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Conducting-insulating transition in adiabatic memristive networks
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The development of neuromorphic systems based on memristive elements—resistors with memory—requires
a fundamental understanding of their collective dynamics when organized in networks. Here, we study an
experimentally inspired model of two-dimensional disordered memristive networks subject to a slowly ramped
voltage and show that they undergo a discontinuous transition in the conductivity for sufficiently high values of
memory, as quantified by the memristive ON-OFF ratio. We investigate the consequences of this transition for
the memristive current-voltage characteristics both through simulation and theory, and demonstrate the role of
current-voltage duality in relating forward and reverse switching processes. Our work sheds considerable light
on the statistical properties of memristive networks that are presently studied both for unconventional computing
and as models of neural networks.
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I. INTRODUCTION

Although systems that display resistive switching—also
referred to as memristive elements (resistors with memory)—
have been actively studied since the 1960s, they have recently
received renewed interest in view of their possible use in
computation, both as logic and memory components [1]. Of
particular note is the tendency of some to display a history-
dependent decay constant, allowing a transition between a
volatile and nonvolatile regime of memory [2,3]. The resulting
dynamics bear a close resemblance to the short-term and long-
term potentiation observed in biological synapses, which are
thought to be of central importance to learning and plasticity
in the brain [4]. This resemblance has inspired the realization
of experimental systems that seek to combine the memory
features of biological synapses with the structural complexity
of neural tissue [5,6]. In fact, research is being performed to
assess the advantage of using memristive elements in non-von
Neumann architectures and is already showing that their
networks dynamically organize into the solutions of complex
computational problems, thereby performing the computation
directly in the memory and avoiding the separation between
logic and memory units [7–10].

All of these studies, however, still lack a fundamental
understanding of the role of time nonlocality in the dynamics
of memristive networks and their statistical properties. For
instance, high-density (∼109 elements/cm2) disordered net-
works of memristive Ag/Ag2S/Ag atomic switches have been
fabricated showing collective switching behavior between a
low-resistance (Gon) and high-resistance (Goff) state, and
possible critical states potentially useful in neuromorphic
computation [4,11,12]. Some theoretical work has attempted
to reproduce several features observed in the experiments by
performing simulations in relatively small networks but an
understanding of the dynamics of such systems is far from
clear [13,14]. Theoretical investigations of one-dimensional
memristive networks have shown complex temporal dynamics
and scale-invariant properties, but have not clarified whether
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further collective behavior might arise in higher dimensions
[15].

To fill this gap, we study the statistical properties of
two-dimensional disordered memristive networks subject to
a slowly ramped voltage. In this adiabatic regime, where the
applied voltage or current varies much more slowly than
the memristance change of individual elements, there is a
strong analogy between the behavior of the network and an
equilibrium thermal system. Our aim is to understand the
dynamics of both the disordered devices being assembled
in experiment, and the ordered (but strongly heterogeneous)
networks being proposed as novel computational architectures.
To this end, we formulate a general model for networks in
this limit, which is similar to those employed to describe
metal-insulator transitions and electrical failure. We thus
posit that the transitions identified in these fields should also
occur in memristive networks and summarize work done to
describe the dynamics in these fields. Through simulations we
obtain current-voltage (I -V ) curves for various values of the
Gon/Goff ratio and discuss the features implied by the adiabatic
limit. The I -V curves found show a duality between forward
and reverse switching processes that has also been observed
in several experimental systems [16,17] and clarifies the role
of boundary conditions in the network. These features are
captured by a mean-field theory and cluster approximation,
which clarify the internal dynamics and account for the
features of the I -V curves. These results shed considerable
light on the statistical and collective properties of networks
with memristive elements that are being currently explored for
neuromorphic applications.

II. MODEL

As inspiration and as a test bed for disordered memris-
tive networks we consider the Ag/Ag2S/Ag gapless atomic
switches experimentally fabricated in Refs. [5,6,18]. The
model we consider, though, is quite general and can be applied
to a variety of other materials and systems [1].

A bipolar memristor subject to an external bias will
transition to a conductive state (with conductance Gon) in one
direction and to an insulating state (with conductance Goff)
when biased in the other. This change is generally induced by
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the rearrangement of ions in the applied electric field, as in
the case of silver sulfide between two silver electrodes, where
drifting ions form a filament structure eventually bridging the
insulator [19].

These switching dynamics are typically subject to a
threshold in the applied bias, below which the conductance
will not vary, or will vary only slowly. When considering
the dynamics of a single memristor, such thresholds may be
described interchangeably in the applied voltage or current.
However, when embedded in a network, the two can lead to
quite different dynamics. When the conductivity of an element
within a network is increased, its current increases while its
voltage decreases, and vice versa when its conductivity is
decreased. For the electric field driven migration of vacancies
or ions [20], we expect that in order to simulate the behavior
of actual devices, all elements must be subject to a current
rather than voltage threshold. The role of temperature has been
emphasized by several studies, especially those focusing on the
dissolution of the filament. Such an effect may be taken into
account by the explicit inclusion of a temperature in the model,
or by taking a threshold in the power dissipated in an element
Pt = GI 2

t , which gives a current threshold that changes with

the device conductance It =
√

Pt

G
. In the discretely switching

model we consider here, the two choices are identical, but
when the full spectrum of memristances is allowed for, as in
nonadiabatic regimes, such effects may be important.

