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Pair approximation for the q-voter model with independence on complex networks
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We investigate the q-voter model with stochastic noise arising from independence on complex networks.
Using the pair approximation, we provide a comprehensive, mathematical description of its behavior and derive
a formula for the critical point. The analytical results are validated by carrying out Monte Carlo experiments. The
pair approximation prediction exhibits substantial agreement with simulations, especially for networks with weak
clustering and large average degree. Nonetheless, for the average degree close to q, some discrepancies originate.
It is the first time we are aware of that the presented approach has been applied to the nonlinear voter dynamics
with noise. Up till now, the analytical results have been obtained only for a complete graph. We show that in
the limiting case the prediction of pair approximation coincides with the known solution on a fully connected
network.
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I. INTRODUCTION

Investigating diffusion processes is a subject of broad and
current interest [1]. Especially important is to comprehend
their dynamical behavior and understand which factors are
significant for the evolution of a system. This information
may turn out to be critical for epidemiologists in preventing
contagious diseases and establishing health policies. However,
applications of dynamical models reach far beyond that. In
computer science, they describe propagation of data packets
or malicious software and help to design routing protocols and
more robust networks [2]. Information search and retrieval are
relevant to the dynamics of spreading, as well. In engineering,
similar models are used and analyzed in order to plan
efficient power grids and regulate energy policies as well
as study conductivity and flow through porous materials
[3]. Sociologists in the same terms describe phenomena like
opinion dynamics, emergence of consensus, and diffusion of
innovations [4].

In recent years, especially considerable attention has been
drawn to the q-voter model [5–13], which was originally
proposed by Castellano et al. [14] and later altered by Nyczka
et al. [15]. Its modified version represents opinion dynamics
under two types of social response: conformity and inde-
pendence [16]. Although widely exploited in sociophysics,
it also finds application in computational economics as an
underlying mechanism of consumers decision making process,
sometimes with slight modifications. Recently, it was adopted
in the analysis of designing marketing strategies and pricing
innovative commodities [17,18]. Byrka et al. [19], on the
other hand, proposed similar agent-based model with q-voter
dynamics in order to explain a behavioral gap between people’s
intentions and practices.

Although researchers associate the q-voter model with
opinion dynamics, it is frequently allocated on simple topolo-
gies like complete graphs or regular lattices [8–11] despite the
fact that social networks are regarded as complex structures
[20]. And even if some studies consider irregularities and
randomness in modeling pairwise relations between agents,
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they focus primarily on simulation results, and only minority
proposes analytical approach, as well [21–23]. Thus, in this
paper, we carry out a mathematical analysis into the problem,
and we clearly establish a connection between q-voter dynam-
ics and complex networks. The system is studied by using pair
approximation, which was previously employed only to the
linear voter model [22] and has not been applied before to
the nonlinear one. Moreover, the paper refers to the q-voter
dynamics with stochastic noise, sociologically interpreted as
independence, for which analytical results are known only in
the case of a complete graph [15]. The obtained approximation
is validated by carrying out Monte Carlo simulations on
several structures like random regular (RR), Erdős-Rényi (ER),
Watts-Strogatz (WS), and scale-free (SF) networks, including
the Barabási-Albert (BA) model. We also show that in the
limiting case our prediction coincides with the solution for a
complete graph.

II. MODEL DESCRIPTION

We consider an arbitrary network of the size N . Each vertex
is associated with one autonomous agent characterized by a
binary, spin-like variable si = ±1. In every elementary time
step, we pick at random an agent. In the original voter dynamics
[24], the agent embraces the same opinion of its randomly
selected neighbor. This simple rule leads to a linear form
of the flipping probability f (x) = x, i.e., the probability that
considered spin flips surrounded by a fraction x of neighbors
in the opposite state. Nonlinearity in the q-voter model, on the
other hand, is introduced by engaging a group of q individuals,
which influences the current state of an agent. As a result,
the flipping probability does not have a linear form as in the
ordinary voter model [14]. The group is called q-panel, and its
potential members are determined by the network topology and
selected at random. With probability p, the chosen agent acts
independently and adopts the opposite opinion or preserves
the old one with equal chances. Otherwise, with probability
1 − p, it behaves like a conformist and embraces the viewpoint
of q-panel, but only if the group is unanimous, that is to
say, all q individuals have the same state. Drawing agents
occurs without repetition so that the above definition of the
model is identical to that in Ref. [15]. Nevertheless, now we
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extend underlying topologies to more complex structures than
complete graphs. In simulations, we ensure that all vertices
have at least q neighbors by selecting appropriate parameters
of investigated networks so that each agent could be exposed
to group influence.

