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One-loop diagrams in the random Euclidean matching problem
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The matching problem is a notorious combinatorial optimization problem that has attracted for many years
the attention of the statistical physics community. Here we analyze the Euclidean version of the problem, i.e.,
the optimal matching problem between points randomly distributed on a d-dimensional Euclidean space, where
the cost to minimize depends on the points’ pairwise distances. Using Mayer’s cluster expansion we write a formal
expression for the replicated action that is suitable for a saddle point computation. We give the diagrammatic rules
for each term of the expansion, and we analyze in detail the one-loop diagrams. A characteristic feature of the
theory, when diagrams are perturbatively computed around the mean field part of the action, is the vanishing of
the mass at zero momentum. In the non-Euclidean case of uncorrelated costs instead, we predict and numerically
verify an anomalous scaling for the sub-sub-leading correction to the asymptotic average cost.
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I. INTRODUCTION

Let us consider a complete graph KN of N vertexes,
N even, indexed in [N ] := {v}v=1,...,N , and a set of cost
coefficients wuv = wvu, 1 � u < v � N , in such a way that
wuv is associated with the (undirected) edge (u,v) of the graph.
The matching problem consists in finding an optimal matching
m on the graph KN . An optimal matching m is a subset of edges
of KN that satisfies two fundamental properties. First, m must
be a perfect (or admissible) matching, i.e., each vertex of KN

must be adjacent to one, and only one, edge in m. Second, in an
optimal matching m, the sum of the costs of the edges in m, also
called matching cost, is minimal (optimality condition). We
can associate an occupation number muv ∈ {1,0} to each edge
(u,v) of the original complete graph, depending on whether
it belongs to the matching m, or not. We identify then the
matching m with the symmetric matrix m := (muv)uv that
we denote, for the sake of simplicity, by the same symbol.
By means of the matrix m, the matching cost can be written
as

Ew(m) :=
N∑

u<v

muvwuv. (1)

We can recast the original optimal matching problem into the
following integer programming problem for the matrix m:

minimize
m

Ew(m), (2)
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given the constraints

N∑
v=1

muv = 1, u = 1, . . . ,N, (3a)

muv = mvu ∀u,v, mvv = 0 ∀v. (3b)

We denote by m∗ the optimal matching, and by E∗
w :=

Ew(m∗) the optimal cost.
The study of the matching problem has a very long tradition

in the literature. It is well known that, from the algorithmic
point of view, the problem belongs to the P computational
complexity class, as Kuhn [1] proved in 1955. Edmonds,
Edmonds and Karp [2,3] later extended and improved the
original result of Kuhn, showing that, for a matching problem
on a generic graph G with V vertices and E edges, the optimal
matching can be found in O(V E ln E) iterations. Matching
problems have an important theoretical relevance, but they
also appear in many practical applications, such as computer
vision [4], control theory [5,6], and pattern matching [7] among
many other fields.

Aside with the purely algorithmic aspects of the problem,
however, the study of the typical properties of the solution of
a given optimization problem, with respect to an ensemble
of realizations, is of a certain interest. For this reason, in
a set of seminal contributions, Orland [8] and Mézard and
Parisi [9–12] analyzed random matching problems. Their
works paved the way to the application of analytical tools from
the theory of disordered systems to many other combinatorial
optimization problems [13,14]. In most statistical physics
literature, the cost coefficients {wuv}uv of a random matching
problem are taken to be i.i.d. random variables (random link
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approximation). The average optimal cost E∗
w for the random

matching problem has been derived, under this assumption,
in Ref. [9], in the large N limit. The results in Ref. [9] were
later rigorously proved by Aldous [15]. A similar analysis has
been performed for the random bipartite matching problem
(or assignment problem), i.e., the random matching problem
defined on a bipartite graph, in which two types of vertexes to
be matched appear. A conjecture on the finite size corrections
to the average optimal cost for the assignment problem was
proposed in Ref. [16] and generalized by Coppersmith and
Sorkin [17]. This conjecture was later proved independently
by Linusson and Wästlund [18] and Nair et al. [19]. In Ref. [20]
finite size corrections to the average optimal cost both in
the random matching problem and in the random assignment
problem were analyzed, using replica techniques. Many other
results about random matching problems have been obtained in
recent years. In particular, the theory of cavity method [21] has
been successfully applied to the study of matching problems in
general [22], an example being the evaluation of the number
of solutions of the problem on sparse random graphs [23],
or the study of the multi-index matching problem [24]. The
application of the cavity method (called belief propagation in
its algorithmic version) to the assignment problem has been
rigorously justified by Bayati et al. [25].

Let us discuss now a variation of the random matching
problem, in which the cost coefficients {wuv}uv appearing in
Eq. (1) are correlated random variables, due to an underlying
Euclidean structure. In particular, we associate with each ver-
tex v of the complete graph a point xv in the d-dimensional unit
hypercube [0,1]d . Then we will consider the cost coefficients
to be given by

wuv := ‖xu − xv‖p, p > 0. (4)

In the expression above, ‖ • ‖ is the Euclidean norm. The
points {xv}v are assumed to be independently and uniformly
distributed in [0,1]d , and, as usual, we are interested in the
asymptotic limit of the average (over the points’ distribution)
of the optimal cost. The formulated problem is therefore
called a (random) Euclidean matching problem (EMP). In
Fig. 1 we present a pictorial representation of an instance of
the EMP on the unit square. In the bipartite version of the
EMP, or Euclidean assignment problem (EAP), two sets of
points with the same cardinality are randomly generated in a
certain domain, and we ask for the average optimal cost of the
matching among them, requiring that points of different type
only are matched.

The EMP has been investigated by Mézard and Parisi [12]
assuming the Euclidean correlation among the weights as a
perturbation to the purely random case. The adopted strategy
was to include, in a replica computation, only triangular
correlation (i.e., the correlation among three weights), ne-
glecting higher orders. This approach was proved successful,
as numerically verified in Ref. [26]. Their work inspired the
present contribution and will be therefore discussed more
carefully below. Many results have been obtained for the
EAP as well. In particular, apart from fundamental geometric
properties of the solution [27] and rigorous results on the
scaling of the optimal cost [28–30], a successful ansatz for
the p = 2 case was recently proposed in Refs. [31,32] for the
evaluation of the average optimal cost and of the correlation
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FIG. 1. An example of optimal matching among uniformly
distributed points on the unit square, assuming open boundary
conditions. The cost matrix is given by the Euclidean distances among
the points, i.e., it has the expression given in Eq. (4) with p = 1.
Observe also that, for p = 1 and d = 2, no crossing appears between
links in the optimal solution, as a consequence of the triangular
inequality.

functions of the solution. This ansatz was later justified through
a functional approach [33,34]. In the one-dimensional case,
in particular, a correspondence between the solution of the
problem and a Gaussian stochastic process emerged [34–36].

In the present paper we will consider the EMP on the
unit hypercube in d dimensions [37]. We will improve the
calculation of Mézard and Parisi [12], going beyond the trian-
gular approximation and including all one-loop, or polygonal,
corrections to the pure mean field case. In particular, we
will show that polygonal corrections can be written down,
after some calculations, in a numerically manageable form.
The paper is organized as follows. In Sec. II we set up a
replicated formalism for the EMP, dealing with Euclidean
correlations through Mayer’s cluster expansion. We provide
also a set of diagrammatic rules emerging from the theory
that allow us to evaluate the contribution of each diagram in
the expansion. In Sec. III we proceed performing a saddle
point action approximation and, moreover, imposing a replica
symmetric assumption. In Sec. IV we focus our attention on a
specific class of diagrams appearing in the expansion, e.g., the
class of one-loop diagrams, which we call polygons: we treat
the polygonal contribution using a (replicated) transfer matrix
formalism. In Sec. V the asymptotic cost in the polygonal
approximation is computed for different dimensions d and for
p = 1. We also give some details on the spectral properties of
the transfer matrix operators and highlight the presence of a
null mass at zero momentum. Finally, in Sec. VI we will show
how, from the formal structure of the polygonal series, some
nontrivial finite size correction exponents in the random link
case can be derived.

