies in psychophysics have focused
on the relationship between physical stimuli and the psy-
chological feelings produced by them [1,2]. In general, the
physical stimuli can be in the form of light, sound, pressure,
and so on, and the psychological feelings can be the responses
of vision, hearing, touch, etc. Experimentally, two classical
results in psychophysics have been put forward, namely the
logarithm function F (r) ∼ log r (the Weber-Fechner law) and
the power-law function F (r) ∼ rh (the Stevens law), where
F (r) describes the intensity of the psychological feelings, r

is the intensity of the physical stimuli, and h is the fitting
exponent [1,2]. Up to now, a large number of theoretical
models have been proposed to explain these experimentally
observed psychophysical laws [3,4], and these models have
made significant contributions toward explaining how the brain
works [5,6], how neurons transmit signals [7], and many other
interesting phenomena in neural science.

With the crucial experimental finding that the electrical
coupling by gap junctions is immanent in many sensory
systems (e.g., the olfactory glomeruli [8,9] and the retina [10]),
Kinouchi and Copelli proposed a neural model on the Erdös-
Rényi (ER) random networks to characterize the neural activity
connected by electrical synapses [3]. It was found that the
sensitivity (the extent of the response of the system to small
physical stimuli) and the dynamic range (the number of
decades over which the physical stimulus can be properly
discriminated [3]) are maximized at a special value (the critical
point [3]) of the coupling parameter among neurons. Moreover,
the same phenomenon has also been observed when the model
is built on a scale-free network [11,12]. In Refs. [13,14],
Larremore et al. developed a general theoretical approach to
study the dynamic range of the Kinouchi-Copelli neural model
on networks. They found that the dynamic range is closely
determined by the topology (say, the largest eigenvalue of the
adjacency matrix) of the underlying interaction networks. Pei
et al. [15] found that introducing an inhibitory factor for each
excitatory node can enhance the network dynamic range.
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So far, the Kinouchi-Copelli neural model has been used
to explain a series of interesting phenomena that were found
experimentally in neural systems or general excitable systems,
such as nonlinear response functions in sensory systems [1],
maximum dynamic range at criticality in the cortical net-
works [16], the scaling properties expected at criticality in
brain dynamics [17], etc. Most existing studies are mainly
based on either Monte Carlo simulations [3,18] or general
mean-field approximate analysis [12,19,20]. As is well known,
for self-organized critical systems, the results from stochastic
simulations in the vicinity of criticality inevitably display great
fluctuations caused by many factors, such as the randomness
of the construction of networks and the intrinsic randomness
in the dynamical process (including the probabilistic dynamics
of the external stimulus and the influence from neighbors). To
obtain the critical point more precisely, one has to increase the
network size substantially and carry out extensive simulations,
which is very computationally cost.

In this paper, we study the statistical properties of the
Kinouchi-Copelli neural model on diverse networks by using
the approximate-master-equation approach (AMEA), with
which the dynamical states of the system are characterized
by a set of ordinary differential equations. Once the initial
conditions are given, we can trace the evolution of the system
deterministically. As will be shown below, the results from the
AMEA and the stochastic simulations are in excellent agree-
ment, such as the time evolution of the network instantaneous
response (the density of excited neurons at a given time),
the network response curve (the density of excited neurons
averaged over a large time window), and the dynamic range.
Remarkably, with the AMEA, we are able to find the critical
point more accurately and efficiently, yet in an easier manner
in comparison to direct stochastic simulations.

II. THE KINOUCHI-COPELLI NEURAL MODEL

The Kinouchi-Copelli neural model is a simple excitable
model for neural activity consisting of N coupled excitable
neurons [3]. The instantaneous membrane potential of the ith
neuron at time t is represented by si(t) ∈ {0,1, . . . ,n − 1},
where n � 3. The state si(t) = 0 denotes the resting state,
si(t) = 1 represents the excited state, and the remaining
si(t) = 2, . . . ,n − 1 account for the refractory period. When
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the ith neuron is in the resting state at time t , there are
two ways for it to transfer to the excited state at time
t + 1: (a) From the external stimulus, modeled by a Poisson
process with rate r (which implies a transition with probability
λ = 1 − exp(−r�t) per time step, and we assume �t = 1
ms as in [3]); (b) from the influence (with probability p) of
each currently excited neighbor j . p is also referred to as the
branching probability in the branching processes [21], where
the branching ratio σ = Kp describes the expected number
of excited neurons stimulated by an excited neuron in the
next time step. For neurons with si(t) � 1, the dynamics is
deterministic: si(t + 1) = [si(t) + 1] mod n, regardless of the
external stimulus or the influence coming from the excited
neighbors. After the neuron is excited, the refractory period
takes place subsequently, during which time the neuron cannot
be excited until it returns to a resting state again.

III. APPROXIMATE-MASTER-EQUATION APPROACH

The AMEA has been widely used in solving the epidemic
spreading problem [22,23] and in the binary-state dynamics
on networks [24,25]. Here, we attempt to apply the AMEA to
the Kinouchi-Copelli neural model. For simplicity, we will
consider herein only three possible states of each neuron:
resting, excited, and refractory (i.e., we set n = 3, and the
theoretical treatment can be straightforwardly extended to
the case of n > 3). Each neuron can then be categorized
by its state, say, the resting state (R), the (excited) spiking
state (S), the refractory state (T ), and by the number of its
neighbors in each state. Let Ri,j,l be the number of resting
neurons with i resting neighbors, j excited neighbors, and
l refractory neighbors. Si,j,l and Ti,j,l can be defined in a
similar way (note that these neurons have a total degree
i + j + l). Since a neuron in the resting state can be excited
by an external stimulus with probability λ, or by each
excited neighbor with probability p, independently, then a

neuron belonging to the Ri,j,l class will be excited with
probability [1 − (1 − p)j (1 − λ)]. Note that (1 − p)j (1 − λ)
characterizes the expected probability that a neuron belonging
to the Ri,j,l class will not be stimulated to exciting by the
influences from both those excited neighbors and the external
stimulus. Then, the total number of new excited neurons at
one time step is

∑kmax
k=0

∑
i+j+l=k Ri,j,l[1 − (1 − p)j (1 − λ)].