The presence of a current threshold has immediate conse-
quences on the dynamics of a network. As the threshold of a
device in the insulating state is crossed and its conductivity
increases, more current is diverted through the element from
neighboring bonds making the transition from Goff to Gon

unstable. On the timescale of the slowly varying applied volt-
age, elements of the network will appear to switch discretely
between the insulating and conducting state. Therefore, we can
effectively model the elements as switching discretely from a
conductance Goff to a conductance Gon, when a threshold
current, It > 0, is crossed

G(I ) = Goff + (Gon − Goff)θ (I − It ) , (1)

where I is the current through the device, and θ (·) is the
Heaviside function of the argument.

Similar considerations would lead us to conclude that the
reverse direction is stable, as passing an element’s threshold
leads to a decrease in the conductance and a corresponding
decrease in the current, bringing it back below the threshold.
The devices would thus explore the full continuum of memris-
tance between Gon and Goff leading to a gradual RESET-like
behavior on the network level. However, we find evidence
both in experimental data and simulations that this effect does
not occur or is not significant in describing the behavior of
the network for a wide range of parameters. For instance, in
the atomic switch networks studied by Stieg et al. [12] sharp
fluctuations in the network conductivity are observed in both
directions, thought to be due to the switching of individual
elements (see Fig. 3(c) in Ref. [12]). Such sharp behavior may
be accounted for by assuming a nonlinear dependence of the
conductance on the filament length due to, for example, the
transition from tunneling to ballistic conductance.

Disorder at the network level can similarly render the
continuum of memristive values irrelevant to the network
dynamics. If the current diverted from a switching element
does not cross another’s threshold, the increasing current
from the boundaries will continue to transition that element
to Goff . As the conductance and external voltage range in
which this occurs is very small relative to the network scale,
this is the same as if that element had switched discretely
from Gon to Goff . Simulations of networks in which the
full range of memristance was accessible have not shown
a significant change in dynamics, and therefore we take the
discretely switching model to be appropriate for a wide range
of networks. We thus make a similar assumption for the
reverse direction, obtaining the equations for an element by
exchanging Gon with Goff , and I with It in Eq. (1) for a
different threshold It < 0.

Memristive elements are also generally polar. The
Ag/Ag2S/Ag atomic switches formed in atomic switch net-
works [5,6] are gapless-type devices (see Hasegawa et al. [21]
for a review of types of atomic switches and their switching
processes). Their symmetric metallic configuration (typically
gapless switches have two differing metallic electrodes, e.g.,
Ag/Ag2S/Pt) suggests that at the point of formation within
the network, no preferred direction within the switch has been
selected. Polarity is instead instilled through a formation step
in which a bias is applied to the network causing filament
structures to form in the switches throughout. After a joule-
heating-assisted dissolution of the thinnest part of the filament,
the junctions display bipolar resistive switching. The polarity
of the internal switches is thus determined by the direction of
current propagation from the boundaries. That this must be true
in the experimental systems is evident from the fact that the
network undergoes resistive switching as a whole. Without a
majority of switching polarities coinciding with the direction
of currents from the boundaries, the network would switch
between identical states with half the switches in the Goff state
and half in Gon and not display the pinched hysteresis observed
in experiment. We thus assign the polarity of elements in the
network to coincide with the direction of currents flowing from
the boundaries.

We now turn to a network of these elements. We consider
an architecture as depicted in the insets of Fig. 1, where the
upper and lower boundaries of the network are held to some
constant voltage or total current. The diamond lattice is chosen
such that all elements participate equally in conduction and
networks are periodic in the direction transverse to the current
flow to mitigate finite-size effects.

Including disorder is most directly done through random
pruning of the lattice, however, the networks produced are
subject to strong finite-size effects, requiring the simulation of
many instances of large networks to obtain regular results. The
random pruning of the lattice imposes a current distribution
over the elements that is simply scaled by the external
boundary conditions. This distribution determines the order in
which elements cross their thresholds and is thus equivalent, at
a mean-field level, to assuming a distribution in the thresholds
of a fully occupied network. It is also noted in Ref. [22] that
this is obtained upon coarse graining a randomly pruned lattice,
and thus may be a better approximation to the thermodynamic
limit than simulations on structurally disordered lattices. The
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FIG. 1. The network conductance for several values of Gon are plotted against the applied voltage for both (a) Goff → Gon and
(b) Gon → Goff processes. The network conductance G has been scaled to vary from 0 to 1 and the range of the applied voltage shortened to
focus on the point of transition. The insets show a typical network biased by a voltage V+ just following the transition where the formation of a
(a) conducting backbone and (b) crack may be observed.

use of a disorder distribution also affords us more direct control
over the relationship between the disorder and the dynamics,
simplifying the search over a large parameter space of possible
structural disorders.