One of the macroscopic quantities, which is easily traceable
and can characterize our system, is a concentration or a fraction
of up-spins:

c↑ = 1

2N

N∑
i=1

(1 + si). (1)

It can be interpreted as a probability of finding an agent with a
positive opinion, namely si = 1. Analogously, we can define
a concentration of down-spins:

c↓ = 1

2N

N∑
i=1

(1 − si). (2)

Since randomly choosing an up-spin and a down-spin are
complementary events, we have c↑ + c↓ = 1. For a notation
simplicity, c without index also refers to c↑. Finally, we are
also interested in interfaces between any two connected agents.
In statistical physics, a bond is said to be active if it links two
spins with opposite values [25]. Herein, we adopt the same
idea and define a concentration of active bonds as follows:

b = 1

2N〈k〉
N∑

i=1

N∑
j=1

(1 − sisj )1(i,j )∈E, (3)

where 〈k〉 is the average degree of the network, and 1(i,j )∈E is
an indicator function specified on a set of edges E.

Let us consider an agent placed on a vertex that has k

neighbors and i active bonds attached. The flipping probability
[14], that is to say, the probability that an agent changes its
opinion to the opposite one, is a function of active bonds
number i connected to agent’s node. Since we do not allow
repetition of chosen agents in a q-panel, this probability takes
the following form:

fk(i,q,p) = (1 − p)

∏q

j=1(i − j + 1)∏q

j=1(k − j + 1)
+ p

2
. (4)

As we mentioned before, the probability of choosing an
agent with a positive opinion from the system P (si = 1), or
for the simplicity P (↑), is equal to up-spins concentration,

P (↑) = c↑ = c. (5)

The same holds for choosing an agent with a negative opinion,

P (↓) = c↓ = 1 − c. (6)

The concentration of active bonds, on the other hand, possesses
the information about mutual relations between agents. If we
think of choosing an active bond as a consecutive selection of
two connected nodes, two events may occur. First, we select an
up-spin and then a down-spin (↓↑), or the other way around, at
the beginning, we encounter a down-spin and after an up-spin
(↑↓). As a consequence, one can write the following equation:

b = P (↑↓) + P (↓↑). (7)

Moreover, there is the same amount of connections between
↑↓ and ↓↑ because they share the same edge. This implies
that P (↑↓) = P (↓↑) and together with Eq. (7), we obtain

P (↑↓) = P (↓↑) = b

2
. (8)

Having the above result, calculating conditional probabilities
is straightforward. We use the following notation P (↓ | ↑)
to denote the probability of selecting a down-spin given we
have already picked an up-spin and so on for other spin
combinations:

P (↓ | ↑) = P (↓↑)

P (↑)
= b

2c
,

(9)

P (↑ | ↓) = P (↑↓)

P (↓)
= b

2(1 − c)
.

In order to simplify further notation we designate P (↓ | ↑) by
θ↑ and P (↑ | ↓) by θ↓.

III. PAIR APPROXIMATION

In an elementary time step, only a single agent may
change his opinion. This event affects concentration of active
bonds as well as concentration of up-spins. Let us consider
first the fraction of agents with a positive attitude. There
are three possible scenarios. The amount of up-spins may
increase by 1, decrease by 1, or remain at the same level.
So a flip corresponds to an elementary change in c by �c =
1/N . Following Ref. [15], we denote probabilities of these
changes by

γ + = P (c → c + �c),
(10)

γ − = P (c → c − �c).