II. CLUSTER EXPANSION

As usual in statistical physics’ analysis of optimization
problems, and following Mézard and Parisi, Mézard and
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Parisi [9,12], we shall associate a partition function to a given
instance of the EMP. Let us assume that a set of N points
{xv}v=1,...,N is given on the d-dimensional unit hypercube
[0,1]d , with associated cost matrix elements wuv := ‖xu −
xv‖p, with p > 0. The points {xv}v are supposed uniformly
and independently distributed in [0,1]d . We define

Zw(β) : =
∑

matchings m

e−βN
p
d Ew(m)

=
(

N∏
v=1

∫ 2π

0

eiλv dλv

2π

)∏
u<v

[1 + e−βN
p
d wuv−iλu−iλv ],

(5)

where the Lagrange multipliers {λv}v enforce the constraints
in Eq. (3). As discussed in Ref. [12], the factor N

p

d is
necessary in order to have an appropriate large N limit
for thermodynamic functions, when the average over points’
positions is considered. Denoting by • the expectation over
the points’ positions, the average free energy density of the
system is given by

f (β) := lim
N→∞

− 1

βN
ln Zw(β). (6)

It is convenient to define a rescaled average optimal cost Ê , so
that the following relations hold:

Ê = lim
N→∞

N
p

d
−1E∗

w = lim
β→∞

f (β). (7)

We deal with the average over the disorder using the replica
trick

f (β) = lim
N→∞

lim
n→0

1 − Zn
w(β)

nNβ
. (8)

As usual we will consider an integer number n of replicas
during the computation, and then we will perform analytic
continuation for n ↓ 0. The average replicated partition func-
tion reads

Zn
w =

(
n∏

a=1

N∏
v=1

∫ 2π

0

eiλa
v dλa

v

2π

)∏
u<v

(1 + μuv), (9)

where we have introduced the quantity

μuv :=
n∑

r=1

e−rβN
p
d wuv

∑
1�a1<···<ar�n

e−i
∑r

m=1 (λam
u +λam

v ). (10)

In the random link matching problem the average∏
u<v

(1 + μuv) (11)

is easily performed, using the fact that the joint probability
distribution of the weights {wuv}uv factorizes [9]. In our case,
however, this is not true anymore, due to the underlying
Euclidean structure. In particular, the function μuv depends
on the vertexes u and v because of both the Euclidean distance
‖xu − xv‖, and the two sets of Lagrange multipliers {λa

u}a and
{λa

v}a . The quantity in Eq. (11) can be therefore represented
through a diagrammatic expansion, in complete analogy with
the classical cluster expansion [38–40] introduced by Mayer

FIG. 2. Biconnected graphs up to four vertexes. The correspond-
ing symmetry factors σg are 1

2 , 1
6 , 1

8 , 1
4 , and 1

24 from left to right.

and Mayer [41], with μuv playing the role of the Mayer
function. In particular, applying the results of Pulvirenti and
Tsagkarogiannis [42], we can write

∏
u<v

(1 + μuv) ∼ exp

⎛
⎜⎜⎜⎝

∑
g ⊆ KN

biconn.

∏
e∈g

ue

⎞
⎟⎟⎟⎠. (12)

The sum on the right-hand side runs over all biconnected
subgraphs g of the complete graph KN . A biconnected graph is
a graph that remains connected after the removal of any vertex
with all adjacent edges (see Fig. 2). Here and in the following
we will denote by (u,v) ∈ g, or equivalently e ∈ g, an edge of
the graph g. Moreover, we will denote by Eg and Vg, or simply
E and V , the number of edges and the number of vertexes in g,
respectively. In the mean field approximation only subgraphs
with E = 1 are considered. The average appearing in the
arguments of the sum in Eq. (12) removes the dependencies on
the point positions. However, each contribution still depends
on the indexes of the vertexes of the specific subgraph through
the Lagrange multipliers {λa

v}v, a . We introduce therefore a set
of order parameters, symmetric under permutations of replica
indexes, defined by

Qa1,...,ak
:= 1

N

N∑
v=1

exp

⎛
⎝−i

k∑
j=1

λ
aj

v

⎞
⎠, 1 � k � n, (13)

and the associated Lagrange multipliers Q̂a1,...,ak
. In the large

N limit, for a given subgraph g, there are approximately NV σg
subgraphs in KN isomorphic to g, σ−1

g being the number of
automorphisms of g. With these considerations in mind, and
after some simple manipulations, we can write∑

g ⊆ KN

biconn.

∏
e∈g

ue = −nβN
∑
g

′
Sg[β,Q]. (14)

The primed sum runs over all biconnected graphs with
vertices labeled in [V ], for 2 � V � N , considered up to an
automorphism. In Eq. (14) we have collected a factor −nβN

for later convenience. The contribution of each graph is given
by

−nβSg[β,Q] := σg
∑
{ae}e

∏
e∈g

e−β|ae|we

g V∏
v = 1

Qa(v) δa(v).

(15)
Here, for each edge e = (u,v), we have a sum over all
nonempty subsets ae := {ae

k}k ⊆ [n], whose cardinalities are
denoted by |ae|. We have also defined

a(v) :=
⋃
u∈∂v

a(u,v), (16)
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FIG. 3. Pictorial representation of the construction of the replica indexes before and after the replica symmetric assumption for a biconnected
graph.

union over the set ∂v of the vertexes adjacent to v in g
(see Fig. 3). The indicator function δa(v) takes value one if
the incident edges of v have distinct replica indexes, zero
otherwise. This implies

re := |a(v)| =
∑
u∈∂v

|a(u,v)|. (17)

Finally, the average in Eq. (12) must be performed using the
joint costs’ distribution for a graph g,

ρg({we}e) =
(

V∏
u=1

∫
Rd

ddxu

)
δ(x1)

×
∏

(u,v)∈g
δ(wuv − ‖xu − xv‖p). (18)

Let us make, now, a final remark. The strategy of Ref. [12]
was to perform the explicit computation of ρK3 (w12,w23,w31)
for the triangular graph g ≡ K3. Since this procedure is not
easily generalizable, we can adopt a different approach. We
can assign a momentum to each edge in the graph g, writing
Eq. (15) in the Fourier space as

−nβSg[β,Q]

= σg

(2π )d(E−V +1)

∏
e∈g

⎡
⎣∑

ae

∫
ddke g|ae|(ke)

⎤
⎦

×
V∏

v = 1

⎡
⎢⎢⎢⎣Qa(v) δa(v) δ

⎛
⎜⎜⎜⎝

∑
u ∈ ∂v

ingoing

kuv −
∑

u ∈ ∂v

outgoing

kuv

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦.

(19)

In the equation above ke := ‖ke‖ and

gr (k) := 	d

∫ ∞

0
zd−1e−rβzp

0F1

[−
d
2

; −k2z2

4

]
dz, (20)

where 0F1 is a confluent hypergeometric function, defined as

0F1

[−
b

; z
]

:=
∞∑

k=0


(b)


(b + k)

zk

k!
, (21)

and we have introduced the unit sphere’s surface in d − 1
dimensions

	d := 2π
d
2



(

d
2

) . (22)

Note that a Dirac’s delta function enforces the conservation
of momentum on each vertex. As an additional prescription,
one of the Dirac’s delta has to be considered a Kronecker’s
delta in order to avoid an extra volume contribution. Feynman
rules characterizing a generic diagram g for the construction
of Eq. (19) are, at this point, given. An alternative and
equivalent formulation for the momentum integration is given
in Appendix D.

III. REPLICA SYMMETRIC ASSUMPTION AND SADDLE
POINT APPROXIMATION

The results in the previous section allow us to express the
replicated partition function in a form that is suitable for a
saddle point computation, i.e.,

Zn
w ∼

[∏
a

∫ +∞

−∞
dQa

∫ +i∞

−i∞

dQ̂a

2π

]
e−nβNS[β,Q,Q̂], (23)

where the product runs over the nonempty subsets of replica
indexes a ⊆ [n]. The action in the exponent in Eq. (23) has the
structure

S[β,Q,Q̂] := Smf[β,Q,Q̂] +
∑

g:Eg�3

′
Sg[β,Q]. (24)

The first contribution is the mean field term, corresponding to
the biconnected graph with one edge only, plus other terms
deriving from the constraints imposed for the introduction of
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the order parameters Qa and Q̂a. It is given by

−nβSmf

= −
∑

a

Qa Q̂a + 1

2

∑
a

g|a|(0) Q2
a

+ ln

[
n∏

a=1

∫ 2π

0

eiλa

dλa

2π
exp

(∑
a

Q̂a e−i
∑|a|

l=1 λal

)]
.