It is worth noting that this type of model has been arrived at
in several contexts involving the interplay between conduction
and disorder in two-dimensional (2D) systems. For instance, a
similar model was first applied to the study of the random fuse
model for electrical failure (Gon → Goff = 0) [22]. A uniform
distribution of thresholds on the interval [1 − w,1 + w] was
considered and behavior examined as a function of network
size L and w. Brittle and ductile regimes of behavior were
identified, both of which culminated in the formation of a
lateral crack severing the network. In the brittle, or narrow
disorder regime, this occurred as an avalanche upon the first
bond failing, while for larger w there was a regime of diffuse
failure, causing the networks to progressively deform before
the formation of a crack. In the thermodynamic limit, only
the brittle regime survived, except for the case w → 1 when
the disorder distribution extended to 0. More recently, in metal-
insulator transitions (MITs) [23] the Goff → Gon transition
was examined for its Gon/Goff dependence, finding that a
transition occurs in which the network conductivity exhibits a
discontinuous jump, corresponding to the formation of a bolt.
Similarly, a conducting backbone has been found to form along
the direction of current flow in the case of MIT and dielectric
breakdown [23] for sufficiently large values of the Gon/Goff

ratio.
Interest in the dynamics of individual resistive switching

(RS) devices has also led to new models such as the random
circuit breaker (RCB) model [24] for unipolar devices, capable
of reproducing the conductivity dynamics of a unipolar device
in the SET and RESET operations. In the RCB model, elements
of a lattice transition to a conductive state when a voltage
threshold is crossed, and back to an insulating state when
another threshold is crossed in the same direction.

In view of these previous results, we thus expect the
transitions observed in MITs and electrical failure studies
to occur in memristive networks in the adiabatic limit. The
Goff → Gon transition will correspond to the formation of
a conductive backbone or bolt through the network along
the direction of current flow and the Gon → Goff transition

will correspond to the formation of a crack transverse to
the direction of current flow severing the network. In both
directions we anticipate a trivial brittle, or narrow disorder
regime in which the transition occurs upon the first element
switching and all elements transition within a narrow range
of the applied voltage, as would be the case if all elements
had the same threshold. For broad disorder we expect a ductile
regime in which there will be diffuse switching leading up
to the transition and activity over a broad range of applied
voltages. While the ductile regime does not survive in the
thermodynamic limit for electrical failure, the modest size
of memristive networks experimentally realized [1] suggests
the ductile regime is still significant in their dynamics. Of
particular interest to us is the influence of such transitions on
the I -V curves of the network. From the perspective of the
experimenter such effects may be desirable, such as providing
strong sensitivity across a small voltage range or signaling
the solution of a computational problem, or undesirable,
by reducing the number of internal states accessible to the
network.

Investigations of the behavior of memristive networks have
been limited to date. In Ref. [13], the full time integration of a
memristive network was undertaken for networks of moderate
size. Elements did not include a threshold in their dynamics
and the networks were investigated for their dependence on
the fraction of memristive to ohmic conductors p, and their
ac response. It was found that for poor ohmic conductors
(G = Goff) the networks exhibited pinched hysteresis curves
only when p > pc = 0.5, the percolation threshold. For good
ohmic conductors (G = Gon), a strongly memristive phase was
observed for p > pc in which the networks switched abruptly,
and for p < pc a weakly memristive phase was observed,
similar to that for poor ohmic conductors and p > pc.

Modeling performed by Ref. [14] of the atomic switch
networks simulated small networks including volatility and
noise in their memristor model, and showed an opening of the
I -V curves as the noise term was reduced and 1/f γ (0 � γ �
2) scaling of the power spectral density for the small networks
simulated (L ≈ 10). While such studies reproduce phenomena
seen in experiment, little work has been done to analyze the
behavior of these models and understand how memristors
in networks interact. Here, we instead focus on building
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an understanding of memristive networks in the adiabatic
regime, where analogies with thermodynamic systems are
strongest. By moderating the strength of interactions through
the Gon/Goff ratio, we examine the transition that occurs in
each direction and its effects on the I -V curves of the network.
The features of this transition and the resulting hysteresis
curves are captured by a cluster approximation that well
approximates the behavior of the network about the point of
transition.

III. SIMULATIONS

Simulations were carried out for a diamond lattice at a
variety of sizes, Gon/Goff ratios, and threshold distributions
p(t). The network dimensions were chosen such that the
conductivity of the network varied from Goff to Gon. Each
element was assigned a current threshold It from Uniform(0,1)
in each direction, beyond which they transition from Goff →
Gon, or vice versa. Network dimensions were chosen so
that the total network conductance varied between Goff and
Gon (Nx = Ny = 128). The initial voltage is set to the value
required to cross the lowest threshold in the network. Once that
element has switched, voltages and currents are recalculated
throughout the network with the external voltage held fixed,
and all other elements whose currents exceed their thresholds
are switched. This is repeated until no currents exceed the
thresholds of their elements, at which point the voltage is raised

until another threshold is crossed and this process repeated.
The forward and reverse protocols are identical aside from the
initial state and switching direction of the elements.

