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Signatures of bifurcation on quantum correlations: Case of the quantum kicked top
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Quantum correlations reflect the quantumness of a system and are useful resources for quantum information and
computational processes. Measures of quantum correlations do not have a classical analog and yet are influenced
by classical dynamics. In this work, by modeling the quantum kicked top as a multiqubit system, the effect of
classical bifurcations on measures of quantum correlations such as the quantum discord, geometric discord, and
Meyer and Wallach Q measure is studied. The quantum correlation measures change rapidly in the vicinity of
a classical bifurcation point. If the classical system is largely chaotic, time averages of the correlation measures
are in good agreement with the values obtained by considering the appropriate random matrix ensembles. The
quantum correlations scale with the total spin of the system, representing its semiclassical limit. In the vicinity
of trivial fixed points of the kicked top, the scaling function decays as a power law. In the chaotic limit, for large
total spin, quantum correlations saturate to a constant, which we obtain analytically, based on random matrix
theory, for the Q measure. We also suggest that it can have experimental consequences.
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I. INTRODUCTION

It is well established by more than half a century of
quantum chaos research that many of the properties of quantum
systems can be understood in terms of classical objects such as
periodic orbits and their stability [1]. For classically integrable
systems, the Einstein-Brillouin-Keller quantization method
relates the quantum spectra and the classical action [2], while
for chaotic systems Gutzwiller’s trace formula represents such
an approach connecting the quantum spectra and the classical
periodic orbits [3]. The advent of quantum information and
computation has opened up newer scenarios in which novel
quantum correlations did not have corresponding classical
analogues. Quantum entanglement is one such phenomenon
without a classical analog. The von Neumann entropy, a
measure of quantum entanglement for a bipartite pure state,
captures correlations with purely quantum origins that are
stronger than classical correlations. A host of such measures
are now widely used in the quantum information theory to
quantify stronger than classical correlations.

Quantum correlations do not have exact classical analogs,
yet they are surprisingly affected by the classical dynamics.
For instance, in the context of chaotic systems, it is known
that upon variation of a parameter, as chaos increases in the
system the entanglement also increases and saturates to a
value predicted based on random matrix theory (RMT) [4].
Recently, this was experimentally demonstrated for an isolated
quantum system consisting of three superconducting qubits as
a realization of the quantum kicked top [5]. It was shown that
larger values of entanglement correspond to regimes of chaotic
dynamics [6]. Theoretically, not just the chaotic dynamics but
indeed the structure and details of classical phase space, such
as the presence of elliptic islands in a sea of chaos, are known
to affect the entanglement [7].

Quantum entanglement is an important resource for
quantum information processing and computational tasks.
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However, it does not capture all the correlations in a quantum
system. It is possible for unentangled states to display nonclas-
sical behavior, implying that there might be residual quantum
correlations beyond what is measured by entanglement. In
addition, it is now known that entanglement is not the only
ingredient responsible for speedup in quantum computing
[8–10]. For the mixed-state quantum computing model,
discrete quantum computation with one qubit (DQC1), ex-
periments have shown that some tasks can be speeded up
over their classical counterparts even using nonentangled,
i.e., separable states but having nonzero quantum correlations
[11–13]. Hence, quantification of all possible quantum corre-
lations is important. For this purpose, measures like quantum
discord [14,15], geometric discord [16,17], Leggett-Garg
inequality [18], and a host of others are widely used.

Quantum discord is independent of entanglement and no
simple ordering relations between them is known [19,20].
Entanglement may be larger than quantum discord even though
for separable states entanglement always vanishes but quantum
discord may be nonzero and, thus, is less than quantum discord
[20–22]. This shows that discord and in general all quantum
correlation measures are more fundamental than entanglement
[23]. It is shown that two-qubit quantum discord in a dissipative
dynamics under Markovian environments vanishes only in
the asymptotic limit where entanglement suddenly disappears
[24]. Thus, the quantum algorithms that make use of quantum
correlations, represented in discord, might be more robust than
those based on entanglement [24]. This shows that studying
quantum correlation, in general, in a given system is important
from the point of view of decoherence, which is inevitably
present in almost all experimental setups.