(25)

Before performing the analytic continuation for small n, we
assume a replica symmetric ansatz, i.e.,

Qa ≡ Q|a| and Q̂a ≡ Q̂|a|. (26)

It is convenient, in order to take the n ↓ 0 and β ↑ ∞ limits, to
introduce a functional representation for the order parameters,
namely

G(x) :=
∞∑

r=1

(−1)r−1 Q̂re
βrx

r!
. (27)

The saddle point condition with respect to {Q̂r}r in the n → 0
limit immediately yields

δS

δQ̂r

= 0 ⇒ Qr = β

∫
eβrx−G(x)

(r − 1)!
dx. (28)

If we restrict ourselves to the mean field approximation,
in the limit n ↓ 0 we can express the saddle-point mean field
action as function of G only (see Appendix A for a detailed
computation):

Smf = −
∫

(e−eβx − e−G(x)) dx +
∫

G(x)e−G(x) dx

− 1

2

∫
ρ(w)e−G(x)−G(y) ∂J0(2eβ

x+y−w

2 )

∂x
dx dy dw,

(29)

where J0(x) is a Bessel function of the first kind and

ρ(w) = 	d

p
w

d
p
−1

θ (w) (30)

is the distribution of the weight appearing in the graph with
E = 1. Taking the zero temperature limit of Eq. (29), we obtain
the mean field cost

Emf = −
∫

[θ (−x) − e−G(x)] dx +
∫

G(x)e−G(x) dx

+ 1

2

∫
ρ(x + y) e−G(x)−G(y) dx dy. (31)

The saddle point condition for G(u) in the mean field
approximation is then

δEmf

δG(u)
= 0 ⇒ G(u) =

∫
ρ(w) e−G(w−u) dw, (32)

to be used in Eq. (31) to obtain the mean field approximation
to the optimal cost. As anticipated, the mean field case was
discussed in Ref. [9] in the study of the random link matching
problem.

If we consider, instead, the complete action, each term
Sg gives a correction to the mean field contribution that, in
general, is of the same order of the mean field contribution
itself, being the dependence of Sg from N already factorized
out for large N , as in Eq. (23). However, it has been observed by
Houdayer et al. [26] that the contribution of the different graphs
is exponentially small in the dimension d of the Euclidean
space. Defining the zero-temperature limits E := limβ↑∞ S

and Eg := limβ↑∞ Sg, which can be conveniently considered
as functionals of G(u), saddle point extremization gives

δE
δG(u)

= 0 ⇒ G(u) =
∫

ρ(w)e−G(w−u) dw

− eG(u)
∑

g:Eg�3

′ δEg
δG(u)

. (33)

The resulting order parameter G can then be used to evaluate
the average optimal cost

Ê = Emf +
∑

g:Eg�3

′
Eg. (34)

In the next section we take a first step beyond the mean
field approximation, considering the terms in the series
corresponding to graphs having a single loop, and ignoring
the others.

IV. ONE-LOOP CONTRIBUTIONS

In this section we consider the one-loop terms appearing in
the action in Eq. (24). We denote by pE the one-loop graph
having E vertexes and E edges and we will use the term
polygon for such graphs. Polygons appear also as first finite
size corrections in random link matching problem [20,43,44]
and as first corrections in certain perturbative expansions
around the Bethe approximation [45–47]. We shall denote by
SE := SpE

the contribution of the polygon pE to the action in
Eq. (19). The symmetry factor of a polygon pE is given by

σpE
= 1

2E
. (35)

Neglecting nonpolygonal contributions, we thus approximate
the full replicated action in Eq. (24) by

Spoly := Smf +
∞∑

E=3

SE. (36)

To explicitly compute the terms SE , we can proceed in analogy
with the computation performed in Ref. [20] for the finite
size corrections in the random link problem. We introduce the
(2n − 1) × (2n − 1) matrix T(k), also called replicated transfer
matrix, whose elements are given by

Tab(k) := δa∩b=∅ Q|a|+|b|
√

g|a|(k)g|b|(k). (37)

Here a and b are, as before, nonvoid elements of the power
set of the replica indexes [n], whose cardinality is expressed
as |a| and |b|, respectively, and δa∩b=∅ is defined by

δa∩b=∅ =
{

1 if a ∩ b = ∅,

0 otherwise. (38)

Therefore the contribution of the polygon pE , according to
Eq. (19) and under the replica symmetric assumption, can be
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written as

− nβSE = 1

2E

	d

(2π )d

∫ ∞

0
kd−1 tr[TE(k)] dk. (39)

To proceed further, we will diagonalize T(k) following the
classical strategy of de Almeida and Thouless [48] and already
adopted in Ref. [20]. In fact, the next steps of our calculation,
reported in Appendix B, differ from the ones of Ref. [20] in
the random link problem for the presence of the momentum
variable k only.

The matrix T(k) is invariant under permutations of the
replica indexes, therefore we block diagonalize it according
to the irreducible representations of the permutation group.
The subspaces that are invariant under the action of the
symmetry group are classified according to the number q

of distinguished replica indexes, in some appropriate basis
spawning them (see Refs. [44,49] for an application of the
same procedure to disordered Ising models). Particular care
has to be taken in the limits n ↓ 0 followed by β ↑ ∞. We give
here only the final result, whereas the required computation
is presented in Appendix B. The polygon cost functional EE

is divided into two terms: the first one E (01), accounting for
the contribution of the subspaces q = 0,1, corresponds to the
so-called longitudinal and anomalous sectors in spin glass
literature; the second one E (2+), accounts for all the other
subspaces, q � 2, and it is nonzero for E odd only. The average
optimal cost functional is thus given by

Epoly = Emf +
∞∑

E=3

(
E (01)

E + E (2+)
E

)
. (40a)

The term Emf here is given by Eq. (31). The contributions E (01)
E

and E (2+)
E , with EE = E (01)

E + E (2+)
E are given by

E (01)
E : = (−1)E	d

2(2π )d

∫ ∞

0
kd−1 tr[HE−1(0,k)K(k)] dk,

(40b)

E (2+)
E : =

{
	d

E(2π)d
∫∫ ∞

0 kd−1 tr[HE(t,k)] dt dk E odd,

0 E even.

(40c)

In the equations above we have introduced the operator

[H(t,k)]uv :

= 	d e− G(u)+G(v)
2

x
d
p
−1

0F1

[
−
d
2

; − k2x
2
p

4

]
θ (x)

p

∣∣∣∣∣∣∣
x=u+v−2t

, (41a)

and the operator

[K(k)]uv : = 	d e− G(u)+G(v)
2

x
d
p

d
0F1

×
[

−
d
2 + 1

; −k2x
2
p

4

]
θ (x)

∣∣∣∣∣
x=u+v

. (41b)

As anticipated, the contribution E (2+)
E has an expression that is

analogous to the finite size corrections computed in Ref. [20]

for the random link matching problem, while the sectors with
q = 0,1 produce a contribution E (01)

E that has no equivalent in
that computation.

The general saddle point equation for G is given by Eq. (33).
However, keeping the polygonal contribution only, we can
approximate Eq. (33) by

G(u) =
∫

ρ(w)e−G(w−u) dw − eG(u)
∞∑

E=3

[
δE (01)

E

δG(u)
+ δE (2+)

E

δG(u)

]
.

(42a)

The functional derivatives in Eq. (42a) are given by

δE (01)
E

δG(u)
= (−1)E	d

2(2π )d

×
∫ ∞

0
kd−1

E−1∑
m=0

[HE−1−m(0,k)K(k)Hm(0,k)]uu dk

(42b)

and similarly

δE (2+)
E

δG(u)
= − 	d

(2π )d

∫∫ ∞

0
kd−1[HE(t,k)]uu dk dt. (42c)

The computation of the spectra of H(t,k) and K(k) allows us to
evaluate the polygonal correction both to the average optimal
cost and to the saddle point solution for G(u). The results of
this computation will be presented in the next section.

V. NUMERICAL RESULTS

In order to compute, for a given dimension d and cost
exponent p, the polygonal approximation to the average
optimal cost, we have to evaluate the cost functional Epoly,
given in Eq. (40a), on the solution Gpoly of the saddle point
equation (42a). However, a naı̈ve numerical computation of the
terms of the series becomes rapidly infeasible as the number
of edges E increases [e.g., the term E (2+)

E in Eq. (40c) involves
E + 2 integrations].

We adopted therefore a different strategy. We evaluated
the spectrum of a discretized representation of the operator
H(t,k). Typically, few of the largest eigenvalues, and the
corresponding eigenvectors, are sufficient to approximate the
operator within the required precision. The infinite sum over E

in Eqs. (40a) and (42a) could also eventually be taken before
the integrations in k and t . Proceeding in this way, we managed
to compute efficiently Epoly from Eq. (40a) for any given G(u),
using the expressions

∑
E�3

E (01)
E = 	d

2(2π )d

∫ ∞

0
kd−1

∑
λ

−λ2

1 + λ
〈λ|K(k)|λ〉 dk,

(43)∑
E�3

E (2+)
E = 	d

(2π )d

∫∫ ∞

0
kd−1

∑
λ

[atanh(λ) − λ] dt dk,

(44)

where the sum runs over the eigenvalues of H(0,k) and H(t,k)
and we omitted the dependence of λ from t and k.
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FIG. 4. The four largest magnitude eigenvalues of the operator H(t,k) as a function of the momentum k for t = 0 (left) and as function of t

for k = 0 (right).