These new excited neurons cause their resting neighbors
to change their effective degree (available for influence)
at the rate

∑kmax
k=0

∑
i+j+l=k iRi,j,l[1 − (1 − p)j (1 − λ)]. With

the total number of the resting neighbors of R neurons∑kmax
k=0

∑
i+j+l=k iRi,j,l , we yield the probability that one

resting neighbor of the R neurons is going to be excited as

PR =
∑kmax

k=0

∑
i+j+l=k iRi,j,l[1 − (1 − p)j (1 − λ)]∑kmax

k=0

∑
i+j+l=k iRi,j,l

. (1)

Similarly, the probability that one resting neighbor of the S

neurons is going to be excited is

PS =
∑kmax

k=0

∑
i+j+l=k jRi,j,l[1 − (1 − p)j (1 − λ)]∑kmax

k=0

∑
i+j+l=k iSi,j,l

, (2)

and the probability that one resting neighbor of the T neurons
is going to be excited is

PT =
∑kmax

k=0

∑
i+j+l=k lRi,j,l[1 − (1 − p)j (1 − λ)]∑kmax

k=0

∑
i+j+l=k iTi,j,l

. (3)

The schematic illustration of the AMEA for the Kinouchi-
Copelli neural model is shown in Fig. 1. For convenience, we
denote the number of neurons in each state at time t by Xi,j,l(t),
where X ∈ {R,S,T }. The time variation of Xi,j,l(t) will be due
to either the change of the states of the neurons themselves,
or the change of the states of their neighbors (altering the
subscripts). First, we consider the state transformation of

Xα+β,γ,0 

Xα+β-1,γ,1 

Xα+β-2,γ,2 Xα,β,γ Sα,β,γ 

… … 

Xβ,γ,α 

Rα,β,γ 

Tα,β,γ 

X = R, 1-(1-p)γ (1-λ) 
 

Qα+β-2,γ,2 

The subscript transformation The state transformation 

FIG. 1. Schematic illustration of the approximate-master-equation approach for the Kinouchi-Copelli neural model. The solid arrows
represent the changes in the states of the neurons’ neighbors (subscript transformation), and the dashed arrows represent the changes in the state
of the focal neuron X itself (X ∈ {R,S,T }, state transformation). Xα,β,γ is an intermediate state, the expressions Qα+β−l,γ,l (Q ∈ {G,H,O}, l ∈
{0,1,2, . . . ,α}) denote the probabilities of the subscript transformation, and the expressions above the dashed arrows indicate the probabilities
of the change of different X. See more details in the corresponding text.
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the neighbors of the neurons, i.e., how Xi,j,l(t) changes to
Xα,β,γ (t + 1), which we call the subscript transformation, as
shown in the left part of Fig. 1. Obviously, the subscripts satisfy
the relationship i + j + l = α + β + γ . Moreover, since the
states of the neurons change deterministically after being
excited, the j excited neighbors will go into the refractory
period, the l refractory neighbors will go directly into the
resting state, and we have γ = j . Thus, if a neuron is in the
Xα+β−l,γ,l(t) class at time t and its β resting neighbors are
going to be excited, then it will join the Xα,β,γ (t + 1) class
at time t + 1. Consequently, the probability of the subscript
transformation for Rα+β−l,γ,l can be expressed as

Gα+β−l,γ,l =
(

α + β − l

β

)
P

β

R (1 − PR)α−l , (4)

where the prefactor is the binomial coefficient. Similarly, the
probability of the subscript transformation for Sα+β−l,γ,l can
be obtained as

Hα+β−l,γ,l =
(

α + β − l

β

)
P

β

S (1 − PS)α−l , (5)

and the probability of the subscript transformation for
Tα+β−l,γ,l can be obtained as

Oα+β−l,γ,l =
(

α + β − l

β

)
P

β

T (1 − PT )α−l . (6)

Besides the subscript transformation, we need to consider
the state transition of the neurons themselves, which we call the
state transformation, as shown in the right part of Fig. 1. The
probability that a neuron in the Rα,β,γ (t) class still remains in
the same class at the next time step is (1 − p)β(1 − λ), which
means that it is not excited by either the external stimulus or
the influence from those excited neighbors. The probability
that a neuron in the Rα,β,γ (t) class joins the Sα,β,γ (t + 1)
class at the next time step is [1 − (1 − p)β(1 − λ)]. Due to the
deterministic state transformation of the excited and refractory
neurons, the probability that a neuron in the Sα,β,γ (t) class joins
the Tα,β,γ (t + 1) class, and that a neuron in the Tα,β,γ (t) class
joins the Rα,β,γ (t + 1) class, are both equal to 1.

Now, in the framework of the AMEA, the dynamics of
the Kinouchi-Copelli neural model on a static uncorrelated
network can be described by the following (kmax + 1)(kmax +
2)(kmax + 3)/6 equations:

Rα,β,γ (t + 1) =
α∑

l=0

{Rα+β−l,γ,l(t)Gα+β−l,γ,l[(1 − p)γ (1 − λ)]

+ Tα+β−l,γ,l(t)Oα+β−l,γ,l},

Sα,β,γ (t + 1) =
α∑

l=0

{Rα+β−l,γ,l(t)Gα+β−l,γ,l

× [1 − (1 − p)γ (1 − λ)]},

Tα,β,γ (t + 1) =
α∑

l=0

{Sα+β−l,γ,l(t)Hα+β−l,γ,l}, (7)

where α + β + γ = k, and k ∈ {0,1, . . . ,kmax} is the degree
of the neurons in the network.