In the last decade, many experimental and theoretical
studies of discord were performed [25]. A recent experiment
realizes quantum advantage with zero entanglement but with
nonzero quantum discord using a single photon’s polarization
and its path as two qubits [26]. Other experiments have
estimated the discord in an antiferromagnetic Heisenberg
compound [27] and in Bell-diagonal states [28]. In the context
of chaotic systems, e.g., the quantum kicked top, the dynamics
of discord reveals the classical phase-space structure [29]. In
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this paper, we show that a period-doubling bifurcation [30] in
the kicked top leaves its signature in the dynamics of quantum
correlation measures such as discord and geometric discord,
including the multipartite entanglement measure, the Meyer
and Wallach Q measure [31].

The structure of the paper is as follows: In Sec. II the
measures of quantum correlations used are introduced. In
Sec. III the kicked-top model is introduced. In Sec. IV results
on the effects of the bifurcation on the time averages of these
measures of quantum correlations are given. In Sec. V these
results are compared with a suitable random matrix model. In
Sec. VI scaling of these time-averaged measures is studied as
a function of the total spin.

II. MEASURE OF QUANTUM CORRELATIONS

A. Quantum discord

Quantum discord is a measure of all possible quantum
correlations including and beyond entanglement in a quantum
state. In this approach one removes the classical correlations
from the total correlations of the system. For a bipartite
quantum system, its two parts, labeled A and B and represented
by its density matrix ρAB , if the von Neumann entropy is
H(ρAB) = −Tr(ρAB log ρAB), then the total correlations is
quantified by the quantum mutual information as

I(B : A) = H(B) + H(A) − H(B,A). (1)

In classical information theory, the mutual information
based on Baye’s rule is given by

I (B : A) = H (B) − H (B|A), (2)

where H (B) is the Shannon entropy of B. The conditional
entropy H (B|A) is the average of the Shannon entropies of
system B conditioned on the values of A. It can be interpreted
as the ignorance of B given the information about A.

Quantum measurements on subsystem A are represented
by a positive operator-valued measure (POVM) set {�i}, such
that the conditioned state of B given outcome i is

ρB|i = TrA(�iρAB)/pi and pi = TrA,B(�iρAB), (3)

and its entropy is H̃{�i }(B|A) = ∑
i piH(ρB|i). In this case,

the quantum mutual information is J{�i }(B : A) = H(B) −
H̃{�i }(B|A). Maximizing this over the measurement sets {�i}
we get

J (B : A) = max{�i }
(
H(B) − H̃{�i }(B|A)

)
= H(B) − H̃(B|A)E, (4)

where H̃(B|A) = min{�i }H̃{�i }(B|A). The minimum value is
achieved using rank 1 POVMs since the conditional entropy is
concave over the set of convex POVMs [32]. By taking {�i}
as rank 1 POVMs, quantum discord is defined as D(B : A) =
I(B : A) − J (B : A), such that

D(B : A) = H(A) − H(B,A) + min{�i }H̃{�i }(B|A). (5)

Quantum discord is nonnegative for all quantum states
[14,32,33] and is subadditive [34].

B. Geometric discord

The calculation of discord involves the maximization of
J (A : B) by doing measurements on subsystem B, which is
a hard problem. A more easily computable form is geometric
discord based on a geometric method [16,17]. There are no
measurements involved in calculating this measure. For the
special case of two qubits a closed-form expression is given
[16]. The dynamics of geometric discord is studied under a
common dissipating environment [35]. For every quantum
state there is a set of postmeasurement classical states, and
the geometric discord is defined as the distance between the
quantum state and the nearest classical state,

DG(B|A) = min
χ∈�0

‖ρ − χ‖2, (6)

where �0 represents the set of classical states, and ‖X −
Y‖2 = Tr[(X − Y )2] is the Hilbert-Schmidt quadratic norm.
Obviously, DG(B|A) is invariant under local unitary transfor-
mations. The explicit and tight lower bound on the geometric
discord for an arbitrary state of a bipartite quantum system
Am×m ⊗ Bn×n is available [17,36,37]. Recently discovered
ways to calculate lower bounds on discord for such general
states do not require tomography and, hence, are experimen-
tally realizable [36,37].

