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Effect of similarity between patterns in associative memory
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We study the stability of patterns in Hopfield networks in which a part of memorized patterns are similar. The
similarity between patterns impacts the stability of these patterns, but the stability of other independent patterns
is only changed slightly. We show that the stability of patterns is affected in different ways by similarity. For
networks storing a number of patterns, the similarity between patterns enhances the pattern stability. However,
the stability of patterns can be weakened by the similarity when networks store fewer patterns, and the relation
between the stability of patterns and similarity is nonmonotonic. We present a theoretical explanation of the
effect of similarity on stability using signal-to-noise-ratio analysis.
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I. INTRODUCTION

The Hopfield attractor network is a well-known model
of associative memory [1]. Based on the Hebbian rule, a
number of patterns can become attractors of the network.
Given an input pattern, the trained network converges to
the nearest attractor, i.e., the memorized pattern which most
closely resembles the input. Therefore, a Hopfield network can
function as a form of associative memory [1–3]. The Hopfield
model is paradigmatic in computational neuroscience research
[3–7]. The concept of attractor and flow in phase space in the
model are used in many studies on the dynamical principle of
memory.

The model has also been studied extensively by physicists
[8–19], because this model resembles the Ising model of spin
glasses. The Hopfield model was modified to include more
realistic properties. The effect of complex architectures on the
Hopfield model has been studied [8,20–30]. The model is also
extended to consider a dynamical principle of memory. For
example, the training method of the Hopfield network was
generalized by assigning weight to patterns [9]. The weight
of patterns can be interpreted as the frequency of pattern
occurrence at the input of the network. The network can learn
without the catastrophic destruction of the memory [9]. The
mechanism of transition between attractors was studied and
compared to the transitions between the representations of
space in rat’s brain [10,19]. Parallel pattern processing on
scale-free networks was studied [11].

In a traditional Hopfield model and various modified
models, memorized patterns are selected randomly and are
independent. The effect of similar patterns was studied rarely
[31]. However, it is ineluctable that realistic neural systems
need to memorize patterns which are similar. In experimental
studies of memory, it has been shown that similarity affects the
memory. Especially, similarity can affect memories in different
ways [32]. The short-term memory for word sequences is
impaired when acoustically similar words are used [33].
Similarity is detrimental for the ability to retain memory for
faces [32,34]. Conversely, similarity among items improves
visual working memory for colors [32,35]. In the Ising-like
model of memory, the only mechanism of memory is the
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attractor dynamics. Can the attractor dynamics support that
similarity affects the memory in different way?

In the present work, we modify the Hopfield model to store
similar patterns along with independent patterns. The effect of
similarity between memorized patterns on pattern stability is
studied. Using computer simulation and analytic treatment, it
will be shown that the effect differs in networks storing a lot
of or fewer patterns, and the mechanism will be presented.

II. MODEL

In the Hopfield model, node states si = ±1, i ∈
{1,2, . . . ,N} are binary. The dynamical equation of the system
is [1,36]

si(t + 1) = sgn

⎡
⎣ N∑

j=1

Jij sj (t)

⎤
⎦, (1)

where Jij is the entry of coupling matrix. Using the Hebbian
rule,

Jij = aij

n∑
α=1

sα
i sα

j , (2)

network memorizes n patterns which are denoted by {sα
i } (α =

1,2, . . . ,n). These patterns are attractors in the phase space of
the network [1]. {aij } is the adjacent matrix representing the
structure of the network. aij = 1 if node i and node j are
connected, otherwise aij = 0. The number of connections of
a node is called the connection degree. The connection degree
of the ith node is denoted by ki , i.e., ki = �N

j=1aij . Here nodes
are coupled by the Erdös-Rényi (ER) random network [37].
ER random networks are generated as follows. Starting with
N disconnected nodes, we connect each of possible edges with
a probability 0 < p < 1. The degree distribution is a Poisson
distribution,

P (k) = e−〈k〉 〈k〉k
k!

, (3)

where 〈k〉 denotes the average degree of nodes in a network.
In Hopfield model patterns {sα

i } are strings consisting
of ±1. These patterns are usually independent in order to
represent different things. Here we modify the model by setting
two patterns similar. The first memorized pattern {s1

i } is a
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FIG. 1. The overlap between stable states and patterns versus the
number of memorized patterns. (a) The first memorized pattern is
used as the initial state. (b) In the initial state of networks, 10% of
nodes are flipped from the first pattern. These results are averaged
over 500 realizations.

random string, while the second pattern {s2
i } depends on the

first one. We set s2
i = s1

i with probability η and s2
i = −s1

i

with probability 1 − η. When η = 1.0, these two patterns
are exactly the same. When η = 0.5, these two patterns are
independent of each other, the same as the traditional Hopfield
model.