Knowing the above transition probabilities, we are able to write
down the rate equation [26], which describes the dynamics of
up-spins concentration,

c(t + �t) = c(t) + �c(γ + − γ −). (11)

When we deal with large systems N � 1, in particular, when
N → ∞, the time interval tends to zero �t → 0. In such a
case Eq. (11) takes continuous form,

∂c

∂t
= γ + − γ −. (12)

Usually, the explicit formulas for γ + and γ − are derived based
on the mean-field approximation (MFA) as in Refs. [9,14,15].
This theory postulates agents homogeneity in order to reduce
the complexity of a problem. In more detail, it neglects all
fluctuations in a system so that a local concentration is equal to
the global, average one. This approach gives prefect results on
a complete graph where, indeed, our system is homogeneous
and isotropic. However, on more complicated structures, not
taking into account fluctuations gives overestimated results.

Herein, we adopt the improved method called the pair
approximation (PA) [22,27], which also considers dynamical
correlations between the nearest neighbors; therefore, it
delivers more precise local description of a system than the
ordinary mean-field approach. This additional information
is acquired from the active bonds concentration through
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conditional probabilities derived before. In PA, we assume
that states of a chosen agent’s neighbors are independent
of each other; thus, P (↑ | ↓) and P (↓ | ↑) remain the same
for all spins in the panel. This, however, may not be true
in general, especially when a network is highly clustered.
Furthermore, we postulate no degree correlations, i.e., we
neglect all dependencies between node degree and finding a
spin in a given position or a link in a given state. So no matter
what is the value of k for a picked vertex, we use the same c

and b, which characterize all nodes.
Let us derive transition probabilities relying on PA. The

reasoning for γ + is following. The concentration of up-spins
has a chance to increase only if an agent with negative attitude
is picked. This event happens with probability P (↓). Then an
agent is submitted to either conformity or independence. In
the former case, a unanimous q-panel of up-spins ↑ must be
gathered. Choosing each of them is P (↑ | ↓) ≡ θ↓ probable
since we already know the opinion of the considered agent. In
the latter case, a flip occurs with probability 1/2. Analogical
inference might be applied to γ −. As a result we obtain

γ + = (1 − c)

[
(1 − p)θq

↓ + p

2

]
,

(13)

γ − = c

[
(1 − p)θq

↑ + p

2

]
.

Nevertheless, we are still not able to solve Eq. (12) without
knowing the form of b, which is necessary for the conditional
probabilities θ↓ and θ↑.

For the concentration of active bonds, we can conduct
similar calculations and also find its rate equation, following
the reasoning of Ref. [22]. This time, a single flip refers to
an elementary change in b by �b dependent on agent’s node
degree and number of already active edges i attached to this
vertex. Locally, after a flip, links that were inactive become
active and oppositely. Remembering that the total amount of
edges in a network equals N〈k〉/2, we obtain

�b = 2

N〈k〉 (k − 2i), (14)

where i ranges from 0 to k. Let us explicitly write down the
overall likeliness of changing an agent’s opinion, which is just
a sum of transition probabilities γ + + γ − in the following
form:

P (c → c ± �c) =
∑

j∈{↑,↓}
P (c → c ± �c|j )P (j ), (15)

where P (c → c ± �c|j ) is the conditional probability of a
flip given that the chosen spin is in a state j ∈ {↑ , ↓}; see
Eq. (13). Furthermore, using our assumption that the node
degree is independent of an agent’s opinion and applying the
law of total probability, the following equation is obtained:

P (c → c ± �c|j ) =
∑

k

P (c → c ± �b|k,j )P (k). (16)

Among all k edges attached to the picked vertex, i of them
might be active where i ∈ {0,1,...,k}. The probability of
selecting one of them is P (−j |j ) ≡ θj , and since we treat these
events as independent, picking i of active bonds is binomially

distributed B(k,θj ). It results in

P (c → c ± �c|k,j ) =
k∑

i=0

P (c → c ± �c|k,j,i)