Following the formalism of Dakic et al. [16] the analytical
expression for the geometric discord for two-qubit states
is obtained. The two-qubit density matrix in the Bloch
representation is

ρ = 1

4

⎛⎝1⊗ 1+
3∑

i=1

xiσi ⊗ 1+
3∑

i=1

yi1⊗ σi+
3∑

i,j=1

Tijσi ⊗ σj

⎞⎠,

(7)

where xi and yi represent the Bloch vectors for the two qubits,
and Tij = Tr[ρ(σi ⊗ σj )] are the components of the correlation
matrix. The geometric discord for such a state is

DG(B|A) = 1
4 (‖x‖2 + ‖T ‖2 − ηmax), (8)

where ‖T ‖2 = Tr[T T T ], and ηmax is the largest eigenvalue of
�x �xT + T T T , whose explicit form is given in [38].

C. Meyer and Wallach Q measure

In this work, the effects of bifurcation on multipartite
entanglement are also studied using the Meyer and Wallach
Q measure [31]. This was used to study the multipartite
entanglement in spin Hamiltonians [39–41] and systems of
spin bosons [42]. The geometric multipartite entanglement
measure Q is shown to be simply related to one-qubit purities
[43]. Calculating and interpreting it are straightforward. If ρi

is the reduced density matrix of the ith spin obtained by tracing
out the rest of the spins in an N -qubit pure state, then

Q(ψ) = 2

(
1 − 1

N

N∑
i=1

Tr
(
ρ2

i

))
. (9)

This relation between Q and the single-spin reduced density
matrix purities has led to a generalization of this measure to
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multiqudit states and for various other bipartite splits of the
chain [44].

III. KICKED TOP

The quantum kicked top is characterized by an angular
momentum vector J = (Jx,Jy,Jz), whose components obey
the standard angular momentum algebra. Here, Planck’s
constant is set to unity. The dynamics of the top is governed
by the Hamiltonian [45]

H (t) = pJy + k

2j
J 2

z

+∞∑
n=−∞

δ(t − n). (10)

The first term represents the free precession of the top around
the y axis at angular frequency p, and the second term is
periodic δ kicks applied to the top. Each kick results in a torsion
about the z axis by an angle (k/2j )Jz. The classical limit
of Eq. (10) is integrable for k = 0 and becomes increasingly
chaotic for k > 0. The period 1 Floquet operator corresponding
to the Hamiltonian in Eq. (10) is given by

U = exp

(
−i

k

2j
J 2

z

)
exp(−ipJy). (11)

The dimension of the Hilbert space is 2j + 1 so that the
dynamics can be explored without truncating the Hilbert space.
A kicked top was realized in experiments [46] and the range of
parameters used in this work makes it experimentally feasible.

The quantum kicked top for a given angular momentum j

can be regarded as a quantum simulation of a collection of N =
2j qubits (spin-half particles) whose evolution is restricted to
the symmetric subspace under the exchange of particles. The
state vector is restricted to a symmetric subspace spanned by
the basis states {|j,m〉; (m = −j,−j + 1, . . . ,j )} where j =
N/2. It is thus a multiqubit system whose collective behavior
is governed by the Hamiltonian in Eq. (10) and quantum
correlations between any two qubits can be studied. The
kicked top has served as a useful model to study entanglement
[6,47–51] and its relation to classical dynamics [52].

The classical phase space shown in Fig. 1 is a function of
coordinates θ and φ. In order to explore quantum dynamics
in the kicked top, we construct spin-coherent states [53–56]
pointing along the direction of θ0 and φ0 and evolve it under
the action of the Floquet operator. The quantum correlations
reported in this paper represent time averages obtained from
the time-evolved spin-coherent state.