Initially, we randomly choose a fraction ρ0 (we set ρ0 =
0.1) of neurons in the network as excited seeds so that the

initial condition can be written as

Rα,β,γ (0) =
{

N (1 − ρ0)Bα+β+γ,β (ρ0)Pk, γ = 0,

0, γ �= 0,

Sα,β,γ (0) =
{

Nρ0Bα+β+γ,β (ρ0)Pk, γ = 0,

0, γ �= 0,

Tα,β,γ (0) = 0, (8)

where Pk is the probability that a randomly chosen neuron has
k neighbors, and Bα+β+γ,β (ρ0) is the binomial factor,

Bα+β+γ,β (ρ0) =
(

α + β + γ

β

)
ρ

β

0 (1 − ρ0)α. (9)

With the initial conditions Eq. (8), we can trail the values of
different Xα,β,γ by iterating Eq. (7) directly, and we obtain
deterministic results for the system in the long-time limit.

IV. STOCHASTIC SIMULATIONS AND ANALYSIS

A. Construction of the underlying interaction networks

We consider the Kinouchi-Copelli neural model on three
types of uncorrelated networks: the Erdös-Rényi (ER) random
network [26], a random regular graph (RRG) [27], and
an uncorrelated random scale-free (SF) network [28,29]. In
particular, we generate the ER random network by assigning
each of the NK/2 links to a repeatedly and randomly chosen
pair of nodes, which produces a random network with an
average degree K and with a Poisson degree distribution
Pk = e−K Kk

k! . The RRG is also called the K-regular random
graph or the Bethe lattice, with all nodes having the same
degree K (i.e., Pk = δk,K ), which can be constructed by
assigning each node K stubs exactly, and then pairing two
randomly selected stubs consecutively, until all the stubs have
been used up. Finally, we use the configuration algorithm to
generate uncorrelated random SF networks [28,29]. Multiple
connections and self-connections are forbidden in all cases.

B. Results and analysis

To specify the neural activity, we adopt the network
response F , which is defined as in Ref. [3],

F = 1

T

T∑
t=1

ρt , (10)

where T is a large time window and ρt is the network
instantaneous response (which is defined as the density of
excited neurons at a given time t). Hence, F represents the
mean exciting rate for the initial transduction from a physical
stimulus to neural activity of the neural network. We calculate
the dynamic range � of the response curve for a given
branching probability p as [3]

� = 10 log
r0.9

r0.1
, (11)

where r0.1 and r0.9 are the stimulus intensities corresponding
to F0.1 and F0.9, respectively. Here, Fx = F0 + x(Fmax −
F0), where F0 (Fmax) is the minimum (maximum) network
response [3]. Note that the minimum network response F0

is always 0 for the subcritical and critical cases, since
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FIG. 2. Time series of the network instantaneous response ρt on the ER random networks with K = 6 and without an external stimulus
(i.e., r = 0). (a) In the subcritical regime with p = 0.14, (b) at the critical point with p = 1/6, (c) in the supercritical regime with p = 0.2,
and (d) in the supercritical regime with p = 0.8. Results from the AMEA are depicted by the thick solid lines (for just one realization), and
those from stochastic simulations are represented by the thin solid lines (for 100 independent realizations).

neural activity vanishes in the long-time limit (ρt = 0), while
it remains as a finite positive value in the supercritical
region.

Let us first present in Fig. 2 the results of the Kinouchi-
Copelli neural model on the ER random networks without
external stimulus (i.e., r = 0). The instantaneous response
from stochastic simulations is in the form of 100 independent
realizations with parameters N = 105, n = 3, K = 6, and
ρ0 = 0.1. The time evolution of the network instantaneous
response ρt calculated by the AMEA in terms of Eq. (7) is in
good agreement with the results from stochastic simulations.
The properties of our results are qualitatively similar to those
in Ref. [3]. In the subcritical region (p < pc), the activity
stops in a very short period of time [see Fig. 2(a)] because the
branching probability p between the resting neurons and the

excited ones is not large enough to excite the resting ones,
and the network instantaneous response ρt decays to zero
in an exponential form [see Fig. 3(a)]. For the critical case
(p = pc), previous work showed that the activity has a large
interval of extinction times [3]; see Fig. 2(b). Results from
the AMEA show that the network instantaneous response ρt

decays to zero in a power-law form [the thick solid lines
obtained by the least-squares fitting method in Fig. 3(a)].
This property is very useful in finding the location of the
critical point accurately. In the supercritical region (p > pc),
the system maintains self-sustained oscillations even in the
absence of external stimulus [see Fig. 2(c)]. The activity in the
supercritical region with large branching probability p needs
to go through a long period of oscillations before reaching the
stable state [see Fig. 2(d)].
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FIG. 3. The network instantaneous response ρt as a function of time t on (a) the ER random network with K = 6, (b) the RRG with K = 6,
and (c) the uncorrelated random SF network with γ = 2.5 and without external stimulus (r = 0). Results from the AMEA are given by the thin
solid lines, and the least-squares estimation of the closest power-law form for the critical state with 100 � t � 1000 ms is displayed by thick
solid lines.
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FIG. 4. Response curves F of the Kinouchi-Copelli neural model on (a) ER random networks with K = 6 (from p = 0 to 1/3 in intervals
of 1/30), (c) RRGs with K = 6 (from p = 0 to 0.4 in intervals of 0.04), and (e) uncorrelated random SF networks with γ = 2.5 (from
p = 0 to 0.228 74 in intervals of 0.022 874). Results from stochastic simulations on uncorrelated random SF networks are averaged over 100
independent realizations. Dynamic range � vs the branching probability p on (b) ER random networks with K = 6, (d) RRGs with K = 6,
and (f) uncorrelated random SF networks with γ = 2.5. The olive squares in (f) represent the results for p = 0.12–0.13 (in intervals of 0.001)
with the additional stochastic simulations. The dashed and solid arrows represent the critical points obtained by stochastic simulations and the
AMEA, respectively.