×
(

k

i

)
θ i
j (1 − θj )k−i , (17)

where under −j we understand the opposite state to j . Finally,
we obtain the formula in which the conditional probability
of a flip P (c → c ± �c|k,j,i) is used given the number of
active bonds, the chosen agent’s opinion, and the node degree.
But this, in fact, is the flipping probability fk(i,q,p) from
Eq. (4). Now, having this partition we know the impact of
elementary shifts in b for different events. Each flip that is
fk(i,q,p) probable causes a change in the overall active bonds
concentration �b by �b; thus, combining Eqs. (15)–(17)
we get

�b =
∑

j∈{↑,↓}
cj

∑
k

P (k)
k∑

i=0

(
k

i

)
θ i
j (1 − θj )k−i

× fk(i,q,p)�b. (18)

Connecting this result with Eq. (14) and the fact that �t =
1/N , the following expression is obtained:

�b

�t
= 2

〈k〉
∑

j∈{↑,↓}
cj

∑
k

P (k)
k∑

i=0

(
k

i

)
θ i
j (1 − θj )k−i

× fk(i,q,p)(k − 2i). (19)

Of course, once again we can take a limit N → ∞ and
attain the differential form. Altogether, we obtain a system of
two differential equations that can be solved simultaneously.
The first for up-spins and the second one for active bonds
concentration:

∂c

∂t
= γ + − γ −,

∂b

∂t
= 2

〈k〉
∑

j∈{↑,↓}
cj

×
∑

k

P (k)
k∑

i=0

(
k

i

)
θ i
j (1 − θj )k−ifk(i,q,p)(k − 2i).

(20)

The above result is general and can be applied to other
dynamical models from the same class. Then the forms of
transition and flipping probabilities will alter, but Eq. (20) will
remain unchanged.

Let us simplify the formula for the active bonds concentra-
tion in the above system of equations for the q-voter model.
First, notice that the flipping probability can be presented in
the equivalent form:

fk(i,q,p) = (1 − p)
i!(k − q)!

k!(i − q)!
+ p

2
. (21)
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Now we consider only the interior sum over active bonds i in
Eq. (20), and we decompose it into two summations:

k

k∑
i=0

(
k

i

)
θ i
j (1 − θj )k−ifk(i,q,p)

− 2
k∑

i=0

(
k

i

)
θ i
j (1 − θj )k−ifk(i,q,p)i. (22)

After substitution Eq. (21) for fk(i,q,p), we have four terms
to be calculated:

k(1 − p)
k∑

i=q

(
k

i

)
θ i
j (1 − θj )k−i i!(k − q)!

k!(i − q)!

+ k
p

2

k∑
i=0

(
k

i

)
θ i
j (1 − θj )k−i

− 2(1 − p)
k∑

i=q

(
k

i

)
θ i
j (1 − θj )k−i i!(k − q)!

k!(i − q)!
i

− p

k∑
i=0

(
k

i

)
θ i
j (1 − θj )k−i i. (23)

Remembering that the active bonds number is a random
variable ∼B(k,θj ), we see that the last sum is its first moment
kθj . The second summation, on the other hand, is equal to 1
since it is the total probability for all hypothetical outcomes
i. The first and the third term we have to compute explicitly;
note that here we start addition from q, not 0. That is because
for i < q the front term in Eq. (4) vanishes. The first term
calculations are as follows:

k∑
i=q

(
k

i

)
θ i
j (1 − θj )k−i i!(k − q)!

k!(i − q)!

=
k∑

i=q

(k − q)!

(k − i)!(i − q)!
θ i
j (1 − θj )k−i

=
k∑

i=q

(
k − q

i − q

)
θ i
j (1 − θj )k−i = θ

q

j . (24)

The third term calculations are as follows:
k∑

i=q

(
k

i

)
θ i
j (1 − θj )k−i i!(k − q)!

k!(i − q)!
i

=
k∑

i=q

(k − q)!