The classical map for the kicked top is [45,53]

X′ = (X cos p + z sin p) cos(k(z cos p − X sin p))

−Y sin(k(z cos p − X sin p)), (12a)

Y ′ = (X cos p + Z sin p) sin(k(Z cos p − X sin p))

+Y cos(k(Z cos p − X sin p)), (12b)

Z′ = −X sin p + Z cos pE. (12c)

Since the dynamical variables (X,Y,Z) are restricted to the unit
sphere, i.e., X2 + Y 2 + Z2 = 1, they can be parameterized
in terms of the polar angle θ and the azimuthal angle φ as
X = sin θ cos φ, Y = sin θ sin φ, and Z = cos θ . We evolve
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FIG. 1. Phase-space pictures of the classical kicked top for
p = π/2 and (a) k = 1, (b) k = 2, (c) k = 3, and (d) k = 6. Filled
red circles indicatethe initial position of the spin-coherent state.

the map in Eq. (12) and determine the values of (θ,φ) using
the inverse relations (not shown here). For p = π/2 additional
symmetry properties lead to a simpler classical map, a case
studied in detail in Refs. [29,51]. In this paper two cases,
namely, p = π/2 and p = 1.7, are studied, which are different
from the RMT point of view as explained in Sec. V.

IV. EFFECT OF BIFURCATION

First, we consider the case of p = π/2. If the kick strength
is k = 1, then the phase space is largely dominated by invariant
tori as shown in Fig. 1(a). In particular, the trivial fixed points
of the map at (θ,φ) = (π/2,±π/2) visible in Figs. 1(a) and
1(b) become unstable at k = 2. As k increases further, the
new fixed points born at k = 2 move away [see Fig. 1(c)].
For k = 6, the phase space is largely chaotic, with no islands
visible in Fig. 1(d). In the kicked top, the period-doubling
bifurcation is the route for the regular-to-chaotic transition.

Second, here we study the case of p = 1.7. As shown in
Figs. 2(a)–2(d), the phase space displays features similar to
those in the case of p = π/2 except that the trivial fixed point
(θ,φ) = (π/2, − π/2) now loses stability at the numerically
determined k = 1.76, while (θ,φ) = (π/2,π/2) does so at
k = 2.2. The black circle, marking the point (θ0,φ0) =
(π/2,−π/2) in Figs. 1 and 2, is the initial position of the
spin-coherent-state wave packet.

To study the effect of bifurcation on the quantum corre-
lation and multipartite entanglement measures, a multiqubit
representation of the system is used. For a particular value
of j the system can be decomposed into N = 2j qubits. The
reduced density matrix of two qubits is calculated by tracing
out all other N − 2 qubits [57,58] after every application of the
Floquet map. We use the reduced density matrix to compute the
various measures of correlation. As all the qubits are identical,
the correlations measures do not depend on the actual choice of
two qubits. Similarly, while calculating Q measure one needs
to compute the reduced density matrix of only one qubit.

012216-3



UDAYSINH T. BHOSALE AND M. S. SANTHANAM PHYSICAL REVIEW E 95, 012216 (2017)

0

1

2

3

θ

φ
0

1

2

3

θ

-2 0 20

1

2

3

-2 0 2
φ

(b)(a)

(c) (d)

FIG. 2. Phase space of the classical kicked top for p = 1.7 and
(a) k = 1, (b) k = 1.9, (c) k = 2.1, and (d) k = 6. Filled red circles
indicate the initial position of the spin-coherent state.

The spin-coherent state at time t = 0, denoted |ψ(0)〉, is
placed at the fixed point (θ,φ) = (π/2,−π/2) (filled red circle
in Figs. 1 and 2) undergoing a period-doubling bifurcation. The
state |ψ(0)〉 is evolved by the Floquet operator Û as |ψ(n)〉 =
Un|ψ(0)〉. We apply the numerical iteration scheme given in
Refs. [49,59] for time-evolving the initial state. At every time
step, the discord D, geometric discord DG, and Meyer and
Wallach Q measure are calculated for a given value of k. The
results shown in Figs. 3 and 4 represent time-averaged values
of D, DG, and Q for every k.