As can be seen from Figs. 2 and 3, the results from stochastic
simulations display noticeable fluctuations, especially in the
region of criticality, while those from the AMEA are smooth
curves without fluctuations (we have checked that the averaged
results from a great number of realizations of stochastic
simulations do converge to the estimations by the AMEA for
the same given parameters, which are not shown here). As
such, we can see that it is easier and more convenient for us to
study the dynamical behavior (e.g., characterizing the neural
activity, finding the critical point) of the Kinouchi-Copelli
neural model on static uncorrelated networks by means of
the AMEA.

Next, we focus on the dependence of the network response
F (r) on the branching probability p. Here, we would like to
point out that one should measure the network response F (r)
over a sufficiently long time, otherwise the interval of the
network instantaneous response (before reaching its steady

state) will affect the results considerably. Figure 4 displays
the response curves F (r) and the dynamic range � of the
Kinouchi-Copelli neural model on the ER random networks,
RRGs, and uncorrelated random SF networks. Results from
the AMEA (solid lines) and stochastic simulations (circles)
coincide well with each other on the ER random networks
[Figs. 4(a) and 4(b)] and the RRGs [Figs. 4(c) and 4(d)], while
there arise slight discrepancies on the uncorrelated random
SF networks. As shown in Figs. 4(e) and 4(f), the response
curves F (r) and the dynamic range � from both approaches
are almost the same in the subcritical regime, but deviations
arise in the critical regime and the supercritical regime. The
dashed and the solid arrows in Fig. 4(f) indicate the critical
points obtained from the stochastic simulations pSTO

c ≈ 0.124
and the AMEA pAMEA

c ≈ 0.114 37, respectively. We note that
pSTO

c � pAMEA
c . [The critical point, yielded by the reciprocal of

the largest eigenvalue of the adjacency matrix of the underlying
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FIG. 5. The exponent h, which is obtained by doing the least-squares fitting of the response curves F with 10−5 � r � 10−3 ms−1 according
to the relationship F ∼ rh, as a function of the branching probability p on (a) ER random networks, (b) RRGs, and (c) uncorrelated random
SF networks. Parameters are the same as those in Fig. 4. Clearly, the exponent h is close to 1 for the uncoupled networks (p = 0), close to 1/2
at the critical point (p = pc), and decreases to 0 in the supercritical regime (p = 1).

SF interaction networks in Fig. 4(f), is approximately equal
to 0.087 881 [13,14], which suggests that the critical point
obtained by the AMEA is more accurate.] Accordingly, the
maximum dynamic range �STO

max in the critical point obtained
by stochastic simulations is greater than �AMEA

max predicted by
the AMEA. We have checked that the deviations will decrease
with the increase of the network size N (not shown here).

It was demonstrated that the network response in the
uncoupled case (p = 0) is given by F = λ/[1 + (n − 1)λ]
and the maximum response scales with the refractory period
as Fmax = 1/n [3,11,12,30,31]. As shown in Fig. 4, our
AMEA also gives correct theoretical estimations. Moreover,
for sufficiently small external stimuli r , it was shown that the
network response F (r) changes linearly in the log-log scale,
resulting in the relation F ∼ rh (the Stevens law), where the
exponent h changes from h = 1 in the subcritical regime (the
uncoupled case with p = 0) to h = 1/2 at the critical point
(p = pc), and it decreases to 0 in the supercritical regime
(p = 1) [3]. Once again, as shown in Fig. 5, our AMEA
predicts the same dynamical behavior of F (r). In addition,
since the curves from the AMEA are usually smooth and
continuous, it is also convenient for us to identify the critical
point pc by checking the position where h = 1/2 (see Fig. 5).

In the supercritical regime (p > pc), the minimum response
F0 is not zero because of the self-sustained activity induced
by the strong branching probability. Noticing that F0 = 0 for
the subcritical and critical cases. Then we can estimate the
critical point by calculating the minimum response F0 as a

function of the branching probability p, and the results are
summarized in Fig. 6. It is evident that the positions of the
critical point for different networks are determined by the
degree distribution and the average degree. In the next section,
we give an approximate theoretical estimation for the critical
position.

Up to now we have mainly studied the Kinouchi-Copelli
model, in which all the neurons update their states syn-
chronously. It is worth pointing out that the asynchronous
updating neural network models have also played a huge role
in pattern recognition, artificial intelligence, communication,
control, finance, bioinformatics, and so on [32]. The simula-
tion results and theoretical analysis of the Kinouchi-Copelli
neural model with asynchronous update are summarized in
Appendix C. We find that the results for both synchronous
and asynchronous Kinouchi-Copelli models are qualitatively
consistent.

V. THE CRITICAL POINT

Critical phenomena in complex networks are a popular
research topic [33]. Previous research has suggested that the
dynamical behavior at the critical point of a complex system
is connected with optimal computational capabilities [34],
optimal transmissions [35], and sensitivity to sensory
stimuli [3,36,37]. Recently, experiments in neural networks
showed that the dynamic range will be maximized and a
power-law distribution of neuronal avalanches emerges at
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FIG. 6. Minimum response F0 as a function of the branching probability p of the Kinouchi-Copelli neural model on (a) ER random
networks, (b) RRGs, and (c) uncorrelated random SF networks.
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TABLE I. Estimated critical points by using the least-squares
estimate of the closest power-law decay form (ρt ∼ t−ht ) for the
network instantaneous response ρt with 100 � t � 1000 ms on ER
random networks, RRGs, and uncorrelated random SF networks. The
results here are more accurate than those in Fig. 3.