On the other hand, the computation of Gpoly through
iterations of Eq. (42a) proved to be much harder than in
the mean field case, due to some numerical instabilities that
prevented the iterative procedure to reach a fixed point, even
truncating the expression to the E = 3 term. We took the
alternative approach of dealing with

∑
E EE as a perturbation

toEmf, evaluatingEpoly in Eq. (40a) on Gmf, solution of Eq. (32).
Observe that Gmf(u) e−√

Gmf(u) is the leading eigenfunction
of the operator H(0,0) with eigenvalue λ1(0,0) = 1, that is,
we have a theory with a zero mass when t = k = 0. The
commutation of sum and integral leading to Eq. (44) is justified
in spite of the singularity in the integrand for t = k = 0, once
one takes into account the behavior of the largest eigenvalue
λ1 ∼ e−at−bk2

, with a,b > 0 and for small t and k, as we
checked numerically (see also Fig. 4) and analytically (using
perturbation theory).

We report the results of our estimates for the (rescaled)
average optimal cost in Table I, in the case p = 1 and using
the first six eigenvalues of H(t,k). Our analytical predictions
for Ê are compared to the numerical values Enum obtained
in Ref. [26], where the authors applied an exact algorithm
to random instances of the EMP and averaged over many
samples. Also, for comparison, we report the values obtained

TABLE I. Comparison of the analytical predictions for the
average optimal cost for many dimension and for p = 1. The values
for Enum, corresponding to the average matching cost obtained by an
actual matching procedure, are taken from Ref. [26].

d Enum Emf in Gmf E� in Gmf Epoly in Gmf E� in G�

1 0.5 0.4112335 0.33624 – 0.33623
2 0.3104(2) 0.3225805 0.29699 0.31376 0.30291
3 0.3172(2) 0.3268392 0.31255 0.31998 0.31536
4 0.3365(3) 0.3432274 0.33399 0.33809 0.33554
5 0.3572(2) 0.3621749 0.35577 0.35825 0.35669
6 0.3777(1) 0.3814168 0.37678 0.37838 0.37735

for

E� := Emf + E3, (45)

with Emf and E3 = E (01)
3 + E (2+)

3 given by Eq. (31) and
Eqs. (40), respectively. E� is therefore the cost compre-
hensive of the triangular correlations only, as considered in
Refs. [12,26]. In Appendix C we show how our expression for
E3 obtained through diagonalization in the invariant subspaces
of the replica permutations group can be mapped into the
expression given in Ref. [12].

We also defined G� to be the saddle point solution for
G corresponding to the triangular approximation E�, and we
computed it according to Eq. (34) of Ref. [12]. Note that a small
mistake appears there in the final formulas [50]. Our results
for E� computed on G� are slightly different from the ones
reported in Ref. [26] (βEC in Table 5 of that paper). Since
their numerical results were based on the analytical results
in Ref. [12], we suspect that the discrepancy is due to the
aforementioned error, that went unnoticed.

The results in Table I show that Epoly, computed as a
perturbation to Emf, is a consistent improvement over the
mean-field result in any dimension. Comparison with E� in G�
is unfavorable in high dimension, though. Further investigation
using the appropriate saddle point Gpoly are due to assess the
relevance of this particular diagrammatic class in the cluster
expansion.

VI. SUB-SUB-LEADING CORRECTION IN THE
RANDOM LINK PROBLEM

We reconsider now the random link matching problem,
that is the matching problem on KN with costs independently
and uniformly distributed in the interval [0,1]. The average
optimal cost E∗

RL has a finite asymptotic limit, computed in
Ref. [9] through the replica method, as

lim
N→∞

E∗
RL ≡ Emf = π2

12
. (46)
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The O(1/N ) correction to the asymptotic cost has been
obtained in Refs. [51–53]. In particular, in Ref. [52] it is shown
that for large N ,

E∗
RL = Emf + �E

N
+ o

(
1

N

)
, (47a)

with

�E = ζ (2)

4
− ζ (3)

2
+

∑
E � 3
E odd

1

2E

∫ ∞

0
tr[HE(t,0)] dt, (47b)

where ζ (z) is the Riemann zeta function. Here we recognize
the same structure of the polygonal expansion in the Euclidean
case. The main differences are the absence of the momentum
integration and of the E (01) term, which is equal to zero in this
case [52]. The operator H is in fact the same we have defined in
Eq. (41a) for our one-loop computation in the EMP, assuming
d = p = 1.

We will show now how the particular form of Eqs. (47)
allows us to predict the scaling with N of the next order finite
size correction in the random link matching problem. Let us
start observing that, for large E, the integral is dominated by
the region around t = 0. We assume the behavior

tr[HE(t,0)] ∼ λE(t) ∼ λ−ctE, (48)

for small t and large E, where the coefficient c > 0 can be
explicitly computed using perturbation theory. Performing the
t integration, we find that the coefficients of the series in
Eq. (47b) decay as E−2. We can extract the sub-sub-leading
scaling with N of the optimal cost, which is due to counting
correction in the number of loops at finite N , using a simple
heuristic argument. A random path on the complete graph KN

of length � has a probability of intersecting itself in the next step
of order �/N . Therefore, for a random path of length E the total
probability of intersection is of order E2/N and a crossover
arises at the scale E ∼ √

N . As a consequence, at finite N , the
sum in Eq. (47b) should be opportunely regularized. Choosing
an appropriate regularizing function f (x), with limits 1 and 0
for x ↓ 0 and x ↑ ∞, respectively, we have the relation

∑
E

1

E2
f

(
E√
N

)
∼ a + b√

N
, (49)

as it can be easily showed approximating the sum with
an integral. With these assumptions the first two finite size
corrections to the asymptotic cost take the form

E∗
RL ∼ π2

12
+ e1

N
+ e3/2

N3/2
. (50)

The anomalous 3/2 exponent obtained using this simple
argument is indeed perfectly consistent with the numerical
simulations we performed using an exact optimization algo-
rithm [54], see Fig. 5.

A refined computation of the terms appearing in the
O(1/N ) corrections gives e1 = 0.0674(1) [52,55], in agree-
ment with our numerical data. From numerical fit we then
obtain the estimate e3/2 = −1.24(4) for the coefficient of the
O(1/N3/2) correction.

FIG. 5. Average optimal cost in the random link matching
problem as a fuction of N−1. Numerical data points are shown along
a quadratic fit in N−1/2. The fact that the data points are linearized
by the chosen scaling of the axes implies a O(N−3/2) finite size
correction to the asymptotic average optimal cost.

The extension of these considerations to the polygonal
contributions we computed in the Euclidean case to obtain a
prediction for the exponent of the finite size correction remains
an interesting open problem.

VII. CONCLUSIONS AND PERSPECTIVES

In the present work we have discussed the random EMP
on the unit hypercube in the thermodynamic limit. We have
adopted the classical replica approach. It is well known [12]
that Euclidean correlations among weights can be considered
as corrections to a mean field contribution corresponding to
the purely random case. We have shown that the Euclidean
corrections can be treated in a Mayer-type expansion of
biconnected diagrams, each one of them representing a
different order of correlation among weights. Subsequently we
restricted our computation to the polygonal contribution in the
replica symmetric hypothesis, showing that, in this case, the
corrections can be properly evaluated using a transfer matrix
approach. We have obtained an implicit expression for the
average optimal cost in terms of the spectrum of two operators
K and H. Finally, we have presented a numerical study of
our results, comparing our predictions with the numerical
simulations.

As specified above, in our calculation we did not evaluate
nonpolygonal diagrams that should be included to obtain
the leading contribution to the average optimal cost. These
contributions correspond to the existence of additional inner
loops. An analytic treatment of these contributions would
greatly improve the final theoretical predictions. Moreover,
other quantities of interest related to the problem, like
correlation functions, were not considered here. A restatement
of the previous results in a cavity method formalism is another
interesting open problem.
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APPENDIX A: MEAN FIELD ACTION

In the present Appendix we evaluate the mean field action presented in Sec. III. Let us start from the replicated action of
Eq. (25) that under the replica symmetric hypothesis becomes

nβSmf[β,Q,Q̂] =
∑
r�1

(
n

r

)
Qr Q̂r − 1

2

∑
r�1

(
n

r

)
gr (0) Q2

r − ln

⎡
⎣ n∏

a=1

∫ 2π

0

eiλa

dλa

2π
exp

⎛
⎝∑

r�1

Q̂r

∑
a1<···<ar

e−i
∑r

l=1 λal

⎞
⎠
⎤
⎦. (A1)

Let us now work out the n → 0 limit. The result of this limit is presented already in the seminal work by Mézard and Parisi [9].
However, some intermediate nontrivial steps are missing in their exposition and therefore we present here a more detailed
derivation. We start observing that

∑
a1<···<al

e−i
∑r

j=1 λ
aj = 1

r!

