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Detectability thresholds of general modular graphs
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We investigate the detectability thresholds of various modular structures in the stochastic block model. Our
analysis reveals how the detectability threshold is related to the details of the modular pattern, including the
hierarchy of the clusters. We show that certain planted structures are impossible to infer regardless of their
fuzziness.
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I. INTRODUCTION

Motivated by needs in data-driven science, a number of
frameworks and algorithms for modular structure detection
have been proposed in several fields in the last few decades
[1–5]. Correspondingly, theoretical and experimental analyses
of statistical significance of results are thus the subject
of significant research interest. For example, although an
algorithm suggests the partition of a graph following the
application of some optimization process, if the graph is a
typical instance of a uniform random graph, it is doubtful
whether the effected partition contains any useful information
in practice. Moreover, even when the graph is generated from a
model with some planted structure, it may be indistinguishable
from a uniform random graph if the planted structure is too
fuzzy.

It is a challenging problem in general, and the basic strategy
to solve it involves investigating the conditions whereby we
can retrieve the planted structure for a specified random graph
ensemble. To this end, the so-called stochastic block model
[6], which we explain in detail below, is often considered.
This random graph model has controllable noise strength ε,
i.e., ε = 0 represents a graph that clearly realizes the planted
structure, and ε = 1 represents a uniform random graph.
Above a certain critical value ε∗, an algorithm cannot retrieve
the planted structure better than chance. This critical value is
called the detectability threshold, and a large number of studies
have been devoted to it [7–20] for sparse graphs, including
rigorous treatments [21–23]. Besides the distinguishability
from a uniform random graph, the exact recovery in dense
graphs has also been studied [24–30].

Nevertheless, a large portion [31] of the research focuses
on the community structure (assortative structure) and the
disassortative structure. In this paper, we investigate the de-
tectability threshold of more general structures. We show that
according to the linear stability analysis of belief propagation
(BP), the detectability threshold varies depending on the details
of the modular structure.

II. STOCHASTIC BLOCK MODEL

The stochastic block model is a random graph model with
a planted modular structure: the graph of N vertices consists
of q clusters, each of which of size γσN (σ ∈ {1, . . . ,q}), and
every pair of vertices is connected independently and randomly
according to its cluster assignments. For example, if vertices

i and j belong to clusters σ and σ ′, respectively, they are
connected with probability ωσσ ′ (σ,σ ′ ∈ {1, . . . ,q}); matrix ω

is called the affinity matrix. For given N, q, γ , and ω, we can
generate random graph instances of the stochastic block model.
In the case of the inverse problem, which is of interest to us in
this paper, our goal is to infer the parameters γ and ω as well
as cluster assignments σ given a graph. The number of clusters
q is sometimes given as input; otherwise, it is determined by
some model selection criterion. Throughout this paper, we
treat q as input and focus on sparse graphs, i.e., each element
of ω is scaled as O(1/N ) so that the average degree does not
diverge as N → ∞.

While there exist many types of modular structures, the
simplest and most studied case is the community structure as
illustrated in Fig. 1(a); that is, the affinity matrix has large
values for its diagonal elements, ωσσ = ωin, and small values
for the remaining elements, ωσσ ′ = ωout (σ �= σ ′). Although
the elements of the affinity matrix can be arbitrary nonnegative
numbers, we hereafter consider the case where they are either
ωin or ωout: that is,

ω = (ωin − ωout)W + ωout11�, (1)

where W is an indicator matrix, where Wσσ ′ = 1 represents
a densely connected cluster pair (which we refer to as a
bicluster), Wσσ ′ = 0 represents a sparsely connected bicluster,
and 1 is the column vector with all elements equal to unity.
This random graph ensemble can be regarded as a restricted
version of the stochastic block model or a generalized version
of the planted partition model [24].