(k − i)!(i − q)!
θ i
j (1 − θj )k−i i

=
k∑

i=q

(
k − q

i − q

)
θ i
j (1 − θj )k−i i

= θ
q

j [(k − q)θj + q]. (25)

After combining together Eqs. (23)–(25) and substituting them
back into Eq. (20), we can perform the summation over k. In
the end, we attain a system of differential equations for the
q-voter model Eq. (26). Although we are not able to solve it

FIG. 1. Typical sample trajectories of the up-spins concentrations
and the corresponding active bonds concentrations when q � 5.
For the presented realizations q = 2, and the network topology
is a random 14-regular graph of the size N = 200. The level of
independence: (a) p = 0.2 and (b) p = 0.4. Spontaneous transitions
between stationary states are noticeable below the critical point
p < p∗ and only for c.

analytically, we can do it numerically, for example, using the
fourth-order Runge-Kutta scheme:

∂c

∂t
= (1 − p)(c↓θ

q

↓ − c↑θ
q

↑ ) + p

2
(c↓ − c↑),

∂b

∂t
= 2

〈k〉
∑

j∈{↑,↓}
cj

{
(1 − p)θq

j [〈k〉 − 2q − 2(〈k〉 − q)θj ]

+p
〈k〉
2

(1 − 2θj )

}
. (26)

IV. TIME EVOLUTION

Figure 1 presents sample trajectories of the up-spins and
the active bonds concentrations for different model parameters
with the initial condition c0 = 1. As seen, the system quickly
reaches a steady point and fluctuates around constant values
of c and b. However, under certain parameters, there are
more stationary states, and occasionally deviations are strong
enough to enforce spontaneous transitions between them.
Along with growing system size, these fluctuations fade,
and trajectories seem more like those described by Eq. (26).
Eventually, for infinitely large networks, all disturbances
disappear. That is why Figs. 2 and 3 show the time evolution
of q-voter model with N > 105 agents, this time also with
different initial conditions c0. Although simulated paths were
averaged over 100 realizations, all of them were very alike.
As seen, predicted trajectories almost exactly fit those from
Monte Carlo experiment. Similarly as for smaller structures,
the system reaches a steady point, but now because of its size,
it has faint chances of escaping to another steady state.

The qualitative behavior of a system on studied weakly
clustered complex networks is similar as on a complete graph
and depends on model parameters. We can distinguish two
final, stationary phases—an ordered one and a disordered one.
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FIG. 2. Average trajectories for a system of the size N = 2 × 105

on a random 14-regular graph. In both cases q = 2. The value of
independence: (a) p = 0.2 and (b) p = 0.35. Dots represent outcome
of the Monte Carlo simulation; solid lines refer to the numerical
solution of Eq. (26).

They can coexist and create stable and unstable states, it all
depends on values of q and p. For q � 5, there are two stable,
ordered phases below the critical level of independence p∗.
Above this point, we have only one stable, disordered phase.
It is clearly seen in Fig. 1. Additionally, when p < p∗ we can
also distinguish unstable, disordered state present in Fig. 2, it
corresponds to c = 1/2. However, eventually, because of finite
size and fluctuations, the system escapes from it.

When q � 6, the model behavior is more complicated;
see Fig. 3. Now, we have two characteristic levels of in-
dependence p1 and p2. Above p2, similar to the previous
case, we have only one stable, disordered phase, but below,
there are three stationary states. When p1 � p < p2, all of
them are stable and one of them is disordered. However, if
value of independence is smaller than p1, disordered phase
becomes unstable. Generally, in small systems we can observe
spontaneous transitions between stable states. Unstable ones
are noticeable only in larger structures for which fluctuations
are smaller. From all graphs presented herein, it is evident
that stationary values of the up-spins and the active bonds
concentrations are coupled. In the next section, we will derive
analytically this dependency.

