
PHYSICAL REVIEW E 95, 012217 (2017)

Characterizing classical periodic orbits from quantum Green’s functions in two-dimensional
integrable systems: Harmonic oscillators and quantum billiards
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A general method is developed to characterize the family of classical periodic orbits from the quantum Green’s
function for the two-dimensional (2D) integrable systems. A decomposing formula related to the beta function
is derived to link the quantum Green’s function with the individual classical periodic orbits. The practicality of
the developed formula is demonstrated by numerically analyzing the 2D commensurate harmonic oscillators and
integrable quantum billiards. Numerical analyses reveal that the emergence of the classical features in quantum
Green’s functions principally comes from the superposition of the degenerate states for 2D harmonic oscillators.
On the other hand, the damping factor in quantum Green’s functions plays a critical role to display the classical
features in mesoscopic regime for integrable quantum billiards, where the physical function of the damping factor
is to lead to the coherent superposition of the nearly degenerate eigenstates.
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I. INTRODUCTION

The Green’s function method [1] is widely used in all fields
of wave phenomena including acoustics, electrodynamics,
and quantum mechanics. Due to the fundamental role in
the formulation of quantum theory [2], the quantum Green’s
function is ubiquitous in various research areas, such as
atomic spectroscopy [3], molecular conduction [4], chemical
reaction dynamics [5], solid-state physics [6], and much
more. The semiclassical formula for quantum Green’s function
was originally derived by Van Vleck in 1928 [7] and was
modified by Gutzwiller in 1967 [8]. Gutzwiller’s formula
verifies that only the periodic closed orbits from the sum
over classical trajectories have essential contributions, whereas
the involvements from all other trajectories tend to cancel
by destructive interference. Strutinsky et al. [9] generalized
Gutzwiller’s result for the systems with arbitrary symmetries
and correspondingly degenerate periodic orbits. Even though
the semiclassical formula indicates that the quantum Green’s
function has an intimate connection with the classical periodic-
orbit bundle [10,11], this connection has never been manifested
in the spatial distribution of the quantum Green’s function so
far.

The study of quantum stationary states, in particular, their
spatial dependence on the classical dynamics, still has attracted
great attention since the advent of quantum mechanics 100
years ago [12–21]. Quantum wave functions correlated with
classical periodic orbits have been verified to play an important
role in explaining the quantum phenomena such as shell
effects in nuclei and metallic clusters [22,23], conductance
fluctuations in mesoscopic quantum transports [24,25], and
oscillations in photodetachment cross sections [26,27]. On the
other hand, thanks to Hamilton’s ingenious optico-mechanical
theory [28–30], modern laser resonators have been widely
exploited to analogously explore the formation of quantum
coherent waves in the mesoscopic regime [31–40]. As shown in
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Fig. 1(a), the wave patterns corresponding to the Lissajous pe-
riodic orbits of two-dimensional (2D) commensurate harmonic
oscillators have been confirmed to be the predominant modes
in the selectively pumped large-Fresnel-number spherical
cavity with astigmatism [31–35]. Furthermore, as shown in
Fig. 1(b), the lasing modes related to the classical trajectories
of quantum square billiards are generally observed in the large-
aperture vertical cavity surface emitting lasers (VCSELs)
with large detuning [36–40]. Therefore, it will certainly
provide important insights into mesoscopic physics as well
as laser physics to manifest the connection between the spatial
distributions of quantum Green’s functions and the classical
periodic orbits. More importantly, the harmonic oscillators and
quantum billiards are two of the most fundamental systems
with applications in diverse fields [18–21,41–43].