This affinity matrix contains the above community structure
as a special case and can express arbitrary modular patterns.
Note that the indicator matrix W can be regarded as a cluster-
wise adjacency matrix, i.e., each planted cluster represents a
coarse-grained vertex, and a densely connected bicluster rep-
resents a bundled edge (a densely connected cluster constitutes
a self-loop). We refer to the graph with adjacency matrix equal
to W as a module graph. Note that some matrices represent
the equivalent modular pattern; for example, Figs. 1(c) and
1(d) differ only by permutation. The average degree c of
this stochastic block model is c = Nγ �ωγ . By defining the
strength of the modular structure by ε ≡ ωout/ωin, we can
express elements ωin and ωout as

ωin = c

N

[
(1 − ε)γ �Wγ + ε

]−1
, ωout = ε ωin. (2)
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FIG. 1. Affinity matrices of various modular structures. The
elements in gray have higher connection probabilities.

III. BAYESIAN INFERENCE OF THE STOCHASTIC
BLOCK MODEL

We now consider the Bayesian inference of the modular
structure using the stochastic block model. The prior prob-
ability p(σ |γ ) of cluster assignments is represented by a
multinomial distribution of each planted cluster of fraction
γσ , and the probability of independent and random connections
between vertex pairs is represented by the product of Bernoulli
distributions. Thus, the likelihood of the stochastic block
model is

p(A,σ |ω,γ ,q) = p(A|σ ,ω,γ )p(σ |γ )

=
∏

i

γσi

∏
i<j

ω
Aij

σiσj

(
1 − ωσiσj

)1−Aij
. (3)

Using the affinity matrix of (1), its log-likelihood reads as

log p(A,σ |ω,γ ,q)

=
∑

i

log γσi
+

∑
i<j

Wσiσj
[Aij log ωin+(1−Aij ) log(1−ωin)]

+
∑
i<j

(1−Wσiσj
)[Aij log ωout+(1−Aij ) log(1−ωout)]. (4)

Our task is to evaluate the marginal probability distributions
of the cluster assignments of vertices and to determine the
values of parameters (γ and ω), in order to maximize the
marginal log-likelihood:

log
∑
σ

p(A,σ |γ ,ω,q). (5)

To this end, we employ the expectation-maximization (EM)
algorithm, which does not maximize (5) directly, but repeats
the maximization of its lower bound until convergence: In the
E-step, the posterior distribution of cluster assignments σ is
estimated according to the given parameter estimates (γ ,ω).
In the M-step, (γ ,ω) are updated to maximize the average
of (4) with respect to the posterior distribution determined
in the E-step. While there are many other Bayesian inference
methods [32–35], as we see below, the present method is suited
for theoretical analysis.

A. Cluster inference and parameter learning

Let ψi
σ be the marginal probability of cluster σ for vertex i

calculated in the E-step (
∑

σ ψi
σ = 1), and ψ i be its row vector.

Unfortunately, the exact computation of ψ i is demanding. To
avoid this computational burden, we use BP [13,36], which
is justified for sparse graphs. Using tree approximation, the

marginal probability ψ i can be estimated as

ψ i= 1

Zi
γ ◦

∏
k∈∂i

[1 + ωinψ
k→iW ] ◦ exp

[
−ωinωout

∑
�

ψ�W

]
,

(6)

where 1 and ψk→i are the q-dimensional unit row vector and
the marginal probability for vertex k without the contribution
from edge (k,i), respectively. The latter is often referred to as
the cavity bias. ◦ and ∂i represent the element-wise product
(Hadamard product) and the set of neighboring vertices of
vertex i, respectively, and Zi is the normalization factor. We
also define

ωin ≡ ωin − ωout

ωout
= ε−1 − 1. (7)

To obtain ψ i→j , we compute the following iterative
equation, i.e., the BP update equation:

ψ i→j = 1

Zi→j
γ ◦

∏
k∈∂i\j

[1 + ωinψ
k→iW ]

◦ exp

[
−ωinωout

∑
�

ψ�W

]
. (8)

Analogously to (6), Zi→j is the normalization factor. The BP
update equation (8) can be formally written as

ψ i→j = F i→j [ψk→iW,ψ�W ], (9)

where F i→j is the nonlinear operator representing the right-
hand side of (8). Note that ψ i→j = F i→j [ψk→i ,ψ�] is
essentially equivalent to the so-called mod-bp [37] (without
degree correction). If we consider cavity biases � i→j of the
transformed basis