V. STATIONARY STATES

In a stationary state, the up-spins as well as active bonds
concentration does not change in time, that is to say,

∂c

∂t
= 0 ∧ ∂b

∂t
= 0. (27)

Above conditions together with Eq. (26) allow us to reveal
a connection between c and b. From the second condition

FIG. 3. Average trajectories for a system placed on BA networks
of the size N = 5 × 105 with 〈k〉 = 40 and q = 8. The level of
independence: (a) p = 0.03, (b) p = 0.06, and (c) p = 0.1. Dots
represent outcome of the Monte Carlo simulation; solid lines refer to
the numerical solution of Eq. (26).

we get

0 =
∑

j∈{↑,↓}
cj (1 − p)θq

j [〈k〉 − 2q − 2(〈k〉 − q)θj ]

+
∑

j∈{↑,↓}
cjp

〈k〉
2

(1 − 2θj ). (28)

Now, from the first condition, let us derive the formula
for p:

p = c↓θ
q

↓ − c↑θ
q

↑
c↓θ

q

↓ − c↑θ
q

↑ − (c↓ − c↑)/2
, (29)

and insert it into Eq. (28), simultaneously multiplying both
sides by the denominator of Eq. (29),

0 =
∑

j∈{↑,↓}
cj (c↑ − c↓)θq

j

[ 〈k〉
2

− q − (〈k〉 − q)θj

]

+
∑

j∈{↑,↓}
cj (c↓θ

q

↓ − c↑θ
q

↑ )
〈k〉
2

(1 − 2θj ). (30)
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After preforming summation over j , we can get rid of
conditional probabilities θ↑ and θ↓ as well as the down-spins

concentration c↓ by making use of Eqs. (5), (6), and (9).
Finally, after several trivial transformations, we obtain

bst = 2
cst(1 − cst)

[
(1 − cst)q − c

q
st

] − q

〈k〉(1 − 2cst)
[
cst(1 − cst)q + (1 − cst)c

q
st

]

(1 − cst)
q − c

q
st − q

〈k〉 (1 − 2cst)
[
(1 − cst)

q + c
q
st

] . (31)

In Fig. 4, we present simulated paths in a phase space. The
starting point is (c,b) = (1,0) for all realizations. For small
networks, as we see, the system fluctuates around stationary
values of both concentrations. However, when the size rises,
deviations from Eq. (31) decrease. For N = 5 × 105, phase
trajectory lies almost exactly on the theoretical line, and the
system ends its evolution in a stationary point. Moreover, from
Eq. (29) we get p = 0 when q = 1, and Eq. (31) converges to
already derived formula obtained in [22] for the linear voter
model:

bst = 2cst(1 − cst)
〈k〉 − 2

〈k〉 − 1
. (32)

VI. PHASE TRANSITIONS

Stationary values of the concentrations depend not only
on the model parameters: a group size q and a level of
independence p but also on the average node degree of an
underlying network 〈k〉. In order to better comprehend their
impact on the final state of the system, we plot phase diagrams
that present these dependencies. Although we are not able to
obtain the direct formula for c(p,q,〈k〉), we can plot it easily

FIG. 4. The relation between the active bonds and the up-spins
concentrations for q = 2 and different networks: (a) ER model with
〈k〉 = 20 and p = 0.3, (b) and (c) random 14-regular graphs of
different sizes and p = 0.2. Lines refer to the theoretical result
Eq. (31), dots correspond to simulated trajectories starting from the
point (c,b) = (1,0). Crosses in the right panels stand for the average
value of b for a given c. Paths consist of 150 MCS for ER and 2 × 106

MCS for RR. Fluctuations diminish with the growing system size.

by inverting the figure of p(c,q,〈k〉), which we obtain from
Eqs. (29) and (31).

The left panel of Fig. 5 presents phase diagrams of contin-
uous phase transitions, which take place on a random regular
graph and Barabási-Albert network. The pair approximation
almost exactly predicts the lines of equilibrium and provides
better estimation than standard mean-field approach. Note that
the results for networks with the same average degree match
each other despite the fact that investigated structures have
very different arrangement of edges. In the former, all nodes
have the same number of neighbors. The latter belongs to
the wider class of so-called scale-free networks which are
characterized by a power law tail in the degree distribution,
namely P (k) ∼ k−λ. In the case of BA model λ = 3 but the
analysis can be expanded to other values of the exponent
by using alternative network simulation schemes [28,29].
Herein, we adopt the age ranking method [29] since it allows
the minimal node degree to be adjusted. The right panel of
Fig. 5 reveals agreement between analytical predictions and
simulations for scale-free networks with other tail exponents,
as well.