In this work, we propose a general method to characterize
the family of classical periodic orbits from the energy-
dependent Green’s functions for the 2D integrable systems.
From the wave representation of coherent states in the
2D isotropic harmonic oscillator, we originally develop a
decomposition formula related to the beta function to link
the quantum Green’s function with the individual classical
periodic orbits. With the developed formula, the 2D commen-
surate harmonic oscillators and integrable quantum billiards
are numerically analyzed to manifest the connection between
the quantum Green’s function and the single classical orbits.
For the case of the square quantum billiards, it is found
that the damping factor plays a critical role to reveal the
classical features in the spatial patterns of quantum Green’s
functions in the mesoscopic regime. The physical role of the
damping factor is verified to lead to the coherent superposition
of the nearly degenerate eigenstates that generally occurs
due to the opening or symmetry-breaking effect. We further
verify that the quantum Green’s function with an appropriate
damping factor can be decomposed to correspond to the
individual classical periodic orbit. Since the quantum-classical
or ray-wave correspondence has been ubiquitously observed
in numerous systems [22–27,31–40], the present analysis can
offer important insights into quantum physics, mesoscopic
physics, and laser physics.
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FIG. 1. (a) Lasing modes generally observed in the selectively pumped large-Fresnel-number spherical cavity with astigmatism [31–35].
(b) Lasing modes generally observed in the large-aperture VCSELs with large detuning [36–40].

II. CHARACTERIZING CLASSICAL PERIODIC ORBITS
FROM QUANTUM GREEN’S FUNCTIONS IN 2D

INTEGRABLE SYSTEMS

The time-dependent propagator that describes the propaga-
tion of a particle from r′ → r in a time interval t − t ′ > 0 is
given by [11]

K(r,r′; t − t ′) =
∑

n

ψ∗
n (r′) ψn(r) e−iEn(t−t ′)/�, (1)

where the normalized eigenstates {ψn(r)} satisfy the equa-
tion Ĥψn(r) = En ψn(r) and En are the eigenvalues of the
Hamiltonian Ĥ . In terms of the Fourier transform of the time-
dependent propagator K(r,r′; t − t ′), the quantum Green’s
function in energy representation is defined as [11]

G(r,r′; E) = − i

�
lim
�→0

∫ ∞

0
K(r,r′; t) ei (E+i γ ) t/�dt

= lim
�→0

∑
n

ψ∗
n (r′) ψn(r)

E + i γ − En

. (2)

It can be shown that the Green’s function G(r,r′; E) satisfies
the equation

(Ĥ − E) G(r,r′; E) = −δ(r − r′). (3)

The singularity structure of Green’s functions reflects the
spectrum of the energy levels.

Considering the 2D integrable systems with quantum
numbers (n1,n2) and eigenvalues En1,n2 , the quantum Green’s
function can be given by

G(r,r′; E) = lim
γ→0

∑
n2=0

∑
n1=0

ψ∗
n1,n2

(x ′,y ′) ψn1,n2 (x,y)

E + iγ − En1,n2

. (4)

Since the quantum Green’s function contains all classical
periodic-orbit bundles, it is an interesting issue how to
characterize single classical trajectories from G(r,r′; E). In
classical mechanics, the initial conditions for specifying the
individual classical trajectory includes not only the initial

position (x ′,y ′) but also the energy fractions in the x and
y directions. It has been verified that the coherent states of
the 2D harmonic oscillator exactly correspond to the single
periodic orbits [16]. Here the representation of the coherent
state is exploited to derive the mathematical form for the energy
fractions in the x and y directions for characterizing the family
of classical orbits from G(r,r′; E).

The time-dependent coherent state for the 2D isotropic
quantum harmonic oscillator is given by [16]

�cs(x,y,t) =
∑
n2=0

∑
n1=0

(n̄1)n1/2

√
n1!

(n̄2)n2/2

√
n2!

× e−(n̄1+n̄2)/2ψn1,n2 (x,y) e−i(n1+n2+1)(ω0t−ϕ),

(5)

where n̄1 and n̄2 are the mean orders in the x and y

directions, respectively. Using the constant energy to rearrange
the summation in Eq. (5), the time-dependent coherent state
can be rewritten as

�cs(x,y,t) =
∑
N=0

(N̄ )N/2

√
(N + 1)!

e−N̄/2

× e−i(N+1)(ω0t−ϕ) �N (x,y,u), (6)

where N̄ = n̄1 + n̄2, u = n̄1/N̄ , and the stationary coherent
state �N (x,y,u) is given by

�N (x,y,u) =
∑

n1+n2=N

Cn1,n2 (u) ψn1,n2
(x,y) , (7)

where

Cn1,n2 (u) =
√

(n1 + n2 + 1)!√
n1!n2!