In Fig. 1 we show the network conductances as a function
of applied voltage for various values of Gon (setting Goff = 1),
in both forward Goff → Gon and backward Gon → Goff tran-
sitions, and for threshold distribution p(t) = Uniform(0,1).
The displayed networks have a linear size of Nx/y = 128
memristors, which we found large enough to achieve regular
results over multiple realizations of the disorder. Network
conductances have been scaled to lie on the interval [0,1].
We note that for small values of Gon in both directions,
the conductance is a smooth function of the voltage. As
Gon is increased, a discontinuity forms in the slope which
sharpens, appearing almost continuous until a discontinuous
jump appears for large Gon analogous to a first-order phase
transition. Similar behavior was seen for a variety of other
distributions of sufficient breadth (not shown) with the point
of transition, however, being distribution dependent. In the
insulating transition, we have scaled the voltage by Gon such
that the current densities of all networks are initially equal,
bringing the transitions to the same scale in both polarities.
While the dependence on Gon/Goff in the forward direction
has been shown in MITs [23], we are not aware of a similar
demonstration in the reverse direction, possibly as most work
has focused on electrical breakdown in fuse networks in which
Goff = 0.

FIG. 2. Simulated hysteresis curves of memristive networks for Gon = (a) 4, (b) 100, and (c) 1000. The discrete jump in conductance
becomes evident in the I -V curves for large values of Gon The asymmetry of the curves is the result of element thresholds depending on
the current, and thus the transition occurring at a factor of 1/Gon lower voltage than the corresponding forward transition. The insets show
analytically reached I -V curves, which demonstrate similar asymmetry and the emergence of a jump in the current. The reverse branch has
been rescaled and plotted in the second row for Gon = (d) 4, (e) 100, and (f) 1000. For large Gon, the transition appears as a noisy area near
to the y axis. Here the jumps in conductivity at a fixed voltage give rise to sharp decreases in the current that are opposed by the subsequent
increase in voltage.
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The insets in Fig. 1 each show the configuration of a network
just following a transition. In the forward transition [Fig. 1(a)],
this corresponds to the emergence of a conducting backbone
spanning the network. Similarly, in the reverse transition
[Fig. 1(b)] a crack forms separating the network transverse
to the direction of current flow. A video showing the switching
of a small network from Goff → Gon has been included in
the Supplemental Material [25] in which the emergence of a
conducting backbone can be clearly observed.

The corresponding I -V curves are shown in Fig. 2. While
the voltage scale depends only on the geometry of the network,
the current scale depends on Gon/Goff and has been rescaled
so that the axes coincide. The strong asymmetry of the curves
is due to the use of the same threshold distribution for Gon →
Goff and Goff → Gon processes. In the Gon state, an equivalent
current will be reached for a voltage that is a factor 1/Gon

lower. As there is not an obvious physical choice for how to
connect the distributions for forward and reverse switching,
we have displayed the negative voltage sections of the curves
separately, on their own current scales. The discrete jump in
the conductance becomes evident for sufficiently large values
of Gon, but is less apparent than in the conductivity plots due
to the long tail following the transition. Past the transition,
voltage steps between thresholds become longer as current
is diverted into the conducting backbone. The transition thus
has an inhibitory effect on the remaining bonds, opening the
hysteresis curves and spreading the memristive states over
a wider voltage range. Thus, while the transition reduces the

number of accessible states, it increases the resolution between
those remaining.

In the second row of Fig. 2, the scaled reverse branches
of the I -V curves are similar to the positive branch, but with
the roles of the current and voltage exchanged. This suggests
the following mapping of the reverse branch to the forward
branch,

V → INy

NxGon
, I → V GoffNx

Ny

, (2)

where Nx and Ny are the lattice dimensions. In the region about
the transition, however, the jump of the forward branch appears
as a fluctuating region in the reverse branch. Here, avalanches
of transitioning elements sharply reduce the current, which
is then opposed by a subsequent increase of the externally
applied voltage. If we instead run the reverse branch with
current-controlled boundary conditions, this fluctuating region
becomes a discrete jump as seen in the first row of Fig. 3. In
the second row, upon the mapping (2), the curves align nearly
exactly. This correspondence between the two processes is
just the familiar I -V duality of electrical circuit theory [26]:
the diamond lattice is dual to itself and taking G → 1

G
in all

links takes a voltage-controlled insulator-to-metal transition to
a current-controlled electrical failure process.

In the context of memristor networks, this indicates that
the voltage-controlled I -V curves are dual to the current-
controlled I -V curves upon exchanging the roles of voltage
and current and the direction of the switching process. Running

FIG. 3. The top row shows hysteresis curves switching from Gon = (a) 4, (b) 100, and (c) 1000 to Goff = 1 in a current controlled network.
For a current-controlled network switching from Gon → Goff the transition gives a discrete jump, as in the voltage-controlled Goff → Gon case.
After the mapping in Eq. (2), the reverse branch of the hysteresis curves (dashed) have been plotted over the forward branch for Gon = (d)
4, (e) 100, and (f) 1000 demonstrating the duality between the two processes. The insets show analytical I -V curves resulting from a cluster
approximation, showing identical behavior to the voltage-controlled forward switching case.
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the model in the current controlled setting thus gives nearly
identical results, but exchanges the fluctuating region in the
reverse direction for the discrete jump in the forward direction.

It is important to note that this connection between the
forward and reversed hysteresis loops has been observed
experimentally in individual memristive systems [16,17] as
well. While the applicability of I -V duality to a passive
linear network is expected, that it would hold for the dynamic
nonlinear elements considered here was not obvious. For
our model, this occurs because in the adiabatic limit, when
elements can be considered to switch discretely, there is no
difference between a voltage and current threshold, and thus
nothing to break the duality in the dynamics. Microscopically,
this leads the structures that accompany the transitions (a
backbone forming along the direction of current propagation,
and a crack forming transverse to the current flow) to be dual
circuits.