Long-range correlations and collective behavior over large
scales near criticality are inherent properties of continuous
phase transitions [30]. Using finite-size scaling (FSS) method
[31], presented in the top panel of Fig. 6, we can estimate
the critical level of independence p∗. Note that we use there
standard magnetization m instead of c since it is a proper order
parameter; mathematically, it is just rescaled concentration

FIG. 5. Phase diagrams for (a) random regular and Barabási-
Albert models and (b) scale-free networks with different exponents.
Note that upper and bottom diagrams correspond to different
structures, all of them consist of N = 105 vertices. The group of
influence comprises q = 2 agents. Lines indicate analytical prediction
of PA and MFA, solid ones correspond to stable states, and dashed
ones refer to unstable points. Markers represent outcomes of Monte
Carlo simulations: • 〈k〉 = 6, � 〈k〉 = 8, � 〈k〉 = 20.
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FIG. 6. Critical behavior of the model on scale-free networks with
average degree 〈k〉 = 10 and tail exponent λ = 2.43. The group of
influence comprises q = 2 agents. (a) A finite-size scaling obtained
for β/ν̄ = 0.157, 1/ν̄ = 0.314, and p∗ = 0.2855. Critical decays of
(b) the magnetization m and (c) the fluctuations χ ′ against the system
size N . Markers refer to Monte Carlo simulations averaged over 1000
network realizations. Dashed lines, with corresponding slopes β/ν̄ =
−0.157(6) and γ ′/ν̄ = 0.691(9), come from the linear regression.

m = 2c − 1. Moreover, we can calculate directly the critical
point from the obtained pair approximation and compare both
results.

At criticality, a system changes its state from ordered m �= 0
(c �= 1/2) to disordered one m = 0 (c = 1/2). Therefore, it
is enough to investigate the limiting behavior of p(c,q,〈k〉)
when the up-spins concentration approaches 1/2, so calculate
the following limit:

p∗ = lim
c→1/2

p(c,q,〈k〉). (33)

Using previously derived Eqs. (29) and (31) together with
L’Hôpital’s rule, we obtain

p∗ = q − 1

q − 1 + 2q−1
( 〈k〉−1

〈k〉−2

)q . (34)

For the system from Fig. 6, where q = 2 and 〈k〉 = 10, the
above formula gives p∗ ≈ 0.2832, whereas the FSS technique
leads to a bit higher value p∗ = 0.2855. Nevertheless, the
relative difference does not exceed 1%; therefore, PA provides
better approximation than standard MFA with the critical value
p∗ = 1/3, so with the relative error around 17%. In general,
the prediction of pair approximation is more accurate when
there is a bigger difference between number of individuals in
the panel and the average degree of the network. When q gets
closer to 〈k〉, some discrepancies arise. From Eq. (34), we also
see that the critical level of independence rises together with
the growing average degree of a network. For large 〈k〉, we

FIG. 7. The phase diagrams for (a) random regular graph of the
size N = 105 and (b) Erdős-Rényi network with N = 5 × 105 nodes
and 〈k〉 = 40. The group of influence consists of q = 6 agents for
RR and q = 8 for ER. Lines indicate analytical prediction of PA
and MFA, solid ones correspond to stable states, and dashed ones
refer to unstable points. Markers represent outcomes of Monte Carlo
simulations. For the left panel: • 〈k〉 = 14, � 〈k〉 = 20, � 〈k〉 = 40.
The hysteresis indicates a discontinuous phase transition and matches
analytical result.

can approximate its value by

p∗ 〈k〉→∞= q − 1

q − 1 + 2q−1
, (35)

which is the result for a complete graph obtained in Ref. [15]
by the standard MFA.