(u)n1/2(1 − u)n2/2. (8)

The intensity |�N (x,y,u)| of the stationary coherent state
�N (x,y,u) has been shown to correspond to the classical
periodic orbit precisely [16]. The weighting coefficients
Cn1,n2 (u) in Eq. (8) for the coherent state �N (x,y,u) can be
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related to the beta function that is defined as [44]

B(n,m) =
∫ 1

0
un−1(1 − u)m−1 du = �(n) �(m)

�(n + m)
, (9)

where �(·) is the gamma function. The beta function in Eq. (9)
can be used to verify that the weighting coefficients Cn1,n2 (u)
satisfy the normalization∫ 1

0
[Cn1,n2 (u)]2 du = 1. (10)

Since the stationary coherent state �N (x,y,u) exactly
corresponds to the single periodic orbit, we propose to exploit
the probability [Cn1,n2 (u)]2 to decompose the quantum Green’s
function G(r,r′; E). By inserting the probability [Cn1,n2 (u)]2

into the summation of Eq. (4), the quantum Green’s function
can be decomposed as

g(r,r′; E,u) = lim
γ→0

∑
n2=0

∑
n1=0

[Cn1,n2 (u)]2

× ψ∗
n1,n2

(x ′,y ′) ψn1,n2 (x,y)

E + iγ − En1,n2

. (11)

Using Eqs. (10) and (11), it can be found that G(r,r′; E)
and g(r,r′; E,u) satisfy

G(r,r′; E) =
∫ 1

0
g(r,r′,E,u) du. (12)

As demonstrated in the following section, the present
approach can be used as a general procedure for other 2D
integrable systems, as long as the relationship between the
parameter u and the classical periodic orbits is determined.
Nevertheless, it is worthwhile to mention that the present
method is not effective for extracting the wave functions with
scars, which are associated with the unstable periodic orbits
in the chaotic billiards. Even though the wave functions with
scars are very special to be related to the unstable periodic
orbits, they are the eigenfunctions in the systems. Since the
eigenvalues of the chaotic billiards are significantly repelled,
the Green’s functions in Eq. (2) are generally contributed
by one and only one eigenfunction. Consequently, the wave
functions with scars can be directly obtained with the Green’s
functions. More specifically, the Green’s functions in the
integrable systems are generally associated with an ensemble
of classical periodic orbits, whereas in the chaotic billiards the
eigenfunctions related to the single unstable periodic orbits
can be directly obtained from the Green’s functions without
any decomposition procedure.

III. DECOMPOSING QUANTUM GREEN’S FUNCTIONS
IN 2D COMMENSURATE HARMONIC OSCILLATORS

Considering the 2D commensurate harmonic oscillator, the
Hamiltonian operator Ĥ is given by

Ĥ = − �
2

2m

(
d2

dx2
+ d2

dy2

)
+ 1

2
m

(
ω2

1x
2 + ω2

2y
2), (13)

where m is the oscillator mass, and ω1 and ω2 are the
natural frequencies in the x and y directions, respectively.
For convenience, we set ω1 = qω0 and ω2 = pω0, where p

and q are coprime integers, and ω0 is the common factor of

the frequencies. In terms of the dimensionless parameters x̃ =
x
√

qmω0/� and ỹ = y
√

pmω0/�, the Hamiltonian operator
in Eq. (13) can be rewritten as

Ĥ = �ω0

[
1

2
q

(
− d2

dx̃2
+ x̃2

)
+ 1

2
p

(
− d2

dỹ2
+ ỹ2

)]
.