For both cases, p = π/2 (Fig. 3) and p = 1.7 (Fig. 4), the
results are shown for two values of j , namely, j = 50 and
j = 120. For comparison, the case of j = 10 qubits is also
shown in Fig. 3. Broadly, in all cases, the quantum correlation
measures D, DG, and Q respond to the classical bifurcation
in a similar manner: by displaying a jump in the mean value
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FIG. 3. Average discord, geometric discord, and Q measure as
a function of k for p = π/2. Left column: j = 50. Right column:
j = 120. For comparison purposes, the j = 10 case is represented
in every graph as square green symbols. The vertical line marks the
position of bifurcation at k = 2.
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FIG. 4. Average discord, geometric discord, and Q measure as
a function of k for p = 1.7. Left column: j = 50. Right column:
j = 120. The solid horizontal line represents the long-time average
of an initial state from the bifurcation point evolved using the operator
UCUE. The dashed line represents the standard deviation from the
average value. The vertical line shows the position of bifurcation at
approximately k = 1.76.

from about 0 to a nonzero value. This can be understood as
follows. When the elliptic islands are large, as is the case when
0 < k < 2 for p = π/2 and 0 < k < 1.76 for p = 1.7, the
evolution of the spin-coherent state placed initially at (θ,φ) =
(π/2,−π/2) is largely confined to the same elliptic islands.
As the bifurcation point is approached, the local instability in
the vicinity of the fixed point evolves part of the coherent state
into the chaotic layers of phase space. This leads to an increase
in the values of correlation measures. Note that increasing
chaos leads to an increase in entanglement too. When j is
increased, the width of coherent state σ ∝ 1/

√
j becomes

narrower and closely mimics the classical evolution [53]. Thus,
as j increases, we expect the quantum correlations to sharply
respond to classical bifurcation at k = 2. Indeed, as shown
in Fig. 3, the quantum correlations change sharply at k = 2
for j = 120 in comparison with the case for j = 10. To
understand the details in Fig. 3 consider two values of j ,
e.g., j = j1 and j = j2, such that j2 > j1. The slow decay of
σ as j → ∞ implies that the response of quantum correla-
tions to classical bifurcation becomes perceptible only when
|j2 − j1| � 1. Thus, relative changes are easily seen when
quantum correlations for j = 120 are compared with the
j = 10 case rather than with that of j = 50. The approach
to semiclassics, � → 0 limit, discussed in Sec. VI provides
quantitative support of this picture.

V. CORRELATION MEASURES AND RANDOM
MATRIX THEORY

Next, we show that the saturated values of D, DG, and Q

after bifurcation has taken place at k = kb can be obtained
from random matrix considerations. The kicked top is time
reversal invariant, and as a consequence its Floquet operator
in the globally chaotic case has the statistical properties of a
random matrix chosen from the circular orthogonal ensemble
(COE) [60]. For the kicked top, the statistical properties of
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FIG. 5. Time variation of the correlation measures using the
kicked-top Floquet operator for j = 50 (left) and for j = 120 (right)
for the globally chaotic case (k = 10 and p = 1.7). The horizontal
line corresponds to the time average of the correlation measures using
a COE matrix of the respective case.

eigenvectors of its Floquet operator are in good agreement
with the COE of random matrix theory [60]. Apart from
time-reversal symmetry, the kicked top additionally has a
parity symmetry, R̂y = exp(−iπjy), that commutes with the
Floquet operator for all values of p. As R̂2

y = I , the eigenvalues
of R̂y are +1 and −1. Thus, in the basis of the parity
operator, the Floquet operator has a block-diagonal structure
consisting of two blocks associated with the positive-parity
(+1) or negative-parity (−1) eigenvalues. Thus, due to the
parity symmetry, the kicked top is statistically equivalent
to a block-diagonal random matrix (block diagonal in the
basis in which the parity operator is diagonal) whose blocks
(corresponding to the eigenvalues ±1) are sampled from the
COE [4]. If p = π/2, the kicked top possesses additional
symmetries [60], a case which is not considered in this section.
In this section, the case where p = 1.7 is studied in detail.