ER RRG SF

K pc ht K pc ht γ pc ht

4 0.24997 1.00000 4 0.33325 1.00140 2.5 0.11437 1.00424
6 0.16664 1.00228 6 0.19995 1.00406
8 0.12498 1.00485 8 0.14282 1.00660 2.7 0.16151 1.00159
10 0.09998 1.00579 10 0.11109 0.99655
12 0.08332 1.00006 12 0.9089 0.99991 3.0 0.24149 1.00043

the critical point [16,38], which is consistent with the earlier
theoretical predictions [17,39–41]. An important question
then is how the critical point can be found accurately before
studying the critical behavior or the behavior near the critical
point. In Appendix A, we apply the mean-field theory to
the Kinouchi-Copelli neural model, and we find that its
applicability is quite limited.

In Sec. IV, we have presented three methods to estimate the
critical point, which are all based on the AMEA. (Note that the
maximum of the power spectral density of neuronal activity
fluctuations can give, in some cases, a better estimation of the
critical point of both first- and second-order phase transitions in
neuronal networks [42,43].) The first is the minimum response
F0 as a function of the branching probability p. The second is
the power-law decay behavior of the network instantaneous
response ρt . The third one corresponds to the power-law
growth behavior (with exponent h = 1/2) of the response
F as a function of r in the case of weak external stimulus
(�10−3 ms−1). Generally, we can obtain a fairly accurate
critical point using a combination of these three methods. In
Table I, we list the critical points obtained by doing the least-
squares estimation of the closest power-law decay form for the
network instantaneous response ρt (100 � t � 1000 ms) on
the ER random networks, RRGs, and uncorrelated random SF
networks. It is worth pointing out that the maximum likelihood
method [44] will generally give a better estimation of the
exponent than the least-squares method does. In Fig. 7, we

plot the critical point pc as a function of the average degree K

for the cases of the ER random networks and RRGs, and we
obtain two simple relations, pER

c ∼ 1
K

and pRRG
c ∼ 1

K−1 .
In the remainder of this section, we present approximate

theoretical derivations for these expressions by using the
AMEA. For simplicity, we consider the Kinouchi-Copelli
neural model on RRGs. There will be no neurons in an excited
state in the subcritical regime, and at the critical point there
may be a small number of neurons excited at the beginning,
but this number will evolve to zero eventually. Thus, near the
critical point, it is reasonable for us to just consider that the
values of the subscripts j,l are equal to either 0 or 1. That
means that we just consider the classes of XK,0,0, XK−1,1,0,
and XK−1,0,1, where X ∈ {R,S,T } (all the other classes can
be omitted reasonably). Combining these approximations with
Eqs. (1)–(7), we can obtain the following equations:

ARK,0,0 + BRK−1,1,0 = 0,
(12)

CRK,0,0 + DRK−1,1,0 = 0,

where the coefficients A,B,C,D are functions of K and p (for
more details, see Appendix B). To obtain nonzero solutions of
Eq. (12), the determinant of the coefficient matrix should be
zero, which will lead to the following equation:

ap2 + bp + c = 0, (13)

where

a = (2K − 3)z2K−4 + (K2 − 6K + 6)zK−2

− (K − 2)(K − 1),

b = −(K − 1)zK−2 + K(K − 1), c = −1. (14)

We summarize in Fig. 7 the thresholds of the
Kinouchi-Copelli neural model on (a) ER random networks,
and (b) RRGs, with different average degree K , which have
been calculated from stochastic simulations, the AMEA, and
also the solutions of Eq. (13). All approaches have produced
results essentially in agreement with each other. The numerical
solutions of Eq. (13) give approximately a fairly simple
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0.1

0.15

0.2
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0.3
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4 5 6 7 8 9 10 11 12
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p c

K

          RRG
 Simulations
 AMEA
 Eq. (13)
 p

c
 ~ 1/(K-1)

(a)

p c

K

         ER
 Simulations
 AMEA
 pc ~ 1/K

FIG. 7. The threshold pc vs the average degree K on (a) ER random networks and (b) RRGs. The black squares are simulation results, the
red circles are the results from the AMEA, the dashed lines are the linear fitting of the AMEA results in the log-log scale, and the solid line is
the solution of Eq. (13). Other parameter values are the same as those in Fig. 6.
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result,

pc ≈ 1

K − 1
, (15)

which is shown in Fig. 7(b).

VI. CONCLUSION

We have applied the approximate-master-equation ap-
proach to solve the Kinouchi-Copelli neural model on Erdös-
Rényi random networks, random regular graphs, and uncor-
related random scale-free networks. Specifically, we perform
comparative studies of the time evolution of the network in-
stantaneous response, the network response curve, the dynamic
range, and the minimum response by means of stochastic
simulations as well as the AMEA. Results from both methods
agree well with each other. A large number of investigations
on neural activity have indicated that the dynamic range
displays a maximum level at the critical point. The spontaneous
activity that is optimized for input processing at criticality has
also been found experimentally [16]. Critical behavior is an
important characteristic for the study of neural activity. In
the vicinity of the critical point, curves obtained from direct
stochastic simulations usually display large fluctuations, which
always hinder us in obtaining the accurate critical point of the
Kinouchi-Copelli model at the first onset. To determine the
critical point, we have to perform extensive computer simu-
lations to smooth the curves, which is very computationally
costly. We have demonstrated that the determination of the
critical point via the AMEA is quite convenient and efficient. In
particular, three different methods can be conveniently adopted
to determine the location of the critical point in terms of the
dynamical behavior of the network instantaneous response, the
network response curve, and the dynamic range as a function
of the time or the branching probability p.