Actually, due to the crosstalk among patterns, some errors
may occur in a network even if the initial state of networks
is a memorized pattern. To quantify the computational perfor-
mance of Hopfield attractor networks, a memorized pattern is
selected as the initial state of a network and the overlap φ is
computed when network state has converged into a stable state
[22–24]. The overlap is defined like this:

φα ≡ 1

N

N∑
i=1

xis
α
i , (4)

where xi = ±1 denotes the stable state of the ith node. When
stable state is the same as the pattern, the value of overlap
is 1. When they are independent, the value of overlap is 0.
Additionally, when the initial state is a spotted pattern, that is,
it has a portion of nodes that differ from a memorized pattern,
the overlap between stable state and the pattern can be used to
measure the recognition ability of Hopfield networks.

III. SIMULATION RESULTS

We first study the effect of repeated patterns on the
stability. Here the second memorized pattern is the same
as the first memorized pattern (η = 1.0). We take the first
memorized pattern {s1

i } as the initial state of a network. Overlap
between stable state and the first pattern is denoted by φ1. We
also compute overlap between stable state and independent
patterns. In simulations the third memorized pattern is used to
represent independent patterns, and the overlap is denoted by
φ3.

Figure 1(a) shows the value of overlap versus the number of
patterns for both η = 1.0 and η = 0.5. From these figures one
can see that the stability of the first pattern is better in networks
with η = 1.0. In a large range of the number of patterns,

FIG. 2. The overlap between stable states and patterns versus the
number of memorized patterns. (a) One of independent pattern is used
as the network’s initial state. (b) A spotted pattern which has 10% of
nodes flipped from an independent pattern is used as the network’s
initial state. These results are averaged over 500 realizations.

the similarity between patterns enhances pattern stability. As
the number of memorized patterns increases, the stability of
patterns decreases. The overlap φ1 between stable state and
the first pattern is larger than 0, while the overlap φ3 between
stable state and other independent patterns is close to zero.
The difference between φ1 and φ3 makes that the recognition
can be performed [25].

We also consider the processing of spotted patterns in
networks storing similar patterns. In our simulations, in
the initial state 10% of nodes differ from the first pattern.
Overlaps between stable state and the first pattern for both
η = 1.0 and η = 0.5 are shown in Fig. 1(b). One can see that
the value of overlap is increased by the similarity between
patterns. Therefore the similarity between patterns enhances
both pattern stability and recognition ability.

Next we study how similar patterns affect the stability of
other independent patterns. We use one independent pattern
as the initial state of Hopfield networks. For both η = 1.0 and
η = 0.5, overlaps between the stable state and the third pattern
are shown in Fig. 2(a). The stability of independent patterns is
slightly decreased in networks storing fewer patterns and is not
affected in networks storing more patterns. For recognition of
spotted independent patterns, the effect of similarity between
patterns is also negligibly small, as shown in Fig. 2(b).
Therefore, the major effect of similarity between patterns is to
change the stability of themselves.

In the following sections, we only consider pattern stability
measured by setting a memorized pattern as the initial state
of networks, since the stability can represent the recognition
performance. The relation between overlap φ and similarity
between patterns η is shown below.

IV. THEORETICAL RESULTS

Next we present an analytic treatment to interpret the effect
of similar patterns on the stability of patterns using signal-
to-noise-ratio analysis. The condition for a pattern {si} to be
stable can be expressed in the form of N inequalities, one for
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a node i,

si

N∑
j=1

Jij sj > 0. (5)

When we substitute the Hebbian rule, i.e., Eq. (2), into
inequality (5), we get

si

n∑
α=1

N∑
j=1

aij s
α
i sα

j sj > 0. (6)

When the stability of a memorized pattern, e.g., si = sα′
i , is

considered, we break the left-hand side of Eq. (6) into two
parts,

N∑
j=1

aij s
α′
i sα

i sα
j sα′

j |α=α′ +
n∑

α = 1
α �= α′

N∑
j=1

aij s
α′
i sα

i sα
j sα′

j > 0.