In the remainder of the paper, we analytically investigate
our model with the aim of understanding the major features of
the simulated I -V curves, namely the existence of a transition
for sufficiently large Gon/Goff , and the long tail following the
transition leading to the I -V curves displayed in the insets
of Figs. 2 and 3. The duality between the forward and reverse
switching processes will carry through to relate models in each
direction.

IV. MEAN-FIELD THEORY

As a first step towards an analysis of the model, we develop
its mean-field theory. The method followed is similar to that of
Zapperi et al. [27] employed to analyze random fuse networks.
In this form, the central physical quantity considered is the
power dissipated by the network,

P =
∑

j

gj v
2
j =

∑
j

i2
j

gj

, (3)

where gj is the conductance of an element in the network and
vj (ij ) is its voltage drop (current). We require that the average
power dissipated match the power dissipated by the network
GnetV

2 = I 2

Gnet
and assume that all elements experience a

mean-field voltage VMF or current IMF leading to the equations,

GnetV
2

I 2

Gnet

⎫⎪⎬
⎪⎭ =

{
N〈g〉V 2

MF

N
〈

1
g

〉
I 2

MF.
(4)

The choice of the left-hand side is determined by the boundary
conditions applied to the network but the choice of the right-
hand side is not constrained. An interesting form is the voltage-
voltage choice, leading to the mean-field voltage

VMF =
√

Gnet

〈g〉
V√
N

, (5)

which unlike other choices displays a transition in both direc-
tions. To make progress we require the network conductance
Gnet. Below the transition, where switching of elements is
primarily driven by the threshold distribution and not by the
influence of nearby switched elements, the conductivity of the
network may be well approximated by an effective medium

FIG. 4. h(f ) =
√

G(f )
〈g〉(f ) is plotted for several values of Gon. In the

inset, 〈g〉(f ) and G(f ) are plotted for Gon = 100. Note that when
the average conductance increases more quickly than the network
conductance as for small f , h(f ) is decreasing and vice versa for
large f .

theory, giving Gnet ≈ Geff(f ) as a function only of the fraction
of the devices in the ON state.

The functions 〈g〉(f ), Geff(f ), and h(f ) =
√

Geff (f )
〈g〉(f ) are

plotted in Fig. 4. The function h(f ) relates the mean-
field voltage felt by an individual element to the applied
voltage at the boundaries and has the form of the network
conductance divided by the average conductance of a single
element. We can understand its nonmonotonic as arising
from competition between switching elements increasing 〈g〉
and concentrating current away from other elements, and
the increasing conductance of the network Geff(f ) pulling
more current in at the boundaries. For small f , the average
conductance of an element is increasing faster than the network
conductivity, indicating that current is concentrated away from
other elements more quickly than it increases at the boundaries,
and the mean-field voltage decreases. For larger f , the network
conductance begins to increase more quickly than the average
conductance, pulling in current faster than switching elements
can concentrate it, and the mean-field voltage increases. The
increasing regime at large f allows for a phase transition to
occur from Goff → Gon, and the decreasing portion at low f

allows for the possibility of the reverse transition when the
voltage is reversed.

To determine whether a transition occurs for a particular
disorder distribution, we derive a self-consistency equation,
ensemble-averaging over the number of elements that have
switched for a given mean-field voltage. For the transition
from Goff to Gon, the fraction that has switched will approach
the average fraction of elements with thresholds below the
mean-field voltage,

f =
∫ h(f )v

0
p(t)dt. (6)

Because the applied field enters multiplicatively, the dynamics
given by the mean-field theory depend only on the conductance
ratio Gon/Goff and is independent of the length scale of the
disorder, both amounting only to a rescaling of the applied
local field v. The left-hand side and right-hand side of Eq. (6)
are plotted for several values of the voltage in Fig. 5. For the
chosen distribution and Gon/Goff ratios a transition is evident
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FIG. 5. The left-hand side (blue, dark gray) and right-hand side
(red, light gray) of Eq. (6) are plotted for several values of the applied
voltage. For low values of Gon their intersection gives a solution that is
a smooth function of the voltage [(a) Gon = 10]. A transition develops
for intermediate values that can appear continuous [(b) Gon = 30].
For sufficiently large values of Gon, a transition occurs where the
solution jumps discontinuously [(c) Gon = 60]. The transition voltage
is highlighted in (b) and (c).

at the point

1 = p[h(f )v]h′(f )v 0 � f � 1. (7)

We also note that the inflection of the curves from the
right-hand side of Eq. (6) shows a trend that looks almost like
a continuous transition, corresponding to the behavior seen in
simulations for intermediate values of Gon (see Fig. 1).