(14)
The eigenfunctions and eigenvalues for Eq. (14) can be

given by [2]

ψn1,n2 (x̃,ỹ) = (
2n1+n2−1n1 ! n2! π

) −1/2

× e−(x̃2+ỹ2)/2Hn1 (x̃)Hn2 (ỹ), (15)

En1,n2 = �ω0 [q(n1 + 1/2) + p(n2 + 1/2)] . (16)

Here Hn(·) is the Hermite polynomials of order n. Substi-
tuting Eqs. (15) and (16) into Eq. (4), the quantum Green’s
function is given by

G(r̃,r̃′; E) = lim
γ→0

∑
n2=0

∑
n1=0

ψ∗
n1,n2

(x̃ ′,ỹ ′) ψn1,n2 (x̃,ỹ)

E + iγ − En1,n2

, (17)

where r̃′ = (x̃ ′,ỹ ′), r̃ = (x̃,ỹ), x̃ ′ = x ′√qmω0/�, and ỹ ′ =
y ′√pmω0/�. Using p and q as the divisors, the indices n1 and
n2 can be expressed as n1 = pk1 + λ1 and n2 = qk2 + λ2,
where k1 and k2 are the quotients and λ1 and λ2 are the
remainders. Consequently, the eigenenergy can be normalized
as

εN,λ1,λ2 = En1,n2/�ω0 = Nqp + q(λ1 + 1/2) + p(λ2 + 1/2),

(18)

where N = k1 + k2. For the resonant condition, E = En1,n2 ,
the quantum Green’s function in Eq. (17) can be expressed
as a superposition of the degenerate eigenstates satisfying
N = k1 + k2. Since the remainders (λ1,λ2) essentially do
not affect the spatial characteristics of the quantum Green’s
function G(r̃,r̃′; E), the condition of λ1 = λ2 = 0 is used in
the following analysis unless otherwise specified.

The connection between quantum Green’s functions and
classical periodic orbits can be manifested by plotting the
bundle structure of classical trajectories starting from the initial
position (x̃ ′,ỹ ′) at constant energy ε. The classical periodic
orbits can be found by using x̃(t) = √

2n1 + 1 sin(qω0t +
φ1) and ỹ(t) = √

2n2 + 1 sin(pω0t + φ2), where all (n1,n2)
and (φ1,φ2) are solved from the constraints of x̃ ′ =√

2n1 + 1 sin φ1, ỹ ′ = √
2n2 + 1 sin φ2, and n1 + n2 = Nqp.

First of all, we consider the initial position to be just at the
center, i.e., (x̃ ′,ỹ ′) = (0, 0). The first column in Fig. 2 shows
the calculated results for the spatial patterns of |G(r̃,r̃′; E)|
with the energy of N = 34 for three cases of (q,p) =
(1, 1), (q,p) = (2, 1), and (q,p) = (2, 3). Three different
total numbers of classical trajectories 6, 12, and 1000 are
plotted in Fig. 2 from the second to fourth columns to reveal
the formation of periodic-orbit bundles. In the plot formed
by 1000 trajectories, the density of the drawing points is
controlled to be 90 points for each periodic orbit to mimic
the interference patterns of quantum Green’s functions, where
each drawing point is located at a constant time interval. As
seen in Fig. 2, the spatial distributions of quantum Green’s
functions can be linked to classical periodic-orbit bundles
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FIG. 2. First column: calculated results for the spatial patterns of |G(r̃,r̃′; E)| with the energy of N = 34 and (x̃ ′,ỹ ′) = (0, 0) for three
cases of (q,p) = (1, 1), (q,p) = (2, 1), and (q,p) = (2, 3). Second through fourth columns: different total numbers of classical trajectories
6, 12, and 1000 to reveal the formation of periodic-orbit bundles.

for all cases. For (q,p) = (1, 1), the classical trajectories
are formed by various linear orbits. For (q,p) = (2, 1) and
(q,p) = (2, 3), the classical trajectories are composed of the
so-called Lissajous figures with symmetry.