(∑
a

e−iλa

)r

. (A2)

It follows that

exp

⎛
⎝∑

r�1

Q̂r

∑
a1<···<ar

e−i
∑r

l=1 λal

⎞
⎠ = exp

⎡
⎣∑

r�1

Q̂r

r!

(∑
a

e−iλa

)r
⎤
⎦ =

∫∫ +∞

−∞
exp

⎡
⎣iη

(
x −

∑
a

e−iλa

)
+

∑
r�1

Q̂rx
r

r!

⎤
⎦ dx dη

2π
.

(A3)

The dependence on {λa}a factorizes and therefore we can calculate, for each value of a,∫ 2π

0

dλa

2π
exp(iλa − iηe−iλa

) = i

∫
γ

e−iηz

z2

dz

2π
= −iη, (A4)

where γ is the anticlockwise oriented unit circle in the complex plane. We have[
n∏

a=1

∫ 2π

0

eiλa

dλa

2π

]
exp

⎛
⎝∑

r�1

Q̂r

∑
a1<···<ar

e−i
∑r

l=1 λal

⎞
⎠

=
∫∫ +∞

−∞
(−iη)n exp

⎡
⎣iηx +

∑
r�1

Q̂rx
r

r!

⎤
⎦ dx dη

2π
= dn

dxn
exp

(
n∑

r=1

Q̂rx
r

r!

)∣∣∣∣∣
x=0

. (A5)

In the n → 0 limit,

∫∫ +∞

−∞
(−iη)n exp

⎡
⎣iηx +

∑
r�1

Q̂rx
r

r!

⎤
⎦ dx dη = 1 + n

∫∫ +∞

−∞
ln(−iη) exp

⎡
⎣iηx +

∑
r�1

Q̂rx
r

r!

⎤
⎦ dx dη + o(n). (A6)

Using now the integral representation for the logarithm

ln(x) =
∫ ∞

0

e−t − e−xt

t
dt, (A7)

we observe that, for a generic function f (x),∫∫ +∞

−∞
ln(−iη)eiηx+f (x)dx dη =

∫ +∞

0

dt

t

[∫∫ +∞

−∞
dx dη(e−t − eiηt )eiηx+f (x)

]

=
∫ +∞

0

ef (0)−t − ef (−t)

t
dt =

∫ ∞

−∞
[ef (0)−ey − ef (−ey )]dy. (A8)

Therefore, using Eq. (27), we have

∫∫ +∞

−∞
ln(−iη) exp

⎡
⎣iηx +

∑
r�1

Q̂rx
r

r!

⎤
⎦ dx dη = β

∫ ∞

−∞
[e−eβy − e−G(y)]dy. (A9)
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The other terms appearing in the mean field action can be evaluated on the saddle point using Eq. (28) and the fact that(
n

r

)
= (−1)r−1n

r
+ o(n). (A10)

In particular,

∑
r�1

(−1)r−1

r
QrQ̂r = β

∫
e−G(x)

∞∑
r=1

Q̂re
βrx

r!
dx = β

∫
G(x)e−G(x) dx (A11)

and similarly

∑
r�1

(−1)r−1gr (0)

r
Q2

r = β2
∫∫

e−G(x)−G(y)
∑
r�1

(−1)r−1gr (0)eβr(x+y)

r!(r − 1)!
dx dy

= −β

∫∫∫
e−G(x)−G(y)ρ(w)

∂J0(2eβ
x+y−w

2 )

∂x
dx dy dw. (A12)

Collecting all contributions, we can finally write the mean field action at finite temperature,

Smf[β,Q,Q̂] ≡ Smf[β,G] =
∫

G(x)e−G(x) dx + 1

2

∫∫∫
e−G(x)−G(y)ρ(w)

∂J0(2eβ
x+y−w

2 )

∂x
dx dy dw −

∫ ∞

−∞
[e−eβy − e−G(y)]dy,

(A13)

that has the structure of Eq. (29). The β → ∞ limit of this quantity is immediately obtained using the fact that

J0

[
2 exp

(
βx

2

)]
− 1

β→∞−−−→ −θ (x), (A14)

and therefore we have

lim
β→∞

Smf[β,Q,Q̂] =
∫

G(x)e−G(x) dx − 1

2

∫∫
e−G(x)−G(w−x)ρ(w) dx dw −

∫ ∞

−∞
[θ (−x) − e−G(x)]dx. (A15)

The mean field approximation to the optimal cost is obtained substituting in the previous equation the mean field solution for
G(x), given by Eq. (32).

APPENDIX B: DERIVATION OF THE POLYGONAL
CORRECTIONS

To derive the series of Eq. (40a), we proceed accordingly to
the diagonalization strategy of De Almeida and Thouless [48].
The following computation is a straightforward generalization
of the ones of Parisi and Mézard [51] and Parisi and
Ratiéville [52], the main difference being the momentum
dependence of some quantities, which is not present in
previous mean field calculations.

Consider an eigenvector c = (ca)a of the replicated transfer
matrix T of Eq. (37). It must satisfy∑

b

Tabcb =
∑

b:a∩b=∅
Q|a|+|b|

√
g|a|(k)g|b|(k)cb = λca. (B1)

We will look for eigenvectors cq with q distinguished replicas,
in the form

cq
a =

⎧⎨
⎩

0 if |a| < q,

di
|a| if a contains q − i + 1 different

indexes,i = 1, . . . ,q + 1.

(B2)

For q � 2, if we consider q − 1 distinguished replicas, it can be
proved [51] that the following orthogonality condition holds:

q−j∑
k=0

(
k

q − j

)(|a| − (k + j )

n − q

)
d

q+1−(k+j )
|a| = 0. (B3)

The orthogonality condition provides a relation between all the
different values di

|a|, showing that we can keep one value only,
say d1

|a|, as independent. Using this assumption, the eigenvalues
of the original T(k) matrix can be evaluated diagonalizing the
infinite dimensional matrices N(q)(k) [20] whose elements, in
the n → 0 limit, are given by

N
(q)
ab (k) = (−1)b


(a + b)
(b)Qa+b

√
ga(k)gb(k)


(a)
(b − q + 1)
(b + q)
. (B4)

In particular, for q = 0 a direct computation gives

N
(0)
ab (k) =

(
n − a

b

)
Qa+bgb(k)

n→0−−→ (−1)b

(a + b)


(a)b!
Qa+b

√
ga(k)gb(k), (B5)

whereas for q = 1 we obtain

N
(1)
ab (k) =

(
n − a

b

)
b

b − n
Qa+b

√
ga(k)gb(k)

n→0−−→ N
(0)
ab (k) + n

b
N

(0)
ab (k) + o(n). (B6)

Summarizing, we can write

tr[TE(k)] =
∞∑

q=0

[(
n

q

)
−

(
n

q − 1

)]
tr[(N(q)(k))E]. (B7)
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We distinguish now the sectors q � 2 from the sectors q = 0,1, due to the fact that the two sets requires a different analytic
treatment.

1. Sectors q � 2

Computing the spectrum of the matrix N(q) for q � 2 is equivalent to the computation of the spectrum of M(q)(k) that has
elements

M
(q)
ab (k) := (−1)a+b

√
gb+q(k)

ga+q(k)


(a + 1)
(b + q)


(b + 1)
(a + q)
N

(q)
b+q a+q(k) = (−1)a+q 
(a + b + 2q)


(a + 2q)b!
Qa+b+2qgb+q(k). (B8)

The eigenvalue equation for M(q)(k) has the form

λc(q)
a =

∞∑
b=1

M
(q)
ab (k)c(q)

b = β(−1)q
∫

(−1)ae(a+q)βu


(a + 2q)
φ(q)(u; k) du, (B9)

where we have introduced

φ(q)(u; k) :=
∞∑

b=1

e(b+q)βu− G(u)
2

b!
c

(q)
b gb+q(k). (B10)

Equation (B9) can be written as

λφ(q)(u; k) = (−1)q
∫

[A(q)(k)]uvφ
(q)(v; k) dv, (B11)

where A(q)(k) is the operator

[A(q)(k)]uv := βe− G(u)+G(v)
2 +qβ(u+v)

∞∑
a=1

(−1)aeaβ(u+v)


(a + 2q)a!
ga+q(k). (B12)

In the n → 0 limit, from Eq. (B7) we have therefore

∞∑
q=2

[(
n

q

)
−

(
n

q − 1

)]
tr[

(
N(q)(k)

)E
]

=
∞∑

q=2

(−1)qE

[(
n

q

)
−

(
n

q − 1

)]
tr[(A(q)(k))E]

n→0−−→ n

∞∑
q=2

(−1)q(E+1) 2q − 1

q(1 − q)
tr[(A(q)(k))E]

= n

∞∑
q=1

4q − 1

2q(1 − 2q)
tr[(A(2q)(k))E] + (−1)En

∞∑
q=1

4q + 1

2q(2q + 1)
tr[(A(2q+1)(k))E]. (B13)

Here we have used the fact that

(
n

q

)
−
(

n

q − 1

)
n→0−−→

⎧⎨
⎩

1 if q = 0,

−1 + n if q = 1,

n(−1)q 2q−1
q(1−q) if q > 1.