An exactly analogous treatment may be undertaken for
the transition from Gon → Goff . We regard fR = 1 − f as
the fraction of devices in their Goff state and v = V√

N
as the

positive voltage applied in the reverse direction. The effective
medium conductivity may be obtained from the substitution
f → 1 − fR , Geff,R(fR) = Geff(1 − fR) and similarly with
the average conductivity 〈g〉R(fR) = 〈g〉(1 − fR), giving a

mean-field voltage VMF = hR(fR)v =
√

Geff,R(fR )
〈g〉R (fR) v. As the

mechanisms for turning ON and OFF within the individual
atomic switches are not the same, we take a possibly different
probability distribution pR(t) for the reverse switching thresh-
olds. With these definitions we obtain the self-consistency
equation as before,

fR =
∫ hR(fR )v

0
pR(t)dt. (8)

In Fig. 5 this quantity has been plotted for several values
of Gon and the applied voltage. We observe a first-order
phase transition similar to that observed in the Goff → Gon

branch. However, this transition occurs for much lower values
of Gon and near the limiting value of the conductance. As
we proceed from f = 1 to 0, in the vicinity of f = 0 the
average conductance 〈g〉(f ) is decreasing more rapidly than
the network conductance Geff(f ). This leads the internal
switches to redistribute current to their neighbors faster than
the decrease of the total current at the boundary. This increases
the mean-field voltage overall, and hence promotes a transition.

Solving the self-consistency equations gives the mean-field
hysteresis curves plotted in Fig. 6. While these curves display
a qualitative similarity to simulation, several features of the
mean-field theory are lacking. As we have already noted, the
choice for the form of the mean-field theory (voltage-voltage,
current-voltage, etc.) are not prescribed a priori and each
choice will give a slightly different account of the dynamics.

FIG. 6. Solving the self consistency equations (6) and (8) for a
uniform distribution leads to the hysteresis curves above. Here they
are plotted for Gon = (a) 10, (b) 30, (c) 50. For small values of
Gon/Goff , the networks are smooth, but as the ratio is increased a
discrete jump emerges in the forward direction. A similar jump near
the end of the reverse branch is only barely discernible.

All of these share the feature that transitions occur due to
competition between a changing current at the boundaries
and the internal sharing of currents within the network, as
summarized by the function h(f ), which is some ratio between
the network conductance and an average conductance 〈g〉, 〈 1

g
〉.

In both directions, the transition will eventually proceed (as
Gon → ∞) from some critical fraction fc to a fully switched
network f = 1 as opposed to the finite jump and long tail seen
in simulations.

Having observed the internal form of the transition in
simulation, we see that in contrast to thermal transitions,
where the phase transition occurs homogenously throughout
the system, the conductivity transitions consist only of a (d =
1)-dimensional conducting backbone in the forward direction
and a (d = D − 1)-dimensional crack in the reverse. In D = 2
both of these correspond to one-dimensional subsystems of
the network and so the mean-field theory, which considers
all elements equally, cannot model it accurately, especially in
the regime following the formation of the backbone. In the
following, we consider methods for modeling the formation
of the backbone.

V. 1D MODELS

The mean-field assumption, that all elements experience
either a voltage VMF or current IMF, is equivalent to replacing
the network with a 1D parallel or series arrangement of
memristors whose boundary conditions are then matched
(through an effective medium theory) to the behavior of the
original network. In fact, the quantities

〈g〉 = Goff + n

N
(Gon − Goff) (9)〈

1

g

〉
= Gon + n

N
(Goff − Gon)

GonGoff
, (10)

which appear in the mean-field equations (4) are also the
conductances Gnet/N for a series and parallel network of
N memristors with n in the ON state. Having seen that the
transition is restricted to a small subset of the network, we do
not expect that including the entire network in the backbone
will capture the behavior in the vicinity of the transition (where
homogeneity, and thus the effective medium theory, fails). We
first explore the opposite extreme by ignoring the presence of
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FIG. 7. The left-hand side (blue, dark gray) and right-hand side
(red, light gray) of Eq. (12) are plotted for several values of the applied
voltage for the distribution Uniform(0,1). Here they are plotted for
Gon = (a) 1.5, (b) 2, (c) 10. For a collection of memristors in series,
the transition is the completion of the conducting backbone, with all
elements in the Gon state.

the rest of the network and considering only those elements
involved in the conducting backbone or crack.

In the forward direction, the transitioning elements are a
collection of memristors in series of length Ny held at a voltage
V . Such an arrangement with a fraction f in the ON state
admits a current,

I (f ) = GonGoff

Gon + f (Goff − Gon)

V

N
(11)

and the fraction of elements in the ON state may be determined
self-consistently,

f =
∫ I (f )

0
ρ(t)dt. (12)

The distribution ρ(t) is the distribution of thresholds in
the conducting backbone, which should be related to the
distribution of thresholds across the network. While an explicit
calculation of ρ is difficult, a reasonable approximation on
the diamond lattice should be ρ(t) = 2p(t)[1 − F (t)] where
F (t) is the cumulative distribution function of the threshold
distribution, such that the current always selects the path with
lower threshold. We note that this concentrates the threshold
distribution towards its lowest values but does not strongly
alter the behavior of the theory. In the interest of simplicity,
we thus maintain our use of the Uniform(0,1) distribution in
illustrating the features of the following 1D and cluster models.
Equation (12) is plotted in Fig. 7 for several values of Gon in
which we observe the transition first occurring at Gon = 2, and
then progressing to a jump to f = 1 for larger values.