� i→j ≡ ψ i→jW, (10)

its update equation is

� i→j = F i→j [�k→i ,��]W. (11)

We can transform back to the original basis by operating W−1

if it exists, or by operating F i→j .
In the M-step, the parameter estimates (γ̂ and ω̂) are

updated as

γ̂σ = 1

N

N∑
i=1

〈
δσσi

〉
, (12)

ω̂in =
∑

i<j Aij

〈
Wσiσj

〉∑
i<j

〈
Wσiσj

〉 , (13)

ω̂out =
∑

i<j Aij

(
1 − 〈

Wσiσj

〉)∑
i<j

(
1 − 〈

Wσiσj

〉) , (14)

which can be readily obtained by the extremum con-
ditions, where δσσ ′ is the Kronecker delta and 〈· · · 〉 =∑

σ · · · p(σ |γ̂ ,ω̂,A) represents the average with respect to
cluster assignments based on previous parameter estimates.
Using the marginal probability estimates {ψ i} and cavity
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biases {ψ i→j }, we obtain 〈δσσi
〉 = ψi

σ and

〈
Wσiσj

〉 = ωinψ
i→jWψ j→i�

(ωin − ωout)ψ
i→jWψ j→i� + ωout

. (15)

Assuming that cluster assignments are narrowly peaked [38],
we can approximate the denominator of (13) as∑

i<j

〈
Wσiσj

〉 ≈ 1

2

∑
i,j

ψ iWψ j�. (16)

Note that we do not directly maximize (5). Instead, by
iteratively updating (8) and (12)–(14), the algorithm reaches
a local extremum of the approximated marginal likelihood, or
the negative Bethe free energy, which is a good estimate of (5)
when the graph is sparse and is exact when the graph is a tree.

IV. DETECTABILITY THRESHOLD

We now analyze the detectability threshold for a given
affinity matrix W . In the undetectable phase, BP converges to a
trivial (uninformative) fixed point. When the graph reaches the
detectable phase, the trivial fixed point becomes unstable, and
BP converges to an informative fixed point instead. To see this
stability, we first consider the propagation of perturbations on
a vertex at the trivial fixed point. In the linear-response regime,
it is dominated by the transfer matrix of (11)

Tσ ′σ = δ

i→j
σ

δ
k→i
σ ′

= ωin

1 + ωin

k→i
σ ′

ψ
i→j

σ ′
(
Wσ ′σ − 
i→j

σ

)
. (17)

We neglect the contribution due to ωinωout
∑

� 
�
σ̃ , because

ωout = O(1/N ).
Although the effect of the perturbation of a single vertex

may be vanishingly small at a distant vertex, if the effect from
all connected vertices adds to O(1), the trivial fixed point
is unstable. Under tree approximation, this is achieved when
cν2 > 1, where ν is the leading eigenvalue of the transfer
matrix T ; the equality condition yields the detectability
threshold. Note that investigating the detectability threshold
for an arbitrary structure is difficult because the trivial fixed
point is not always known. In the following, hence, we analyze
some solvable cases.

A. A solvable case

Let us consider the case where a fraction of clusters is equal
in size, i.e., γσ = 1/q for any σ , and the average degree of each
cluster is also equal; that is,∑

σ ′
Wσσ ′ = a (a = const) (18)

for any σ . In other words, the module graph constitutes a
regular graph. This is also assumed in Ref. [13]. In this case,
the factorized state, i.e., ψ

i→j
σ = 1/q for any i → j and σ , is

the trivial BP fixed point. Therefore, the transfer matrix T at
this fixed point is

T = ωin

q + aωin

(
W − a

q
11�

)
. (19)

FIG. 2. Fraction of correctly classified vertices for the structure
of Fig. 1(b). The size of the graph is N = 30 000, and each cluster is
equal in size. The connected diamonds (purple), triangles (orange),
and circles (cyan) represent the results of the algorithm in Sec. III for
the average degrees c = 4,5, and 6, respectively. The dashed vertical
lines are the detectability thresholds predicted in (21) for c = 5 and
6. The shadows represent the standard deviations of 10 samples.