First, a block-diagonal COE, as the appropriate ensemble of
random matrices for modeling the kicked-top Hamiltonian, is
used. Since the basis here is that of eigenvectors of the parity
operator R̂y , this matrix is then written in the |j,m〉 basis.
Finally, this matrix is used to evolve the coherent state and
compared with the evolution done using the Floquet operator
in the globally chaotic case (k = 10). The results are presented
in Fig. 5 and summarized in Table I.

TABLE I. Mean value of correlation measures averaged over
1000 time steps of evolution of a coherent state with the Floquet
matrix (with k = 10) and the COE matrix. COE values are represented
in Fig. 4 as horizontal lines.

j = 50 j = 120

Measure Floquet COE Floquet COE

Discord 0.205 0.209 0.217 0.217
Geometric discord 0.045 0.047 0.049 0.050
Q measure 0.986 0.991 0.994 0.996

Figure 5 shows the evolution of the two-qubit discord,
geometric discord, and Meyer-Wallach Q measure for j = 50
and j = 120 when acted on by the kicked-top Floquet operator
with k = 10. At this kick strength the classical phase space
of the kicked top is largely chaotic, with no visible regular
regions. As Fig. 5 and Table I reveal, the dynamics of various
correlation measures under the action of the COE matrix is
similar to that of the kicked-top Floquet operator in its chaotic
regime with k = 10. While this is not entirely unexpected, the
values of the three measures listed in Table I closely agree
with those obtained after bifurcation takes place at k = kb, but
at values of kick strengths much less than 10 considered in
Fig. 5. Time averages listed in Table I are plotted in Fig. 4
along with the standard deviation of the individual measures.
It can be seen that agreement between these values and that of
the Floquet operator begins to emerge at around k = 4, which
is much less than k = 10. The position of the coherent state
in this case is (θ,φ) = (π/2,−π/2). It should be noted that in
the globally chaotic case these results are independent of the
initial position of the coherent state.

It can be seen in Table I and Fig. 4 that the time averages
of quantum correlations for the kicked top are systematically,
although slightly, lower than those predicted by the circular
orthogonal ensemble of random matrix theory. The agreement
improves as j → ∞. Hence, these deviations can be attributed
to a finite-j effect. Similar systematic deviations from RMT
were observed in a study of the log-negativity in the kicked
rotor system [61]. In that case too, the deviations decreased as
the corresponding Hilbert-space dimensions were increased.

VI. SCALING WITH THE PLANCK VOLUME

The kicked top is a finite-dimensional quantum system and
the volume of its Planck cell is V = 4π/(2j + 1). For large j ,
V ∝ 1/j . It is natural to ask how the measures of quantum
correlation scale with this volume when the kick strength
corresponds to k = kb, where kb is a bifurcation point. In Fig. 6,
we show the variation in the time average of D, DG, and Q

as a function of j for k = kb. Here, kb = 2 and p = π/2.
The coherent state is placed at the corresponding trivial fixed
point (θ,φ) = (π/2,−π/2) and the time average is taken over
500 steps. For j � 1, the correlation measures scale with j

approximately in a power law of the form j−μ, where μ is the
scaling exponent. The power-law fits through linear regression
for the numerically computed correlations measures shown in
Fig. 6 are consistent with