In the reverse direction, we consider a collection of
memristors in parallel of length Nx corresponding to the
crack that will eventually sever the network. As the crack
is separated from the boundaries, the boundary conditions are
instead supplied by the network. As every strip of memristors
perpendicular to the direction of current propagation will
have a current GnetV passing through them, the reverse
switching process of a voltage-controlled network should be
best described by a current-controlled strip of memristors in
parallel. For the moment, we again ignore the presence of the
rest of the network and consider an isolated set of elements.
The conductance of the 1D strip of memristors in parallel with
a fraction fR in the Goff state is

N (Gon + fR[Goff − Gon]), (13)

which gives the current through an element in the ON state,

I (fR) = GonGnet

Gon + fR(Goff − Gon)

V

N
. (14)

fR may be similarly found self-consistently

fR =
∫ I (fR )

0
ρ(t)dt. (15)

The resulting mean-field theory is just the reverse of that for
the forward switching process (taking Gnet = Gon) but with a
voltage scale smaller by a factor of Gon.

Here, physical considerations from the switching processes
have led us to two dual structures: a series chain of memristors
transitioning from Goff → Gon subject to a ramped voltage
as a model of the conducting backbone, and a parallel strip
of memristors transitioning from Gon → Goff subject to a
ramped current for the crack severing the network. Each of
these demonstrates a transition in which the networks proceed
from some f = fc to f = 1 at a critical voltage or current.

VI. CLUSTER MODELS

In order to include the influence of the conducting backbone
or crack on the rest of the network and thus the behavior of the
network past the transition, we use a cluster approach similar
to the Bethe-Kikuchi approximation in equilibrium thermody-
namics [28,29]. To this end we replace each memristor in the
series chain with two memristors in parallel as in Fig. 8(a) and
subject the entire chain to a slowly ramped voltage. Each pair
in the chain is thus subject to a current I slowly raised from
zero [see Fig. 8(b)]. If the threshold of each memristor, ti is
drawn independently from a distribution p(t), the probability

FIG. 8. The systems and subunits considered in the cluster
approximations. As a model of the conducting backbone embedded
in the network we consider (a) a series chain of memristors in parallel
subject to a slowly ramped voltage V + composed of subunits of (b)
pairs of memristors in parallel subject to a slowly ramped current. As
a model of the crack, we consider (c) a parallel strip of memristors
in series subject to a slowly ramped current consisting of subunits of
(d) pairs of memristors in series subject to a slowly ramped voltage.
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distribution for the conductance of the pair G‖ is,

p(2Goff ; I ) = 2
∫ ∞

I/2
dt1

∫ ∞

t1

dt2 p(t1)p(t2)

p(Goff + Gon; I ) = 2
∫ I/2

Goff I

Goff +Gon

dt1

∫ ∞

t1

dt2 p(t1)p(t2)

+ 2
∫ Goff I

Goff +Gon

0
dt1

∫ ∞

Goff I

Goff +Gon

dt2 p(t1)p(t2)

p(2Gon; I ) = 2
∫ Goff I

Goff +Gon

0
dt2

∫ t2

0
dt1 p(t1)p(t2).

(16)

A long chain of such pairs in series [Fig. 8(a)], each with
conductance G‖,i will possess a total conductance close to〈

1

Gchain

〉
= N

〈
1

G‖

〉
(17)

and we may determine the current through the chain self-
consistently as the smallest solution of the equation

V/Nx

I
=

〈
1

G‖

〉
, (18)

where the I dependence of 〈 1
G‖

〉 has entered through the
averaging. Using again the distribution Uniform(0,1), the
solution to this equation has been plotted in the insets of Figs. 2
and 3 for several values of Gon.

Here, we see the finite jump in conductance observed in
simulations followed by the gradual switching of the remaining
memristors. This is due to the memristor in the ON state
diverting current away from its neighbor. While a current of
only I = 2 (in units of GoffV ) is required to switch the first
of the pair, a current of I ≈ (Gon + Goff)/Goff is required to
guarantee the switching of the second, which for large values
of Gon/Goff is considerable.

An analogous treatment of the reversed switching process
requires replacing each element of the parallel strip of
memristors with two elements in series [Fig. 8(c)] subject to
a slowly ramped current. Each pair is then subject to a slowly
ramped voltage V [Fig. 8(d)]. Again drawing the thresholds
independently from a distribution p(t), the distribution for the
conductance of the pair is

p

(
Gon

2
; V

)
= 2

∫ ∞

GonV/2
dt1

∫ ∞

t1

dt2 p(t1)p(t2)

p

(
GonGoff

Gon + Goff
; V

)
= 2

∫ GonV/2

GonGoff V

Goff +Gon

dt1

∫ ∞

t1

dt2 p(t1)p(t2)

+ 2
∫ GonGoff V

Goff +Gon

0
dt1

∫ ∞

GonGoff V

Goff +Gon

dt2 p(t1)p(t2)

p

(
Goff

2
; V

)
= 2

∫ GonGoff V

Goff +Gon

0
dt2

∫ t2

0
dt1 p(t1)p(t2). (19)

A strip of Ny of these, each with conductance Gseries,i ,
in parallel [Fig. 8(c)] will have conductance Ny〈Gseries〉. As
discussed above, such a strip embedded within a network will

be subject to a current I and thus satisfy

Ny〈Gseries〉V = I, (20)

where the voltage across the strip is determined self-
consistently as the smallest solution of the above equation
and the voltage dependence of 〈Gseries〉 has entered through
the averaging over the voltage-dependent distribution above.