(7)

The first term on the left is called the signal term [23,38],
because it is equal to the connection degree ki of node i which
is positive and tends to keep node state unchanged. This term is
denoted by Ts . The second part is called the noise term [23,38]
because it includes (n − 1)ki terms equal to +1 or −1 and is
positive or negative randomly. This term is denoted by Tn. The
stability of a pattern can be estimated by the probability of
Ts + Tn > 0. Based on these properties of the Hopfield model,
we consider that two patterns are similar in the following
analysis.

A. Unstable probability of node state

1. Similar patterns

Here the first pattern {s1
i } is similar to the second pattern

{s2
i }. We take the first pattern as the initial state. The left-hand

side of Eq. (6) can be broken into signal terms and noise terms
like T1s + T2s + T2n + Tn > 0, where subscript 1 or 2 denotes
that the term is given by the first or second pattern.

Let us first derive signal terms given by the first and second
pattern. For the ith node, signal term given by the first pattern
is

T1s =
N∑

j=1

aij sis
1
i s

1
j sj . (8)

The value of T1s is equal to the degree of the ith node,
T1s = ki . The term given by the second pattern is∑N

j=1 aij sis
2
i s

2
j sj . The probability of sis

2
i = 1 is P (sis

2
i =

1) = η, and the probability of sis
2
i = −1 is P (sis

2
i = −1) =

1 − η. Therefore, the probability of one term in the sum equal
to −1 is

P
(
sis

2
i s

2
j sj = −1

) = P
(
sis

2
i = 1

)
P

(
sj s

2
j = −1

)
+P

(
sis

2
i = −1

)
P

(
sj s

2
j = 1

)
= 2η(1 − η). (9)

In order to keep the noise term that has zero average, we take
2η(1 − η)ki terms of sis

2
i s

2
j sj = −1 and 2η(1 − η)ki terms of

sis
2
i s

2
j sj = +1 into the noise term. So the signal term from the

second pattern is

T2s = [1 − 4η(1 − η)]ki (10)

and the total signal term is

Ts = T1s + T2s = [2 − 4η(1 − η)]ki. (11)

The noise term T2n is the sum of 4η(1 − η)ki terms
which are randomly equal to +1 or −1. So the term T2n

has a Gaussian distribution with standard deviation σ2n =√
4η(1 − η)ki . Besides similar patterns, all other independent

patterns give noise,

T ′
n =

n∑
α=3

N∑
j=1

aij sis
α
i sα

j sj . (12)

The value of T ′
n follows a Gaussian distribution with standard

deviation σn = √
(n − 2)ki . Therefore, the value of total noise

term Tn = T2n + T ′
n follows a Gaussian distribution of zero

mean and standard deviation σ = √
4η(1 − η)ki + (n − 2)ki ,

that is, the probability density is P (Tn) = 1√
2πσ

e−(Tn)2/2σ 2
.

When Tn < −Ts , the ith node’s state si evolves into −si .
Therefore, the probability that nodes of degree k are unstable
is

U1(k) = 1√
2πσ

∫ −[2−4η(1−η)]k

−∞
e−y2/2σ 2

dy

= 1

2

{
1 − erf

[
(2 − 4η + 4η2)k√

2σ

]}
, (13)

where erf(x) = (2/
√

π )
∫ x

0 e−y2
dy is the error function. The

index 1 denotes that the stability of the first pattern is
considered.

In Fig. 3(a), we illustrate the effect of similarity on the
unstable probability of similar patterns. We plot the integrand
in Eq. (13), i.e., the Gaussian distribution for networks of
η = 0.5 or η = 1.0. For η = 0.5, all patterns are independent.
The unstable probability U1(k) is the area under the function
curve in the region (−∞, − k). When η = 1.0, unstable
probability U1(k) is the area in the region of (−∞, − 2k).
In Fig. 3(a), it is notable that the change of signal term makes

FIG. 3. Distribution of the noise term of nodes whose degree is
k. (a) The stability of similar patterns is considered. (b) The stability
of independent patterns is considered. The unstable probability U1(k)
and U3(k) is illustrated by the area of the region under distribution
curves and on the left of the vertical lines in (a) in (b). Solid lines
and dashed lines represent the networks of η = 1.0 and η = 0.5,
respectively. The number of patterns is n = 10 and the node degree
is k = 10.

012309-3



SHENG-JUN WANG AND ZHOU YANG PHYSICAL REVIEW E 95, 012309 (2017)

the unstable probability of similar patterns (η = 1) smaller
than the unstable probability in networks storing independent
patterns (η = 0.5). In other words, the stability of similar
patterns becomes stronger.