Finally, we would like to point out that the AMEA can
be easily generalized to more sophisticated neural models,
such as the excitatory-inhibitory model [45] and the models
with electrical and chemical synapses [46,47], which are
more reasonable to model real neural networks. At the same
time, this method should not be limited to the dynamics of
the Kinouchi-Copelli neural model and epidemic spreading
processes. It can also be applied to the analysis of opinion
dynamics, information processing, and so on.
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APPENDIX A: MEAN-FIELD APPROACH

The Kinouchi-Copelli neural model can be analyzed by
means of the mean-field theory [12,48]. For the cases of the
RRGs and ER random networks, we assume that each neuron
has the same number of neighbors k � K , according to the
homogeneous mixing hypothesis [48]. In the framework of
the mean-field theory, the Kinouchi-Copelli neural model can

be described as follows:

∂tρt (1) = −ρt (1) + λρt (0) + (1 − λ)ρt (0)

× [1 − [1 − pρt (1)]K ], (A1)

where ρt (0) is the density of the resting neurons at time t . In the
stationary state, we have ρt (0) = 1 − (n − 1)ρt (1) [3,12,49].
The first term on the right-hand side in Eq. (A1) represents the
excited neurons going into the refractory state with probability
1. The second term indicates the resting neurons becoming
excited by the external stimulus with probability λ. The third
term stands for the resting neurons becoming excited by the
excited neighbors with probability p.

By imposing the stationarity condition ∂tρt (1) = 0, we
obtain the equation

− ρ(1) + λρ(0) + (1 − λ)ρ(0)[1 − [1 − pρ(1)]K ] = 0. (A2)

To view the critical behavior by the minimum response F0

[without external stimulus (λ = 0)], we linearize the term
[1 − pρ(1)]K in Eqs. (A2) around pρ(1) → 0, and we obtain

ρ(1) ≈ 1

n − 1

(
1 − 1

pK

)
, (A3)

which is reasonable when p or ρ(1) is sufficiently small.
Therefore, the critical point can be yielded as

pc = 1

K
. (A4)

As shown in Fig. 7, this result is consistent with the simulation
results on the ER random networks, but not with those on the
RRGs. We think that this is just a coincidence because the
result on the RRGs should theoretically be better than that on
the ER random networks. The reason is that the approximate
mean-field analysis is established for the dynamical process
on annealed networks. However, we can still use this method
to draw some useful information [50].

In scale-free networks, the degree distribution is highly
skewed and the homogeneous mixing hypothesis is no longer
applicable. To resolve the degree variation of the neurons, we
calculate the density ρk

t (1) of the excited neurons with degree
k by assuming the equivalence of all neurons of degree k. The
extended mean-field equation can be written as [12,48]

∂tρ
k
t (1) = −ρk

t (1) + λρk
t (0)

+ kp(1 − λ)ρk
t (0)�(ρt (1)), (A5)

where the third term indicates that the newly increased excited
neurons is proportional to the probability ρk

t (0) that a resting
neuron has degree k, the probability �(ρt (1)) that any given
link points to an excited neuron, and the probability p that it
is excited by that excited neighbor. The factor k indicates all
the possible edges through which the resting neuron can be
excited by its neighbors.

By imposing the stationarity condition ∂tρt (1) = 0, we
obtain

ρk(1) = λ + (1 − λ)pk�(λ,p)

1 + (n − 1)[λ + (1 − λ)pk�(λ,p)]
. (A6)

In uncorrelated random networks, the probability that an edge
points to a neuron with degree k′ is independent of the degree
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k of the neuron from which the edge is emanating. We assume
that � is a function of the total density of excited nodes ρ(1)
(so that it is a function of λ and p). Therefore, as in [12], we
can obtain

�(λ,p) = 1

K

∑
k

kPkρ
k(1). (A7)

It is easy to calculate �(λ,p) by using the above self-
consistency equation. Combining Eqs. (A6) and (A7) yields
the density ρk(1) of the excited neurons with degree k. Then,
we can evaluate the total density ρ(1) of the excited neurons
by

ρ(1) =
∑

k

Pkρ
k(1). (A8)

In our study, we construct the uncorrelated random SF network
by using the configuration algorithm. The degree distribution
can be written as

Pk = 1 − γ

k
1−γ
max − m1−γ

k−γ , (A9)

and the average degree is

K =
∫ kmax

m

Pkk dk = γ − 1

γ − 2

m2−γ − k
2−γ
max

m1−γ − k
1−γ
max

, (A10)

where m is the minimum degree (we set m = 2 in the current
study) and kmax is the maximum degree. Then, Eq. (A7)
becomes

�(λ,p) = 1

K

∫ kmax

m

kPkρ
k(1)dk, (A11)

and we can obtain

�(λ,p) = 1

n − 1
+ γ − 2

(n − 1)ab2

[
b1 + k1−γ

max F (1,1 − γ,2

− γ,kmaxc) − m1−γ F (1,1 − γ,2 − γ,mc)
]
,

(A12)

where a = (n − 1)(γ − 1)(1 − λ)p�(λ,p), b1 = m1−γ −
k

1−γ
max , b2 = m2−γ − k

2−γ
max , c = a

1+(n−1)λ , and F is the Gauss
hypergeometric function [51]. Obviously, it is quite dif-
ficult to resolve the above equation, and we cannot ob-
tain a general formula to describe the dynamics of neural
activity.