Next, the initial position of (x̃ ′,ỹ ′) = (3, 0) is numerically
analyzed to explore the off-center effect. Figure 3 shows
the same plots as in Fig. 2 for the calculated results with
(x̃ ′,ỹ ′) = (3, 0) and N = 34. The intensity of the wave
pattern |G(r̃,r̃′; E)| is essentially distributed on the regions
corresponding to the area formed by all classical trajectories
passing through the position (x̃ ′,ỹ ′) . The initial position
(x̃ ′,ỹ ′) can be seen to be a focal point in the intensity
distribution of the wave pattern |G(r̃,r̃′; E)|, which well
corresponds to the classical feature. For (q,p) = (1, 1), the
classical trajectories comprise various elliptical orbits. For
(q,p) = (2, 1) and (q,p) = (2, 3), the classical trajectories
are composed of the asymmetric Lissajous figures. As a result,
the symmetry breaking in the spatial patterns of |G(r̃,r̃′; E)|
caused by the off-center position (x̃ ′,ỹ ′) can be clearly
manifested.

Figure 4 shows the several calculated results for |G(r̃,r̃′; E)|
and |g(r̃,r̃′; E,u)| with (x̃ ′,ỹ ′) = (3,0) and u = 0, 0.2, 0.5, 0.8,
and 1.0 for (q,p) = (1, 1) with N = 80, (q,p) = (2, 1) with
N = 60, and (q,p) = (2, 3) with N = 40. For (q,p) = (2, 1)
and (q,p) = (2, 3), the wave patterns |g(r̃,r̃′; E,u)| can be
seen to be well localized on the regions corresponding to the
single classical periodic orbits. Moreover, the wave intensities
illustrate geometrically Bohr’s correspondence principle: the
velocity of the classical particle is at local minima at the

returning points of the motion, and therefore the amplitude has
local maxima at these points. For (q,p) = (1, 1) with u �= 0,
the wave patterns of |g(r̃,r̃′; E,u)| reveal two periodic orbits
that are degenerate due to the symmetric effect. To be brief,
the beta distribution can be used to decompose the Green’s
function G(r̃,r̃′; E) into g(r̃,r̃′; E,u) in Eq. (12) to represent
the single or degenerate periodic orbits. Next, the functions
G(r̃,r̃′; E) and g(r̃,r̃′; E,u) are further extended to explore the
characteristics of quantum Green’s functions in 2D integrable
billiards.

IV. DECOMPOSING QUANTUM GREEN’S FUNCTIONS
IN SQUARE AND CIRCULAR BILLIARDS

For a square billiard in the region of 0 � x � a and 0 �
y � a, the eigenfunctions and eigenvalues are given by

�n1,n2 (x,y) = 2

a
sin

(n1π

a
x
)

sin
(n2π

a
y
)
, (19)

En1,n2 = �
2

2m
k2
n1,n2

= �
2

2m

(π

a

)2(
n2

1 + n2
2

)
. (20)

Since the degenerate eigenstates are occasional and rare, the
quantum Green’s function in Eq. (2) with γ → 0 is generally
the superposition of few eigenfunctions with accidental degen-
eracy. Consequently, the formula in Eq. (2) cannot be directly
exploited to make a connection with classical dynamics for
the finite energies. Noticeably, it has been experimentally
confirmed [36] that the tiny opening or symmetry-breaking
effect usually causes the superposition of the nearly degenerate
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FIG. 3. The same as Fig. 1 for (x̃ ′,ỹ ′) = (3, 0).

FIG. 4. Several calculated results for |G(r̃,r̃′; E)| and |g(r̃,r̃′; E,u)| with (x̃ ′,ỹ ′) = (3, 0) and u = 0, 0.2, 0.5, 0.8, and 1.0 for (q,p) = (1, 1)
with N = 80, (q,p) = (2, 1) with N = 60, and (q,p) = (2, 3) with N = 40.
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eigenstates, leading to the emergence of classical features.
The superposition of the nearly degenerate eigenstates can
be considered by using a nonzero damping coefficient γ .
Therefore, it is practically important to consider the damping
effect in the quantum Green’s function for the integrable
systems with rare degeneracies.