2. Independent patterns

We are also interested in the effect of similarity between
patterns on the stability of other independent patterns. We take
one of the independent memorized patterns as network initial
state. Since all these patterns are equivalent, the third pattern
{s3

i } is used as an example of independent patterns. The signal
term given by the third pattern is

Ts =
N∑

j=1

aij sis
3
i s

3
j sj = ki, (14)

which is not changed by similarity existing in the network.
The noise term given by the first pattern is

T1n =
N∑

j=1

aij sis
1
i s

1
j sj , (15)

and the noise term given by the second pattern is

T2n =
N∑

j=1

aij sis
2
i s

2
j sj . (16)

These two terms are not independent. The probability that
both s1

i = s2
i and s1

j = s2
j occur is η2. The probability that

both s1
i = −s2

i and s1
j = −s2

j occur is (1 − η)2. So the
probability of sis

1
i s

1
j sj = sis

2
i s

2
j sj is η2 + (1 − η)2. The case

that sis
1
i s

1
j sj = −sis

2
i s

2
j sj has the probability 2η(1 − η), which

does not contribute to noise term. Therefore T1n + T2n consists
of [η2 + (1 − η)2]ki terms equal to +2 or −2. This noise given
by similar patterns has a Gaussian distribution with standard
deviation σ1n+2n =

√
4[η2 + (1 − η)2]ki .

Noise given by all other patterns is

T ′
n =

n∑
α=4

N∑
j=1

aij sis
α
i sα

j sj . (17)

The value of total noise term Tn = T1n + T2n + T ′
n follows a

Gaussian distribution with mean value μ = 0 and standard
deviation σ =

√
4[η2 + (1 − η)2]ki + (n − 3)ki , that is, the

probability density is P (Tn) = 1√
2πσ

e−(Tn)2/2σ 2
.

When Tn < −Ts , the ith node’s state si evolves into −si .
Therefore, the probability that nodes of degree k are unstable
is

U3(k) = 1√
2πσ

∫ −k

−∞
e−y2/2σ 2

dy

= 1

2

[
1 − erf

(
k√
2σ

)]
. (18)

The index 3 denotes that the stability of the third pattern is
considered.

In Fig. 3(b), we illustrate the unstable probability of
independent patterns. For different values of η, the unstable
probability U3(k) is the area under the curve in the region

(−∞, − k). The similarity between patterns only affects the
noise term. When η is larger, standard deviation σ is larger,
and unstable probability is larger, but the change is slight.

Based on aforementioned simulation and analysis, we can
know that the major effect of similarity between patterns is
to change the stability of similar patterns. In the following
analysis, we focus on the stability of only similar patterns.

B. Overlaps between stable state and pattern

The stability of memorized patterns can be predicted by
unstable probability of node state U (k). The overlap φ between
stable state and initial pattern can be written as [23]

φ = 1

N
(N − 2Nflip). (19)

For similar patterns, the number of flipped nodes of a network
is

N1flip =
∑

k

NP (k)U1(k)

=
∑

k

Ne−〈k〉 〈k〉k
k!

1

2

{
1 − erf

[
(2 − 4η + 4η2)k√

2σ

]}
.

(20)

Thus overlap φ1 is

φ1 = 1 −
∑

k

e−〈k〉 〈k〉k
k!

{
1 − erf

[
(2 − 4η + 4η2)k√

2σ

]}
, (21)

where σ = √
4η(1 − η)ki + (n − 2)ki . When parameters n

and 〈k〉 are given, the value of overlap in Eq. (21) can be
numerically computed for different η.

In this definition of overlap, the number of nodes which are
not stable in the stored pattern is used to estimate the overlap.
When these nodes flip their state, the stability of each node
also changes, and overlap can be predicated using the new
pattern again. The value of overlap of a network converge to
a fixed value until the stable state is achieved. Therefore, the
overlap defined here does not consider the cascade of the flips
and is not the same as the overlap obtained in simulations. But
the analysis can reflect the main mechanism of the change of
the stability of patterns.

C. Overlap versus similarity

Let us investigate how the overlap between stable state and
memorized pattern depends on the value of similarity η. In
computer simulations, one of similar memorized patterns is
used as network initial state. The average degree of networks
is 〈k〉 = 10. Different values of the number of patterns are used
in simulations. In Fig. 4 we plot the relation between overlap
and similarity η. One can see that as the value of η increases
the overlap increases when the number of patterns n is large
(n = 15 or 20). The simulation results (points) agree with the
theoretical results (lines).