(B14)

2. Sectors q = 0 and q = 1

Let us now evaluate the contributions of the sectors q = 0 and q = 1. We have

1∑
q=0

[(
n

q

)
−

(
n

q − 1

)]
tr[(N(q)(k))E] = tr[(N(0)(k))E] + (n − 1) tr[(N(1)(k))E] + o(n). (B15)

To evaluate the traces appearing in the previous expression, we define the operator M(0)(k),

M
(0)
ab (k) := (−1)a+b

√
gb(k)

ga(k)

a

b
N

(0)
ba (k) = (−1)a


(a + b)


(a)b!
Qa+bgb(k), (B16a)
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and the operator M̃(1)(k),

M̃
(1)
ab (k) := (−1)a+b

√
gb(k)

ga(k)

a

b
N

(1)
ba = (−1)a


(a + b)


(a)b!
Qa+bgb(k) + n(−1)a


(a + b)


(a + 1)b!
Qa+bgb(k). (B16b)

Repeating the considerations presented for the q � 2 case, we can introduce the operator A(0)(k) as follows:

[A(0)(k)]uv = βe− G(u)+G(v)
2

∞∑
a=0

(−1)aeaβ(u+v)ga(k)


(a)a!
= 	de

− G(u)+G(v)
2

∫ ∞

0
zd−1

0F1

[−
d
2

; −k2z2

4

]
∂J0(2eβ

y

2 )

∂y

∣∣∣∣∣
y=u+v−zp

dz, (B17)

having the same eigenvalues of M(0)(k), in such a way that

tr[(N(0)(k))E] = tr[(M(0)(k))E] = tr[(A(0)(k))E]. (B18)

Similarly, we have that the eigenvalues of M̃(1)(k) are obtained from

λc̃a =
∑

b

M̃
(1)
ab (k)c̃b =

∑
r ′

(−1)a

(a + b)Qa+bgb(k)


(a)b!

(
1 + n

a

)
c̃b =

∫
eauβ− G(u)

2


(a)

(
1 + n

a

)
φ̃(u; k) du, (B19)

where φ̃(u; k) is given by

φ̃(u; k) :=
∞∑

b=1

ebβu− G(u)
2

b!
c̃bgb(k). (B20)

It is natural, therefore, to introduce the operator Ã(1)(k) defined as follows:

[Ã(1)(k)]uv := βe− G(u)+G(v)
2

∞∑
a=1

(−1)aeaβ(u+v)


(a)a!
ga(k)

(
1 + n

a

)
= [A(0)(k)]uv + n[B(k)]uv. (B21)

The operator B(k) introduced above is

[B(k)]uv := βe− G(u)+G(v)
2

∞∑
a=1

(−1)aeaβ(u+v)


(a + 1)a!
ga(k) = 	dβe− G(u)+G(v)

2

∫ ∞

0
zd−1

0F1

[−
d
2

; −k2z2

4

]
[J0(2eβ u+v−zp

2 ) − 1] dz. (B22)

We have then, up to higher orders in n,

tr[(N(0)(k))E] + (n − 1) tr[(N(1)(k))E] = tr[(A(0)(k))E] + (n−1) tr[(A(0)(k) + nB(k))E]

= n tr[(A(0)(k))E] + nE tr[(A(0)(k))E−1B(k)]. (B23)

3. Zero-temperature limit

For each one of the quantities above, we need to calculate
the β → ∞ limit, being interested in the optimal cost. Let
us consider the q � 2 contribution. First, we introduce the
identity

∞∑
r=1

(−x)r


(r + 2q)r!
= i

2π

∮
γε

e
−ζ−2q ln(−ζ )+ x

ζ dζ. (B24)

The path γε , in the complex plane, is the Hankel path,
represented in Fig. 6. This identity can be proved starting
from the Hankel representation for the reciprocal gamma
function [56]

1


(z)
= i

2π

∮
γε

e−ζ−z ln(−ζ ) dζ. (B25)

Using Eq. (B24), we can rewrite Eq. (B12) for q � 2 as

[A(q)(k)]uv = iβ	d

2π
e− G(u)+G(v)

2

×
∫ +∞

0
dw

∮
γε

dζ
w

d
p
−1

p
0F1

[−
d
2

; −k2w
2
p

4

]

× exp

(
βq(u + v − w) − w − 2q ln(−ζ )

+ eβ(u+v−w)

ζ

)
. (B26)

To compute the β → ∞ limit, we perform a saddle point
approximation, obtaining

ζsp = −q, wsp = u + v − 2 ln q

β
. (B27)

FIG. 6. Hankel path in the complex plane.
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The saddle point has fixed position assuming that ln q = tβ

for some t . Taking instead q fixed and β → ∞, it is easily
seen from Eq. (B12) that

lim
β→∞

[A(q)(k)]uv =
{∞ for u + v > 0,

0 for u + v < 0.
(B28)

Indeed, only for u + v − 2t > 0 the saddle point is inside the
range of integration. For this reason, we take ln q

β
= t fixed,

obtaining the limit operator H(t,k),

[H(t,k)]uv : = lim
β → ∞, q → ∞

β−1 ln q = t

[A(q)(k)]uv

≈ 	d

p
e− G(u)+G(v)

2 x
d
p
−1

0F1

×
[

−
d
2

; −k2x
2
p

4

]
θ (x)

∣∣∣∣∣
x=u+v−2t

. (B29)

Observing that
∑∞

q=2
1

βq
→ ∫ +∞

0 dt the contribution to the
(rescaled) average optimal cost from the q � 2 sectors is

E (2+)
E :=

{
	d

E(2π)d
∫∫ ∞

0 kd−1 tr[HE(t,k)] dt dk E odd,

0 E even.

(B30)

For the sectors q = 0 and q = 1 the β → ∞ limit can
be performed quite straightforwardly. In particular, using
Eq. (A14), we obtain the limit operators H(0,k),

[A(0)(k)]uv

β→∞−−−→ −[H(0,k)]uv

≡ −	de
− G(u)+G(v)

2
x

d
p
−1

p
0F1

[−
d
2

; −k2x
2
p

4

]
θ (x)

∣∣∣∣∣
x=u+v

,

(B31a)

and the operator K(k),

[B(k)]uv

β→∞−−−→ −β[K(k)]uv :

= −	dβe− G(u)+G(v)
2

x
d
p

d
0F1

[ −
d
2 + 1

; −k2x
2
p

4

]
θ (x)

∣∣∣∣∣
x=u+v

.

(B31b)

The contribution to the (rescaled) average optimal cost from
the sectors q = 0 and q = 1 is

E (01)
E := (−1)E

	d

2(2π )d

∫ ∞

0
kd−1 tr[HE−1(0,k)K(k)] dk.

(B32)

Collecting the results above, Eq. (40a) is immediately ob-
tained.

APPENDIX C: THE TRIANGULAR CONTRIBUTION

As stressed in the main text, in Ref. [12] only the
contribution triangular contribution E = 3 was considered and
discussed. Moreover, their computation formally differs from
our triangular term, since Parisi and Mézard computed the joint

distribution of edge lengths, which is feasible in the triangular
case, therefore they did not need to step into momentum space.
Also the t integration along the sectors of the transfer matrix
decomposition is not present in their result. For the sake of
completeness, here we report their calculation and bridge it
with our formalism, specifying all details of the computation.
We will show that the expression in Eq. (40a) for E = 3 is
equivalent to their classical result.

We proceed in the replica symmetric hypothesis. We
observe that in this case Eq. (15) becomes

− nβS3[β,Q] =
∑

r1,r2,r3

n!
∏3

e=1 e−βrewe

K3

6(n − r1 − r2 − r3)!

3∏
i=1

Qri+ri+1

ri!

= n

6

∑
r1,r2,r3

3∏
e=1

e−βrewe

K3

(r1 + r2 + r3 − 1)!

×
3∏

i=1

(−1)ri−1Qri+ri+1

ri!
+ o(n). (C1)

We have used the fact that σK3 = 1
6 and, moreover, there are

n!

(n − r1 − r2 − r3)!r1!r2!r3!
(C2)

ways to organize r1 + r2 + r3 different replica indexes in three
groups of cardinality r1, r2, r3, respectively. Using Eq. (28) we
can write the previous expression as

− βS3[β,Q] =
∑

r1,r2,r3

n!
∏3

e=1 e−βrewe

K3

6(n − r1 − r2 − r3)!