Because 1/
√

q is the leading eigenvector of W with eigenvalue
a, ν can be written as

ν = ωin

q + aωin
λ2, (20)

where λ2 is the second leading eigenvalue of W in magnitude.
Thus, in terms of ε, the detectability threshold is given by

ε∗ = |λ2|
√

c − a

|λ2|
√

c − a + q
. (21)

The stochastic block model with a community structure
has a = 1 and λ2 = 1, which reproduces a previously known
result [13]. The threshold (21) indicates that as the number of
densely connected clusters increases, the difficulty in inferring
the structure also increases. In particular, when c < (a/λ2)2, it
is statistically impossible to infer the planted structure better
than chance for any ε. This behavior is shown in Fig. 2; when
c = 4, no signal is retrieved even when the noise ε is (almost)
zero.

The λ2 dependency of the module graph in (21) is another
notable feature. For graph G, the second eigenvalue λ2 of an
adjacency matrix is bounded from below and above by the
(normalized) edge expansion h(G) as

1 − 2h(G) � λ2 � 1 − h(G)2

2
, (22)

which is known as Cheeger’s inequality [39]. The edge
expansion h(G) is a measure of a sparse cut, defined by

h(G) = min
S

|E(S,V \S)|
a min{|S|,|V \S|} , (23)

where S is a subset of vertex set V of the graph, and
|E(S,V \S)| is the number of edges between sets S and V \S.
The inequality (22) indicates that the module graph with no
satisfactory sparse cut [large h(G)] tends to have a small value
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of λ2: that is, the planted structure is difficult to infer. Put
another way, if the graph has a strong hierarchical modular
structure [40], its inference tends to be relatively easy. Note
also that as long as the second eigenvalue is strictly positive,
the detectability threshold is always positive for a sufficiently
large average degree.

One might think that a different detectability threshold can
be obtained if we instead use the flipped indicator matrix
W̃ = 11� − W to parametrize noise strength as ε̃ ≡ ε−1,
even though the structure to infer is the same. However, one
can straightforwardly confirm that this treatment also yields
threshold ε̃∗ equal to (21).

B. Another solvable case

In the case where the factorized state is not a trivial BP fixed
point, the calculation of the detectability threshold is difficult.
Although it is rather a toy model example, there is another
case where we can obtain the analytical expression for it.

Let W be a matrix whose linearly independent columns
are orthogonal to one another, e.g., Fig. 1(c). We set the prior
distribution γ so that γW ∝ 1�, and keep it fixed, i.e., we skip
(12); for the structure in Fig. 1(c), we set γ = (1/4,1/2,1/4),
although the fractions of the planted clusters do not have this
ratio. In this case, the factorized fixed point is a BP fixed point.
For this example, the transfer matrix (17) reads

T = ωin

4(2 + ωin)

⎛⎝ 1 −1 1
−2 2 −2

1 −1 1

⎞⎠ (24)

and the leading eigenvalue is ν = ωin(2 + ωin)−1. The corre-
sponding detectability threshold is

ε∗ =
√

c − 1√
c + 1

. (25)

This threshold was compared with the numerical experiment
in Fig. 3.

V. SUMMARY AND DISCUSSION

In this paper, we analyzed the detectability thresholds of
general modular structures in the restricted graph ensembles.

FIG. 3. Fraction of correctly classified vertices for the structure
of Fig. 1(c) with error bars. The dashed vertical and horizontal lines
represent the estimate of the detectability threshold (25) and 1/3,
respectively. The size of the graph is N = 30 000 with average degree
c = 6 and each cluster has the same size. The shadow represents the
standard deviation of 10 samples.

Although our results do not cover arbitrary structures, our
solvable case analyses provide deeper insight into the nature of
detectability. We showed that some structures are statistically
impossible to infer (using BP in Sec. III), no matter how small
the noise ε is. We also revealed that detectability transition is
connected to the hierarchical structure of clusters. Our results
are not rigorous and may differ from the information-theoretic
limits. Also, when the number of clusters is large, there often
exists another phase called the hard phase [13]. These points
are left as open questions for future research.
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