The bottom panels of Fig. 6 illustrate the critical behavior
of the model. We measure the magnetization and fluctuations
χ ′ = N (�m)2 as functions of the system size at the critical
point. Since m(p∗) ∼ N−β/ν̄ and χ ′(p∗) ∼ Nγ ′/ν̄ , we can
estimate the critical exponent ratios [31]. Indeed, for our
previously estimated p∗, we obtain power-law behaviors of the
above quantities in N that confirm the criticality. The q-voter
model acts differently on scale-free networks than Ising model,
which, for instance, exhibits an infinite-order phase transition
for 2 < λ � 3 [32]. Therefore, it manifests different universal

FIG. 8. Phase diagrams for WS networks of the size N = 2 × 105

and with the average degree (a) 〈k〉 = 8 and (b) 〈k〉 = 40. In the case
of a continuous phase transition q = 4 and for discontinuous one
q = 8. With growing rewriting probability pr , the average clustering
coefficient 〈C〉 diminishes, and simulation results approach PA.
Around pr ≈ 0.6 they match each other well. Lines indicate analytical
predictions. Markers represent results of Monte Carlo simulations:
• pr = 0.1, � pr = 0.2, � pr = 0.7.
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ARKADIUSZ JĘDRZEJEWSKI PHYSICAL REVIEW E 95, 012307 (2017)

FIG. 9. A schematic representation of the pair approximation for
the q-voter dynamics with stochastic noise. Darker lines correspond
to the higher average degree of a network. The last, black line is an
outcome of MFA. The model exhibits two types of phase transitions:
(a) continuous and (b) discontinuous.

critical behavior. The analysis can be extended to other
numbers of the panel members and SF networks.

The pair approximation also works properly in the case
of discontinuous phase transitions, see Fig. 7. This time
we take into consideration Erdős-Rényi model, too, as an
underlying framework for q-voter dynamics. In the right panel
of Fig. 7, we can see that the final state depends on the
initial conditions. This reliance is called hysteresis, and it
is one of the characteristic features of discontinuous phase
transitions. Note that now Eq. (34) corresponds to the point p1.
The other point demarcating the upper limit of a region with
metastability p2 can be derived numerically by identifying
maxima of p(c,q,〈k〉).

All examined structures above have in common very low
clustering coefficient 〈C〉. The impact of 〈C〉 on the model
behavior is especially evident for Watts-Strogatz networks,
where we can adjust its value by changing the rewriting
probability pr . Note that altering pr influences only the
average clustering coefficient, so the average degree remains
constant. Therefore, PA gives one solution for all rewriting
probabilities, which is at odds with simulations; see Fig. 8.
However, when pr is sufficiently large, approximately around
0.6, the clustering coefficient is low enough to neglect
dynamical correlations, and above this point all results agree
with PA and do not change any more.

In general, PA predicts that given model parameters, only
the average degree has an impact on the behavior of a system.
Along with increasing 〈k〉, phase diagram approaches the one
from MFA; see Fig. 9.

VII. CONCLUSIONS

We aimed to investigate the influence of complex net-
works on the q-voter dynamics with stochastic noise. We
put particular emphasis on the analytical approach. The
above model was extensively studied on several complex
structures, including Erdős-Rényi, Barabási-Albert, Watts-
Strogatz, and scale-free networks. We also considered its
behavior on random regular and complete graphs as a bench-
mark. Analytical calculations were supported with a series of
Monte Carlo simulations, which allowed us to validate our
results.

For the first time, we proposed the pair approximation
for the q-voter model with independence and confronted it
with the broadly used mean-field approach. In all examined
cases we demonstrated the superiority of the former method
over the other. Moreover, our study indicates that for poorly
clustered networks pair approximation may provide very
accurate description. We investigated the time evolution
of the model and derived an analytical formula for the
stationary points, and we analyzed the influence of the
system size on fluctuations. Two types of phase transitions
were identified, and we determined the critical level of
independence that separates ordered and disordered states
analytically as well as empirically by using finite-size scaling
technique.

On the basis of our analytical and experimental results, we
revealed and highlighted the crucial role of the average node
degree in predicting the model behavior. Along with increasing
value of 〈k〉, the phase diagram shifts toward higher values
of independence. Consequently, it results in higher critical
point. Moreover, for large average degrees we showed that
solutions established from PA converge to those from MFA.
In the further studies, in order to improve the prediction
accuracy for networks with the average degree close to
q, one could consider applying the heterogeneous pair
approximation [33], which also takes into account degree
correlations.
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