3∏
i=1

Qri+ri+1

ri!

= 1

6

[
3∏

i=1

∫∫
dxi dwiG

′(xi)e
−G(xi )

]

× ρK3 ({wi})K[{β(xi + xi+1 − wi)}i], (C3)

where we have introduced the function

K({xi}i) =
∑

r1,r2,r3

(r1 + r2 + r3 − 1)!
3∏

i=1

(−1)ri−1e−rixi

(ri + ri+1)!ri!

(C4)

and ρK3 is given by Eq. (D2) in the form

ρK3 ({we}) =
[

3∏
e=1

∫
Rd

ddzeδ(we − ‖ze‖p)

]
δ

(
3∑

e=1

ze

)
. (C5)

We refer to Ref. [12] for the explicit result of the integration
above. Using the expression in Eq. (A13), we can write
the action, in the triangular approximation, at finite
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temperature,

Smf[β,G] + S3[β,G] =
∫

G(x)e−G(x) dx + 1

2

∫∫∫
e−G(x)−G(y)ρ(w)

∂J0(2eβ
x+y−w

2 )

∂x
dx dy dw

−
∫ ∞

−∞
[e−eβy − e−G(y)]dy − 1

6β

[
3∏

i=1

∫∫
dxi dwiG

′(xi)e
−G(xi )

]

× ρK3 ({wi})K[{β(xi + xi+1 − wi)}i]. (C6)

We have to evaluate the β → ∞ limit. Using the identity

1


(p1 + p2 + 1)
= 1



(
p1 + 1

2

)


(
p2 + 1

2

) ∫ 1

0
xp1− 1

2 (1 − x)p2− 1
2 dx, (C7)

we can write

K({βxi}i)
β

= −
∫ +∞

−∞
e−e−βw

[
3∏

i=1

∫ 1

0

dui√
ui(1 − ui)

]⎡⎣ ∞∑
p=1

(−uiui−1e
β(xi−w))p

p!
2
(
p + 1

2

)
⎤
⎦ dw

β→∞−−−→ 1

π3

[∫ 1

0

du√
u(1 − u)

]3

×
∫ +∞

0

3∏
i=1

θ (xi)θ (xi − w) dw = min
i

({xi})θ (x1)θ (x2)θ (x3). (C8)

To perform the last limit, we have used the fact that

lim
β→∞

∞∑
p=1

(−zeβx)p

p!
2
(
p + 1

2

) = −θ (x)

π
. (C9)

This property can be obtained applying the following
Proposition. Let f (p) be an holomorphic function in the semiplane Re(p) > −ε, for some ε ∈ (0,1). Moreover assume that

|f (p)|e−π |p| � M|p|−k with k > 1 as Im(p) → ±∞. Then the following identity holds:

lim
x→+∞

∞∑
p=0

f (p)(−x)p = 0. (C10)

Proof. The series in Eq. (C10) admits a representation as an integral over the Hankel path γε in the complex plane, see Fig. 6,
with ε ∈ (0,1):

∞∑
p=0

f (p)(−x)p = 1

2i

∫
γε

f (ζ )xζ

sin(πζ )
dζ = x−ε

2i

∫ +∞

−∞

f (−ε + iy)xiy

sin [π (iy − ε)]
dy, (C11)

where in the second equality we have deformed the path to the vertical line Re(ζ ) = −ε. It follows that∣∣∣∣∣∣
∞∑

p=0

f (p)(−x)p

∣∣∣∣∣∣ � x−ε

∫ +∞

−∞

∣∣∣∣ f (−ε + iy)

2 sin [π (iy − ε)]

∣∣∣∣ dy, (C12)

Given the assumptions on f (p), the last integral is convergent, and the thesis follows taking the limit x → +∞. �
Noticeably, Eq. (C10) implies

lim
x→+∞

∞∑
p=1

f (p)(−x)p = −f (0) (C13)

from which Eq. (C9) follows immediately.
Combining the results above with the expression for the mean field action in Eq. (A15), we obtain the saddle point action in

the triangular approximation and in the zero temperature limit, E� := Emf + E3, where

E3 = −1

6

[
3∏

i=1

∫∫
dwi dxi G′(xi)e

−G(xi )

]
ρK3 ({we}e) min

i
({xi + xi+1 − wi}i)

3∏
i=1

θ (xi + xi+1 − wi). (C14)

The value of the average optimal cost can be obtained using for G(x) the solution of the saddle point equation Eq. (32), or the
solution of the saddle point equation obtained from the action E�, as showed in Ref. [12].
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Equation (C14) can be written in a different form. Indeed, expanding again the expression for E3 using Eq. (D2) and the
relation

min(x1,x2,x3)θ (x1)θ (x2)θ (x3) =
∫ ∞

0
θ (x1 − t)θ (x2 − t)θ (x3 − t) dt, (C15)

we can verify that the triangular contribution can be written in terms of the operators H(t,k) and K(k) introduced in Appendix B
as

E3 = − 1

6(2π )d

∫ +∞

0
dt

∫
Rd

ddk

[
3∏

i=1

∫∫
ddzi dxi G′(xi)e

−G(xi )+ik·zi θ (xi + xi+1 − ‖zi‖p − t)

]

= − 2	d

3(2π )d

∫∫ +∞

0
kd−1 tr[H3(t,k)] dt dk + 	d

(2π )d

∫∫ +∞

0
kd−1 tr[H3(t,k)] dt dk − 	d

2(2π )d

∫
Rd

kd−1 tr[H2(0,k)K(k)] ddk

= 	d

3(2π )d

∫∫ +∞

0
kd−1 tr[H3(t,k)] dt dk − 	d

2(2π )d

∫
Rd

kd−1 tr[H2(0,k)K(k)] ddk. (C16)

The second and the third contributions in the second line derive from the fact that, given a set of three numbers {a1,a2,a3}, the
simple identity∫ ∞

−∞
θ (t)

2∑
k=0

δ′(a1+k − t)δ(a2+k − t)θ (a3+k − t) dt +
∫ ∞

−∞
θ (t)

2∑
k=0

δ(a1+k − t)δ′(a2+k − t)θ (a3+k − t) dt

= −
∫ ∞

−∞
θ (t)

2∑
k=0

δ(a1+k − t)δ(a2+k − t)δ(a3+k − t) dt +
2∑

k=0

δ(a1+k)δ(a2+k)θ (a3+k) (C17)

holds. We finally have that Eq. (C16) is exactly the contribution appearing in Eq. (40a) for E = 3.

APPENDIX D: DIAGRAMMATIC RULES FOR Sg

The contribution Sg[β,Q] for a generic biconnected graph
to the action in Eq. (24) can be written in a quite general form
in relation to the topological structure of the graph g itself.
Let us first observe that, for a given graph g with V vertexes
and E edges, we can define a cycle basis as follows [57].
Every cycle in the graph can be represented in the space C ⊆
{0,1}E by a vector L = (�e)e such that �e = 1 if the edge e

belongs to L, �e = 0 otherwise. Remember that in a cycle,
each vertex has even degree by definition, and a cycle is called
circuit if all vertexes have degree equal to two, i.e., a circuit
corresponds to a “loop” in the nomenclature adopted in the
body of the paper [58]. In the introduced representation we
can sum two cycles L1 = (�(1)

e )e and L2 = (�(2)
e )e, in such a

way that L1 ⊕ L2 = (�(1)
e + �(2)

e mod 2)e ∈ C. We say that Lg

is a cycle basis for g if it is a set of circuits such that every
cycle in g can be expressed as sum of circuits in Lg, and,
moreover, its cardinality L := |Lg| is minimal. The number L

is called circuit rank and, for a connected graph, it satisfies the
fundamental property [57]

L = E − V + 1. (D1)

In a planar graph a basis Lg can be always easily identified
considering, as basis circuits, the faces of the graph. With these
definitions in mind, the distribution ρg({we}) in Eq. (18) can
be written in terms of a cycle basis of the graph g as

ρg({we}) =
[

E∏
e=1

∫
Rd

ddzeδ(we − ‖ze‖p)

] ∏
L∈Lg

δ

(∑
e∈L

ze

)
,

(D2)

and therefore, denoting by re := |ae|,∏
e∈g

e−βrewe

g

=
[

E∏
e=1

∫
Rd

ddze e−βre‖ze‖p

]∏
L∈L

δ

(∑
e∈L

ze

)

=
∏
L

∫
Rd

ddkL

(2π )d

E∏
e=1

[∫
Rd

ddκegre
(κe)δ

(
κe −

∑
L:e∈L

kL

)]
.