APPENDIX B: DERIVATION OF EQ. (12)

For the Kinouchi-Copelli neural model on the RRGs, we
consider how the classes of XK,0,0, XK−1,1,0, and XK−1,0,1

(X ∈ {R,S,T }) change with respect to time. First, Eq. (7) can
be simplified as

RK,0,0(t + 1) = RK,0,0(t)(1 − PR)K

+RK−1,0,1(t)(1 − PR)K−1

+ TK,0,0(t)(1 − PT )K

+ TK−1,0,1(t)(1 − PT )K−1,

RK−1,1,0(t + 1) = RK,0,0(t)

(
K

1

)
PR(1 − PR)K−1

+RK−1,0,1(t)

(
K − 1

1

)
PR(1 − PR)K−2

+ TK,0,0(t)

(
K

1

)
PT (1 − PT )K−1

+ TK−1,0,1(t)

(
K − 1

1

)
PT (1 − PT )K−2,

RK−1,0,1(t + 1) = RK−1,1,0(t)(1 − PR)K−1(1 − p)

+ TK−1,1,0(t)(1 − PT )K−1, (B1)

SK,0,0(t + 1) = 0, SK−1,1,0(t + 1) = 0,
(B2)

SK−1,0,1(t + 1) = RK−1,1,0(t)(1 − PR)K−1p,

TK,0,0(t + 1) = SK−1,0,1(t)(1 − PS)K−1,

TK−1,1,0(t + 1) = SK−1,0,1(t)

(
K − 1

1

)
PS(1 − PS)K−2,

TK−1,0,1(t + 1) = 0. (B3)

Substituting Eqs. (B2) and (B3) into Eq. (B1) and omitting the
subscript t in the stationary state, we obtain

RK,0,0 = RK,0,0(1 − PR)K + RK−1,0,1(1 − PR)K−1

+pRK−1,1,0(1 − PR)K−1(1 − PS)K−1(1 − PT )K,

RK−1,1,0 = KRK,0,0PR(1 − PR)K−1

+ (K − 1)RK−1,0,1PR(1 − PR)K−2

+KpRK−1,1,0(1 − PR)K−1(1 − PS)K−1PT

× (1 − PT )K−1,

RK−1,0,1 = (1 − p)RK−1,1,0(1 − PR)K−1

+ (K − 1)pRK−1,1,0(1 − PR)K−1PS(1 − PS)K−2

× (1 − PT )K−1. (B4)

The probabilities of the subscript transformation in these
approximations can be obtained by using Eq. (B2), Eq. (B3),
and ignoring higher-order terms of PR ,

PR = (K − 1)RK−1,1,0

KRK,0,0 + (K − 1)(RK−1,1,0 + RK−1,0,1)

≈ (K − 1)RK−1,1,0

KRK,0,0 + (K − 1)RK−1,1,0
, (B5)

PS = RK−1,1,0 · p

KSK,0,0 + (K − 1)(SK−1,1,0 + SK−1,0,1)

= 1

(K − 1)(1 − PR)K−1
≈ 1

(K − 1)
, (B6)

PT = 0. (B7)

Combining these expressions with Eq. (B4), and ignoring
higher-order terms of PR , leads to

ARK,0,0 + BRK−1,1,0 = 0,
(B8)

CRK,0,0 + DRK−1,1,0 = 0,
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where

z = K − 2

K − 1
, A = K

(
1 − Kp + p

2K − 3

K − 1
zK−2

)
,

B = (K − 1)

{
(1 + p)[1 + 2(K − 1)p]

+p
2K − 3

K − 1
zK−2 − p2(2K − 3)zK−2

}
,

C = K[(K − 1)p − 1],

D = (K − 1)2(p − p2 − 1 + p2zK−2). (B9)

APPENDIX C: APPROXIMATE-MASTER-EQUATION
APPROACH (AMEA) FOR THE ASYNCHRONOUS UPDATE

MODEL

1. Details for the AMEA

Similar to what we have defined in the synchronous
updating of the Kinouchi-Copelli neural model, each neuron
can be categorized by its state and the number of its
neighbors in each state. Let Xi,j,l (X ∈ {R,S,T }) be the
number of X neurons with i resting neighbors, j excited
neighbors, and l refractory neighbors. When one neighbor
of a neuron is excited, the excited degree increases by 1
and the resting degree decreases by 1, respectively. The
neuron in the Xi,j,l(t) class will join the Xi−1,j+1,l(t + 1)
class at the next time step. The rate of new excited neurons
is

∑kmax
k

∑
i+j+l=k (pj + λ)Ri,j,l . The effective degree of the

resting neighbors is changed by these new excited neurons at
the rate

∑kmax
k

∑
i+j+l=k i(pj + λ)Ri,j,l . Then the rate at which

the neurons in the Rα+1,β−1,γ class will join the Rα,β,γ class
(due to the influence of the excited neighbors) is

W (Rα+1,β−1,γ → Rα,β,γ )

=
∑kmax

k

∑
i+j+l=k i(pj + λ)Ri,j,l∑kmax

k

∑
i+j+l=k iRi,j,l

(α + 1)Rα+1,β−1,γ .

(C1)

Following the same argument, we obtain

W (Rα,β+1,γ−1 → Rα,β,γ ) = (β + 1)Rα,β+1,γ−1, (C2)

W (Rα−1,β,γ+1 → Rα,β,γ ) = (γ + 1)Rα−1,β,γ+1, (C3)

W (Rα,β,γ → Rα−1,β+1,γ )

=
∑kmax

k

∑
i+j+l=k i(pj + λ)Ri,j,l∑kmax

k

∑
i+j+l=k iRi,j,l

αRα,β,γ , (C4)

W (Rα,β,γ → Rα,β−1,γ+1) = βRα,β,γ , (C5)

W (Rα,β,γ → Rα+1,β,γ−1) = γRα,β,γ . (C6)

The schematic illustration of the asynchronous update model
is summarized in Fig. 8. The change of the Rα,β,γ class with
respective to time can be written as