The two structures considered above are again dual and
while the self-consistency equation may be solved as before,
we instead note that the exchange

V → INy

NxGon
, I → V GoffNx

Ny

(21)

takes the above self-consistency equation, to that of the forward
switching process (we consider a square network Nx = Ny =
N to avoid dimensional factors)

N〈Gseries〉V = I → V/N

I
=

〈
1

G‖

〉
. (22)

The reversed switching process thus maps exactly to the for-
ward switching process upon exchanging the roles of the volt-
age and current and scaling appropriately, as seen in the
simulated I -V curves of Fig. 3.

VII. MEAN-FIELD DYNAMICS

Although the avalanche dynamics of mean-field models
akin to the random-field Ising model are well known [30], we
include here a brief discussion in the interest of completeness.

The mean-field theories considered lead to self-consistency
equations of the form

f =
∫ h(f )v

0
p(t)dt, (23)

where v is an external field and h(f ) is some function of the
fraction of switched elements f . We consider this relation to be
initially satisfied and raise the voltage until the next threshold
is passed. This takes f → f + 1

N
, increasing the limit of (23)

by h′(f )v
N

. The probability that n memristors are switched ON
by this increase is given by a Poisson distribution

pn = μn

n!
e−μ, μ = p(h(f )v)h′(f )v. (24)

Each of the n memristors will cause a similar increase in
the mean-field voltage, and thus will give rise to the same
distribution. Therefore, switching a single memristor gives rise
to a Poissonian branching process. This may be brought into a
more useful form by calculating the total number of memristors
switched in a single branching process, or the avalanche size
distribution. This leads to the Borel distribution

pS = (μS)S−1

S!
e−μS, S = 1,2, . . . . (25)

This distribution has mean and variance,

〈S〉 = 1

1 − μ
, σ 2

S = μ

(1 − μ)3
, (26)

and therefore the mean-field dynamics give avalanches whose
size is determined by the parameter μ.
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FIG. 9. Avalanche sizes binned just above the transition for
randomly diluted networks (p = 0.6, Gon = 100) of size Nx/y =
32,64,128 (1000 realizations) and Nx/y = 256 (100 realizations). As
the network size increases, the avalanche size distribution approaches
the asymptotic form P (s) ∼ s−3/2 given by the mean-field theory,
subject to a finite-size cutoff.

For μ < 0, raising the voltage will cause individual mem-
ristors to switch and no avalanches will occur, corresponding
to a diffuse regime. For 0 < μ < 1, the system will display
avalanches of finite size according to the Borel distribution.
At μ = 1, the system reaches a critical branching process, at
which point the probability of an infinite avalanche begins
to grow and the distribution approaches the limiting form
pS ∼ S−3/2.

The conductance jumps that the system experiences for
avalanches in the regime 0 < μ < 1 should be approximately
G′

net(f ) S
N

and thus, for a particular value of the conductance,
conductance jumps in that vicinity should follow a Borel
distribution. Such jump avalanche distributions have been
well studied both numerically [23] and in experiment [31] for
individual memristive elements but not yet disordered systems
consisting of many memristive elements, such as those of Stieg
et al. [6].

In order to confirm whether this scaling law would be
accessible in experiments for physically disordered lattices, we
have simulated randomly diluted lattices (by removing bonds
above percolation) without threshold disorder as the effect of
spatial correlations may modify the behavior. Avalanches were
binned in the region surrounding the peak in the avalanche size
for various sizes of the networks. The histograms produced are

plotted in Fig. 9. As the system size increases, the histograms
approach the form predicted by the mean-field theory, although
clearly subject to a finite-size cutoff.

VIII. CONCLUSIONS

We have presented a simple model that captures the
behavior of a disordered two-dimensional memristive network
when subject to bias in the adiabatic limit. As the memristive
Gon/Goff ratio is increased, the conductivity changes from a
smooth function of the applied voltage to displaying a dis-
continuous jump as in a first-order phase transition. Internally,
this is due to the formation of a conducting backbone or crack
through the network. While the I -V curves demonstrate such
a jump, the restriction of the transition to a small subset of the
network elements moderates its size to a fraction of the network
conductivity. Furthermore, the current diverted from the rest
of the network extends the voltage range of the remaining
memristors, maintaining the voltage range of the network.

The Gon ↔ Goff processes are connected by I -V duality
that maps the hysteresis curves of a voltage-controlled network
to those of a current-controlled network in the opposite
polarity. A cluster approximation duplicates this behavior
and reveals that, in order to fully transition the network,
elements of the backbone will need to carry currents a
factor Gon/Goff larger than their neighbors. As filament-type
memristive devices have both large Gon/Goff ratios and
are sensitive to the maximum current through them, this
may limit the operating voltages of computational devices
manufactured from memristors to the neighborhood of the
transition. Fortunately, this seems to be the region in which
the dynamics of the networks carry the greatest promise for
the design of computational devices, as seen in maze and
shortest-path solvers [8] where the transition may correspond
to the solution of an optimization problem. We hope this work
will provide a foundation to extend the understanding of these
networks to the nonadiabatic regime in which their behavior
may be substantially more complex and interesting.
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