In terms of the wave number k with the damping coefficient
γ , the quantum Green’s functions and the decomposition
formula for 2D square billiards can be given by

G(r,r′; k,γ ) =
∑
n2=1

∑
n1=1

�∗
n1,n2

(x ′,y ′) �n1,n2 (x,y)

(k + iγ )2 − k2
n1,n2

, (21)

g(r,r′; k,γ,u) =
∑
n 2=1

∑
n 1=1

[Cn 1, n 2 (u)]2

× �∗
n 1, n 2

(x ′,y ′) �n 1, n 2 (x,y)

(k + iγ )2 − k2
n 1, n 2

. (22)

The distribution [Cn 1, n 2 (u)]2 gives the result of n̄1/n̄2 =
u/(1 − u), where n̄1 and n̄2 are the mean values of the
quantum numbers n1 and n2, respectively. For a 2D square
billiard, the energy ratio between the x and y directions is
given by Ex/Ey = (n̄1/n̄2)2 from quantum mechanics and
Ex/Ey = (vx/vy)2 from classical mechanics, where vx/vy

is the velocity ratio between the x and y directions. As
a result, the parameter u in Eq. (22) is related to the
velocity ratio as u/(1 − u) = vx/vy . The effect of the damping
coefficient γ can be manifested from the correspondence
between g(r,r′; k,γ,u) and periodic orbits. The periodic orbits
can be denoted by the indices (P,Q), where P and Q are two
coprime integers describing the numbers of collisions with the
horizontal and vertical walls in a round-trip. Using the classical
dynamics of vx/vy = Q/P , the relationship between u and
(P,Q) can be found to be u = Q/(P + Q). In terms of (P,Q),
the path lengths of the periodic orbits are generally given by
LP,Q = 2a

√
P 2 + Q2. Thorough computations indicate that

the dimensionless parameter ξ defined as ξ = 2γ LP,Q/π

can be used to characterize the critical value of the damp-
ing coefficient for manifesting the periodic orbit (P,Q) in
|g(r,r′; k,γ,u)|. Figure 5 shows the numerical patterns of
|G(r,r′; k,γ )| (upper row) and |g(r,r′; k,γ,u)| (lower row) for
several damping factors of ξ = 0.3, 1.0, 3.0, and 5.0 with the
parameters of (P,Q) = (2, 1), u = 1/3, (x ′,y ′) = (a/2 ,a/2),
and k = πM/a with M = 24

√
5. It can be seen that for

ξ = 1.0 the wave pattern |g(r,r′; k,γ,u)| is well concentrated
on the classical periodic orbit. For ξ = 0.3, both of the wave
patterns |G(r,r′; k,γ )| and |g(r,r′; k,γ,u)| extensively spread
in the billiard region. Numerical results reveal that the overall
patterns are almost unchanged for ξ � 0.3. On the other
hand, the wave patterns |G(r,r′; k,γ )| and |g(r,r′; k,γ,u)|
can be found to be strongly localized on the initial position
(x ′,y ′) = (a/2,a/2) for ξ � 3.0, as shown in Figure 5. For
ξ > 1.0, the larger the damping factor ξ is, the more localized
the quantum Green’s function will become.

For a fixed k and γ , the quantum Green’s function
G(r,r′; k,γ ) can be decomposed into different g(r,r′; k,γ,u)
to correspond to different periodic orbits by varying the value
of u. The first row of Fig. 6 shows the numerical patterns of
|G(r,r′; k,γ )| and |g(r,r′; k,γ,u)| for three different values of
u with the parameters of (x ′,y ′) = (a/2, a/2), γ = 0.1π/a,
and k = πM/a with M = 120. Note that the values of
u = 1/2, 1/3, and 3/5 in Fig. 6 correspond to the periodic
orbits with (P,Q) = (1, 1), (2,1), and (2,3), respectively.
Moreover, the periodic orbits are dependent not only on
(P,Q) but also on (x ′,y ′). The second row of Fig. 6 shows
the numerical patterns of |G(r,r′; k,γ )| and |g(r,r′; k,γ,u)|
for the off-center initial position of (x ′,y ′) = (a/2, a/4) for
three different values of u with the parameters of γ = 0.1π/a

and k = πM/a with M = 120. It is intriguing that even
though the patterns of |G(r,r′; k,γ )| exhibit the extensive
ridge structures, the patterns of |g(r,r′; k,γ,u)| are well
concentrated on the classical periodic orbits for different u.
In other words, decomposing G(r,r′; k,γ ) into g(r,r′; k,γ,u)
can clearly manifest the quantum-classical correspondence.