Ṙα,β,γ = −W (Rα,β,γ → Sα,β,γ ) + W (Tα,β,γ → Rα,β,γ )

−W (Rα,β,γ → Rα−1,β+1,γ )

+W (Rα+1,β−1,γ → Rα,β,γ )

−W (Rα,β,γ → Rα,β−1,γ+1)

+W (Rα,β+1,γ−1 → Rα,β,γ )

−W (Rα,β,γ → Rα+1,β,γ−1)

+W (Rα−1,β,γ+1 → Rα,β,γ )

= −(pβ + λ)Rα,β,γ + Tα,β,γ − G′αRα,β,γ

+G′(α + 1)Rα+1,β−1,γ − βRα,β,γ

+ (β + 1)Rα,β+1,γ−1 − γRα,β,γ

+ (γ + 1)Rα−1,β,γ+1, (C7)

where

G′ =
∑kmax

k

∑
i+j+l=k i(pj + λ)Ri,j,l∑kmax

k

∑
i+j+l=k iRi,j,l

. (C8)

We can also derive the equations for Sα,β,γ and Tα,β,γ in the
same way, which yields

Ṡα,β,γ = −Sα,β,γ + (pβ + λ)Rα,β,γ − H ′αSα,β,γ

+H ′(α + 1)Sα+1,β−1,γ − βSα,β,γ

+ (β + 1)Sα,β+1,γ−1 − γ Sα,β,γ + (γ+1)Sα−1,β,γ+1,

(C9)

Ṫα,β,γ = −Rα,β,γ + Sα,β,γ − O ′αTα,β,γ

+O ′(α + 1)Tα+1,β−1,γ − βTα,β,γ

Rα+1,β-1,γ Rα,β+1,γ-1 Rα-1,β,γ+1 Sα+1,β-1,γ Sα,β+1,γ-1 Sα-1,β,γ+1 Tα+1,β-1,γ Tα,β+1,γ-1 Tα-1,β,γ+1

Rα,β,γ Tα,β,γSα,β,γ

Rα-1,β+1,γ Rα,β-1,γ+1 Rα+1,β,γ-1 Sα-1,β+1,γ Sα,β-1,γ+1 Sα+1,β,γ-1 Tα-1,β+1,γ Tα,β-1,γ+1 Tα+1,β,γ-1

G’(α+1)Rα+1,β-1,γ (β+1)Rα,β+1,γ-1 (γ+1)Rα-1,β,γ+1 H’(α +1)Sα+1,β-1,γ (β+1)Sα,β+1,γ-1 (γ+1)Sα-1,β,γ+1 O’(α+1)Tα+1,β-1,γ (β+1)Tα,β+1,γ-1 (γ+1)Tα-1,β,γ+1

G’αRα,β,γ βRα,β,γ γ Rα,β,γ H’αSα,β,γ βSα,β,γ γSα,β,γ O’αTα,β,γ βTα,β,γ γTα,β,γ

(pβ+λ)Rα,β,γ Sα,β,γ

Tα,β,γ

FIG. 8. Schematic illustration of the transitions of the dynamics of the asynchronous update model. There is only one neuron updating its
state at each time step. The dashed arrows represent the change of neuronal states, while the solid arrows and the dotted arrows represent the
changes induced by the state transformation of the neuron’s neighbors. Expressions over the lines are the probabilities of transformations.
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response F0 on the ER random networks. Results from stochastic simulations are averaged over 10 independent realizations.

+ (β + 1)Tα,β+1,γ−1 − γ Tα,β,γ

+ (γ + 1)Tα−1,β,γ+1, (C10)

where

H ′ =
∑kmax

k

∑
i+j+l=k j (pj + λ)Ri,j,l∑kmax

k

∑
i+j+l=k iSi,j,l

, (C11)

O ′ =
∑kmax

k

∑
i+j+l=k l(pj + λ)Ri,j,l∑kmax

k

∑
i+j+l=k iTi,j,l

. (C12)

The dynamics of the asynchronous update model is determined
by Eqs. (C7)–(C10). With the initial conditions given by
Eq. (8), we are able to obtain the expected results conveniently.

2. The Gillespie Algorithm

We implement the stochastic simulations of the asyn-
chronous update model by using the Gillespie algo-
rithm [52,53] in continuous time. The algorithm is operated
in the following way. (i) Choose randomly a faction ρ0 of
neurons as excited seeds at time t = 0. (ii) Calculate each
neuron’s transition rate ai(t) at time t . The rate for the resting
neuron i becoming excited is ai(t) = p × kexc, where kexc is

the number of the excited neighbors of neuron i, and the rate
for each excited neuron going into the refractory period, or
each refractory neuron going into the resting state, is 1. Then
we can obtain the total transition rate a(t) = ∑

i ai(t). (iii)
Generate a random pair (u,v) with u,v ∈ [0,1) if

∑j−1
i=1

ai (t)
a(t) <

u <
∑j

i=1
ai (t)
a(t) . Then neuron j is chosen to change its state,

and time t ′ = t + �t is an exponentially distributed time step
with mean 1

a(t) , where �t = 1
a(t) ln( 1

v
). (iv) Repeat steps (ii)

and (iii) until the system reaches the stationary state.

3. Results

With the same approach used in the synchronous update
model, we make a cutoff of the transient process in the
asynchronous update model by letting the system evolve
200 ms and then counting the quantities in the next 100 ms.
The integrative time step adopted in the AMEA is 10−3 ms,
and it should be small enough that the size of the Xα,β,γ

(X ∈ {R,S,T }) classes shown in Eqs. (C7)–(C10) will not be
negative. We plot the results of the response curves F and the
corresponding dynamic range � on ER random networks with
K = 6, the minimum response F0 on ER random networks
with different K in Fig. 9. It is obvious that these results are
in good agreement with those from stochastic simulations.
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