However, in networks storing fewer patterns, we obtain
nonmonotonic relations between overlap and similarity η in
simulations. It is notable that similarity between memorized
patterns can weaken the stability of patterns when a network
has a lower storage load. Simulation results in networks of
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FIG. 4. Theoretical (lines) and simulation (points) results of
overlap versus the similarity η for different number of patterns n.
Data points are averaged over 500 realizations.

lower load do not agree with above theoretical results. We
give analytic treatment of this case below.

D. Networks with low storage load

In Sec. IV A, we used the same form of signal T2s from the
second pattern when we considered the stability of every node,
that is, signal terms are the mean value which is averaged over
all node with the same degree. In networks with lower storage
load, we discuss nodes with s1

i = s2
i (type I) and nodes with

s1
i = −s2

i (type II) separately.
For nodes with s1

i = s2
i (type I), the probability of

s1
i s

2
i s

2
j s

1
j = +1 is

P
(
s1
i s

2
i s

2
j s

1
j = +1

) = P
(
s2
j s

1
j = 1

) = η, (22)

and the probability of s1
i s

2
i s

2
j s

1
j = −1 is

P
(
s1
i s

2
i s

2
j s

1
j = −1

) = P
(
s2
j s

1
j = −1

) = 1 − η. (23)

We take (1 − η)ki terms of s1
i s

2
i s

2
j s

1
j = +1 and (1 − η)ki terms

of s1
i s

2
i s

2
j s

1
j = −1 into noise. Then the signal from the second

pattern consists of (η − (1 − η))ki terms equal to +1. Thus
signal term is

T +
2s = [η − (1 − η)]ki, (24)

where superscript “+” denotes type I nodes. This value of
T +

2s is positive. Therefore the signal term of type I nodes is
increased when patterns are similar. The sum of signal is

T +
s = T1s + T +

2s = 2ηki. (25)

For nodes with s1
i = −s2

i (type II), the probability of
s1
i s

2
i s

2
j s

1
j = +1 is

P
(
s1
i s

2
i s

2
j s

1
j = +1

) = P
(
s2
j s

1
j = −1

) = 1 − η, (26)

and the probability of s1
i s

2
i s

2
j s

1
j = −1 is

P
(
s1
i s

2
i s

2
j s

1
j = −1

) = P
(
s2
j s

1
j = +1

) = η. (27)

We take (1 − η)ki terms of s1
i s

2
i s

2
j s

1
j = +1 and (1 − η)ki terms

of s1
i s

2
i s

2
j s

1
j = −1 into noise. So the signal from the second

pattern consists of (η − (1 − η))ki terms equal to −1,

T −
2s = −[η − (1 − η)]ki, (28)

where superscript “−” denotes type II nodes. The value of T −
2s

is negative. Therefore the signal term of type II nodes becomes
small due to the similarity. The total signal is

T −
s = T1s + T −

2s = 2(1 − η)ki. (29)

The noise term given by the second pattern is denoted by
T2n. The term includes 2(1 − η)ki terms equal to +1 or −1 for
both type I and type II nodes. The total noise is

T few
n = T2n + T ′

n, (30)

where T ′
n = ∑n

α=3

∑N
j=1 aij sis

α
i sα

j sj . Here T few
n follows

the Gaussian distribution with standard deviation σ few =√
2(1 − η)ki + (n − 2)ki , and the probability density is

P (T few
n ) = 1√

2πσ few e−(T few
n )2/2(σ few)2

.
The unstable probability of type I nodes with degree k is

U+(k) = 1√
2πσ few

∫ −2ηk

−∞
e−y2/2(σ few)2

dy

= 1

2
[1 − erf(x1)], (31)

where x1 =
√

2ηk

σ few . If signal is given by only the first pattern,
then an unstable probability of nodes of degree k is

U1s(k) = 1√
2πσ few

∫ −k

−∞
e−y2/2(σ few)2

dy

= 1

2
[1 − erf(x2)], (32)

where x2 = k√
2σ few . So unstable probability of type I nodes

given by the second pattern is

�U+ = U+(k) − U1s(k)

= 1
2 [erf(x2) − erf(x1)]. (33)

The value of �U+ is negative and the stability of type I nodes is
enhanced. We illustrate the difference using the error function
in Fig. 5.