FIG. 5. Numerical patterns of |G(r,r′; k,γ )| (upper row) and |g(r,r′; k,γ,u)| (lower row) for several damping factors of ξ = 0.3, 1.0, 3.0,
and 5.0 with parameters of (P,Q) = (2, 1), u = 1/3, (x ′,y ′) = (a/2 ,a/2), and k = πM/a with M = 24

√
5.
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FIG. 6. Numerical patterns of |G(r,r′; k,γ )| and |g(r,r′; k,γ,u)| for three different values of u with the parameters of γ = 0.1π/a and
k = πM/a with M = 120. First row: (x ′,y ′) = (a/2, a/2); second row: (x ′,y ′) = (a/2, a/4).

The present approach can be applied to other 2D integrable
systems. For example, the periodic orbits of a circular billiard
are characterized by the indices (p,q), where q is the number of
turning points at the boundary during one period, and p is the
number of windings during one period. By using the Wentzel-
Kramers-Brillouin method, the quantum numbers (m,n) can
be linked to the periodic orbits (p,q) with the equation
km,na sin(pπ/q) = [m(p/q) + n + (3/4)]π , where m is the
azimuthal quantum number, n is the radial quantum number,
and km,n is the eigenvalues [45]. From the correspondence
of the orbital angular momentum, another quantum-classical
connection can be obtained as km,nrmin(p,q) = m, where
rmin(p,q) = a cos(pπ/q) is the shortest distance to the circular
center for the periodic orbits (p,q) [45]. As a result, the
relationship between the average values (m̄,n̄) and the indices
(p,q) can be obtained to determine the parameter u from
n̄/m̄ = u/(1 − u). Figure 7 shows two calculated results
for |G(r,r′; k,γ )| and |g(r,r′; k,γ,u)| of the circular billiard
with γ = 0.5π/a and the source position at x̃ ′ = rmin(p,q)
and ỹ ′ = 0, where (m̄,n̄) = (60,7) for the case of (p,q) =
(1,3) and (m̄,n̄) = (60,34) for the case of (p,q) = (2,5).
It can be seen that the spatial distributions |G(r,r′; k,γ )|
generally display the circular ring patterns, whereas the spatial
distributions |g(r,r′; k,γ,u)| clearly reveal the patterns related
to the classical periodic orbits.

V. SUMMARY

Using the representation of the coherent state in 2D
isotropic harmonic oscillators, a decomposing formula related
to the beta function is developed to manifest the connection
between the quantum Green’s function and the individual
classical periodic orbits for the 2D integrable systems. The 2D
commensurate harmonic oscillators and integrable quantum
billiards are numerically analyzed to confirm the practicality

of the developed formula. It is found that due to the abundant
degeneracy, the correspondence principle of the quantum
Green’s function in 2D commensurate harmonic oscillators
predominantly comes from the superposition of degenerate
eigenstates. In contrast, the emergence of classical features in
2D square billiards is found to arise from the superposition of

FIG. 7. Calculated results for |G(r,r′; k,γ )| and |g(r,r′; k,γ,u)|
of the circular billiard with γ = 0.5π/a and the source position at
x̃ ′ = rmin(p,q) and ỹ ′ = 0: (a) (p,q) = (1,3) with (m̄,n̄) = (60,7);
(b) (p,q) = (2,5) with (m̄,n̄) = (60,34).
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nearly degenerate eigenstates induced by the tiny damping
effect. The present model can provide deep insight into
mesoscopic physics [24–27] and transverse pattern formations
in laser resonators [31–33,35–39].
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