(D3)

In the equation above we have introduced the function

gr (κ) : =
∫
Rd

eiκ ·z−βr‖z‖p

ddz

= 	d

∫ ∞

0
zd−1e−βrzp

0F1

[−
d
2

; −κ2z2

4

]
dz. (D4)

Equation (D3) can be pictorially interpreted as follows. We
associate to each circuit L of our basis a “momentum” kL and to

FIG. 7. A planar graph and its decomposition in basis circuits.

012302-15



CARLO LUCIBELLO, GIORGIO PARISI, AND GABRIELE SICURO PHYSICAL REVIEW E 95, 012302 (2017)

each edge of the graph the quantity gre
(κe), with the additional

constraint that κe is the algebraic sum of the momenta
flowing in the basis circuits to which the edge e belongs (see
Fig. 7). Inserting Eq. (D3) in Eq. (15) we obtain a new
expression depending explicitly on the topology of the graph.
We can list a set of diagrammatic rules for the evaluation of
Sg at finite temperature. In particular, a momentum kL must be
associated with each basis circuit L; we must associate a set

of replica indexes ae and a quantity gre
(κe)δ(κe − ∑

L:e∈L kL)
to each edge e, and a quantity Qa(v)δa(v) to each vertex v. We
must finally sum on all {ae}e and integrating on all momenta.
Observe that the case of polygons is particularly simple, being
in this case L = 1, and therefore Eq. (D3) becomes

∏
e∈pE

e−βrewe

pE

= 	d

(2π )d

∫
dk kd−1

E∏
e=1

gre
(k). (D5)
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[52] G. Parisi and M. Ratiéville, Eur. Phys. J. B 22, 229 (2001).

012302-16

https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/nature10011
https://doi.org/10.1038/nature10011
https://doi.org/10.1103/PhysRevLett.113.078701
https://doi.org/10.1103/PhysRevLett.113.078701
https://doi.org/10.1103/PhysRevLett.113.078701
https://doi.org/10.1103/PhysRevLett.113.078701
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphyslet:019850046017077100
https://doi.org/10.1051/jphyslet:019850046017077100
https://doi.org/10.1051/jphyslet:019850046017077100
https://doi.org/10.1051/jphyslet:019850046017077100
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1051/jphys:0198800490120201900
https://doi.org/10.1051/jphys:0198800490120201900
https://doi.org/10.1051/jphys:0198800490120201900
https://doi.org/10.1051/jphys:0198800490120201900
https://doi.org/10.1016/j.physrep.2012.10.002
https://doi.org/10.1016/j.physrep.2012.10.002
https://doi.org/10.1016/j.physrep.2012.10.002
https://doi.org/10.1016/j.physrep.2012.10.002
https://doi.org/10.1002/rsa.1015
https://doi.org/10.1002/rsa.1015
https://doi.org/10.1002/rsa.1015
https://doi.org/10.1002/rsa.1015
http://arxiv.org/abs/arXiv:cond-mat/9801176
https://doi.org/10.1002/(SICI)1098-2418(199909)15:2<113::AID-RSA1>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1098-2418(199909)15:2<113::AID-RSA1>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1098-2418(199909)15:2<113::AID-RSA1>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1098-2418(199909)15:2<113::AID-RSA1>3.0.CO;2-S
https://doi.org/10.1007/s00440-003-0308-9
https://doi.org/10.1007/s00440-003-0308-9
https://doi.org/10.1007/s00440-003-0308-9
https://doi.org/10.1007/s00440-003-0308-9
https://doi.org/10.1002/rsa.20084
https://doi.org/10.1002/rsa.20084
https://doi.org/10.1002/rsa.20084
https://doi.org/10.1002/rsa.20084
https://doi.org/10.1140/epjb/e2002-00326-3
https://doi.org/10.1140/epjb/e2002-00326-3
https://doi.org/10.1140/epjb/e2002-00326-3
https://doi.org/10.1140/epjb/e2002-00326-3
https://doi.org/10.1023/A:1022221005097
https://doi.org/10.1023/A:1022221005097
https://doi.org/10.1023/A:1022221005097
https://doi.org/10.1023/A:1022221005097
https://doi.org/10.1103/PhysRevLett.106.190601
https://doi.org/10.1103/PhysRevLett.106.190601
https://doi.org/10.1103/PhysRevLett.106.190601
https://doi.org/10.1103/PhysRevLett.106.190601
https://doi.org/10.1088/1742-5468/2006/05/P05003
https://doi.org/10.1088/1742-5468/2006/05/P05003
https://doi.org/10.1088/1742-5468/2006/05/P05003
https://doi.org/10.1088/1742-5468/2005/09/P09006
https://doi.org/10.1088/1742-5468/2005/09/P09006
https://doi.org/10.1088/1742-5468/2005/09/P09006
https://doi.org/10.1109/TIT.2007.915695
https://doi.org/10.1109/TIT.2007.915695
https://doi.org/10.1109/TIT.2007.915695
https://doi.org/10.1109/TIT.2007.915695
https://doi.org/10.1007/s100510050565
https://doi.org/10.1007/s100510050565
https://doi.org/10.1007/s100510050565
https://doi.org/10.1007/s100510050565
https://doi.org/10.1007/s00440-010-0282-y
https://doi.org/10.1007/s00440-010-0282-y
https://doi.org/10.1007/s00440-010-0282-y
https://doi.org/10.1007/s00440-010-0282-y
https://doi.org/10.1007/BF02579135
https://doi.org/10.1007/BF02579135
https://doi.org/10.1007/BF02579135
https://doi.org/10.1007/BF02579135
https://doi.org/10.1007/BF02213456
https://doi.org/10.1007/BF02213456
https://doi.org/10.1007/BF02213456
https://doi.org/10.1007/BF02213456
https://doi.org/10.1007/s00493-002-0004-x
https://doi.org/10.1007/s00493-002-0004-x
https://doi.org/10.1007/s00493-002-0004-x
https://doi.org/10.1007/s00493-002-0004-x
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1088/1742-5468/2014/11/P11023
https://doi.org/10.1088/1742-5468/2014/11/P11023
https://doi.org/10.1088/1742-5468/2014/11/P11023
https://doi.org/10.1103/PhysRevE.90.042112
https://doi.org/10.1103/PhysRevE.90.042112
https://doi.org/10.1103/PhysRevE.90.042112
https://doi.org/10.1103/PhysRevE.90.042112
https://doi.org/10.1016/0003-4916(58)90058-7
https://doi.org/10.1016/0003-4916(58)90058-7
https://doi.org/10.1016/0003-4916(58)90058-7
https://doi.org/10.1016/0003-4916(58)90058-7
https://doi.org/10.1007/s00220-012-1576-y
https://doi.org/10.1007/s00220-012-1576-y
https://doi.org/10.1007/s00220-012-1576-y
https://doi.org/10.1007/s00220-012-1576-y
https://doi.org/10.1103/PhysRevB.88.184201
https://doi.org/10.1103/PhysRevB.88.184201
https://doi.org/10.1103/PhysRevB.88.184201
https://doi.org/10.1103/PhysRevB.88.184201
https://doi.org/10.1103/PhysRevE.90.012140
https://doi.org/10.1103/PhysRevE.90.012140
https://doi.org/10.1103/PhysRevE.90.012140
https://doi.org/10.1103/PhysRevE.90.012140
http://arxiv.org/abs/arXiv:1210.2592
http://arxiv.org/abs/arXiv:1502.02471
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1209/epl/i1996-00212-8
https://doi.org/10.1209/epl/i1996-00212-8
https://doi.org/10.1209/epl/i1996-00212-8
https://doi.org/10.1209/epl/i1996-00212-8
https://doi.org/10.1051/jphys:019870048090145100
https://doi.org/10.1051/jphys:019870048090145100
https://doi.org/10.1051/jphys:019870048090145100
https://doi.org/10.1051/jphys:019870048090145100
https://doi.org/10.1007/PL00011144
https://doi.org/10.1007/PL00011144
https://doi.org/10.1007/PL00011144
https://doi.org/10.1007/PL00011144


ONE-LOOP DIAGRAMS IN THE RANDOM EUCLIDEAN . . . PHYSICAL REVIEW E 95, 012302 (2017)
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Comput. Sci. 264, 23 (2011).

[55] S. Laporta and E. Remiddi (private communication).
[56] M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions: With Formulas, Graphs, and Mathematical Tables,
Applied Mathematics Series (Dover, New York, 1972).

[57] C. Berge and E. Minieka, Graphs and Hypergraphs (North-
Holland, Amsterdam, 1973), Vol. 7.

[58] In graph theory, a loop corresponds to an edge connect-
ing a vertex to itself. This is clearly different from a
circuit and from the concept of loop appearing, for ex-
ample, in Sec. IV. However circuits are commonly called
loops in the physics literature, and we have adopted
therefore this nomenclature both in the title and in the
main text.

012302-17

https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1016/j.entcs.2011.06.003