The unstable probability of type II nodes with degree k is

U−(k) = 1√
2πσ few

∫ −2(1−η)k

−∞
e−y2/2(σ few)2

dy

= 1

2
[1 − erf(x3)], (34)

where x3 =
√

2(1−η)k
σ few . The unstable probability of type II nodes

given by the second pattern is

�U− = U−(k) − U1s(k)

= 1

2
[erf(x2) − erf(x3)]. (35)

The value of �U− is positive and the stability of type II nodes
is weakened.

In Fig. 5(a), we can see that when the number of patterns is
small (n = 3), the error function is saturated at x2, that is, the
first pattern already makes the node state stable. The value of
|�U+| is small, while �U− is large. So type I nodes cannot
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FIG. 5. Panels (a) and (b) illustrate the error functions for
networks storing n = 3 and n = 10 patterns, respectively. The
similarity is η = 0.8. Panels (c) and (d) are the variation of unstable
probability contributed by the second pattern in networks storing
n = 3 and n = 10 patterns, respectively. The node degree is k = 10.

become more stable, and type II nodes become less stable.
Multiplying by the fraction of type I and II nodes, the value
of (1 − η)�U− dominates the effect of the second pattern, as
shown in Fig. 5(c). Therefore the stability of the whole pattern
can be decreased, and the stability can be nonmonotonic as η

increases. When the number of patterns is large (n = 10) as
shown in Fig. 5(b), error function is not saturated at x2, and
type I nodes can become more stable due to the similarity of
patterns. After weighted by the fraction of type I and II nodes,
the value of η�U+ is always larger, as shown in Fig. 5(d).
So the pattern stability in networks storing a lot of patterns is
always increased as the value of η increases.

The number of flipped nodes in type I node is

N+
flip =

∑
k

ηNP (k)U+(k)

= ηN

2

∑
k

e−〈k〉 〈k〉k
k!

[1 − erf(x1)]. (36)

The number of flipped node in type II node is

N−
flip =

∑
k

(1 − η)NP (k)U−(k)

= (1 − η)N

2

∑
k

e−〈k〉 〈k〉k
k!

[1 − erf(x3)]. (37)

Thus overlap φfew
1 is

φfew
1 = 1

N
(N − 2N+

flip − 2N−
flip). (38)

We use this analytic result to compute the relation between
overlap and similarity η, which is shown in Fig. 6. We
also show simulation results on networks with 〈k〉 = 10
or 〈k〉 = 50. The first pattern is used as network’s initial
state. In Fig. 6, theoretical results of overlap φfew

1 (lines)

FIG. 6. The overlap versus the similarity for networks storing
different number of patterns. The scatter plots are the simulation
results of overlap; the curves are the theoretical results of overlap.
Data points are averaged over 500 network realizations. The average
degree of networks is 〈k〉 = 10 and 50 in panels (a) and (b),
respectively.

are also nonmonotonic with similarity η. Theoretical results
qualitatively agree with simulation results (points).

Therefore the effect of similarity on type I and type II
nodes differs. Similarity strengthens type I nodes and weakens
type II nodes, separately. When networks have a low storage
load, the stability of type I nodes is saturated, and the type
II node induces that the similarity can weaken the stability
of memorized patterns. Because the definition of the overlap
does not include the cascade of errors in patterns, the analytic
results cannot quantitatively equal to the simulation results.
The analytic results provides the qualitative explanation of the
effect of similarity on the stability of patterns.

V. CONCLUSIONS

The effect of similarity of memorized patterns on patterns’
stability in Hopfield networks is studied. In this work two
patterns are similar and other patterns are independent. We
show that the stability of these two patterns is affected
by similarity between them, while independent patterns are
affected slightly. Similarity between patterns affects pattern
stability in different ways that depend on the storage load of
networks. Similarity between patterns enhances the stability
of similar patterns in networks of higher load, that is, networks
memorize more patterns. In the network of lower load, i.e., a
few of patterns are stored in networks, pattern stability can
be weakened by the similarity between patterns and stability
nonmonotonically changes with similarity. The mechanism
of these effects is explained by the signal-to-noise-ratio
analysis.

The properties of the Hopfield model arise from the nature
of the flow in phase space and do not strongly depend on
precise details of modeling. The attractor dynamics can be
used to understand more complex neural systems and has been
used in studies on biological realistic neural networks [4].
Therefore, our results in the modeling study may provide new
insight into the mechanism of associative memory in networks
processing patterns which are similar.
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