D ∝ j−μ1 , DG ∝ j−μ2 , and Q ∝ j−μ3 , (13)

where μ1 = 0.382 ± 0.003, μ2 = 0.944, and μ3 = 0.451. The
uncertainty values are estimated by numerical linear regression
The uncertainties in the estimates for μ2 and μ3 are of the order
of 10−8 and hence negligible. Identical power-law scaling is
obtained for the other trivial fixed point at (θ,φ) = (π/2,π/2),
with exponents μi approximately the same as given in Eq. (13).
The quantum correlations tend to 0 as V → 0 (j → ∞),
indicating that for any finite j , quantum correlations, however
small, would continue to exist. As the wave packet becomes
more “classical” and the underlying dynamics is regular, we
expect the quantum correlations to decrease with j . This is
another indication that the regular regions in the vicinity of
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FIG. 6. Variation of time-averaged quantum correlations (circles) as a function of j . Lines are the power-law fits given in Eq. (13).

the fixed point undergoing bifurcations affect the quantum
correlations deep in the semiclassical regime.

The appearance of power-law scaling can be understood for
the case k = 2 when the regular region is large and the chaotic
layer is a tiny fraction of the entire phase space. The presence
of the chaotic layer has a strong influence on quantum correla-
tions. Note that for j � 1, the width of the spin-coherent state
σ = j−1/2 becomes small and its evolution is mostly confined
to the large elliptic islands in Figs. 1(a) and 1(b). As a result, it
can be argued that the strength of the overlap of coherent state
with the chaotic layer is indicative of quantum correlations.
Since σ = j−1/2, for j � 1, this overlap is small. The slow
power-law decay of σ might possibly be the reason for the simi-
lar decay of quantum correlations as well, as shown in Eq. (13).
Since quantum correlations are affected by the local phase-
space features, a complete quantitative explanation of power-
law scaling might require a detailed semiclassical analysis.

Next, we consider the case of a coherent state placed
initially at a bifurcation point leading to a period 2 cycle. The
origin of this bifurcation point is as follows. The trivial fixed
points at (θ,φ) = (π/2,±π/2) are easily visible in Figs. 1(a),
1(b), 2(a), and 2(b). If p = π/2, these fixed points bifurcate
at k = 2 through a period-doubling bifurcation and become
unstable. In the process, the point (θ,φ) = (π/2,π/2) gives
rise to two new period 1 stable fixed points, while the point
(θ,φ) = (π/2,−π/2) gives rise to a period 2 cycle. For k > 2
their positions move in the phase space as a function of k and
they are stable for k �

√
2π . For k >

√
2π , the two fixed

points bifurcate into two new period 2 cycles, while the period
2 cycle gives rise to a new period 4 cycle. Their positions for
k = √

2π are shown in Fig. 7. Our interest lies in the fixed
point located at (θ,φ) = (π/4,0).

Figure 8 shows the variation of the time average of the
quantum correlation measures as a function of j for the initial
coherent state placed at this fixed point. It can be seen that
after initial fluctuations the correlations start to decrease for
larger values of j . It should be noted that the area of elliptic
islands is continually shrinking as k → ∞, consistent with
the predominance of chaotic regions in the phase space. The
width of the spin-coherent state |ψ(0)〉 is equal to 1/

√
j . For

small values of j , the width of |ψ(0)〉 is much larger than that
of the regular elliptic island as shown in Fig. 7. Hence, there
is a pronounced overlap of state |ψ(0)〉 with the chaotic sea.
Hence we expect that for small j the quantum correlations will
be reasonably close to their random matrix averages. This is
indeed shown in Fig. 8 for 1 � j � 50 as the width of |ψ(0)〉 is
at least twice the size of the elliptic island. For j � 1, the width
of |ψ(0)〉 has become much smaller than that of the elliptic

island. Thus, under these conditions we expect smooth decay
with increasing j , similar to what is shown in Figs. 6(a)–6(c).
Figure 8 does show smooth decay for j � 150. Thus, the
quantum correlations, on average, decay as a function of j and
the area of the regular region surrounding the fixed point under-
going bifurcation strongly affects the quantum correlations.

Now, we consider the kick strength k = 10 and place the
spin-coherent state |ψ(0)〉 at an arbitrary position in the chaotic
sea, namely, (θ,φ) = (1.6707,1.3707). Here, the phase space
is largely chaotic, devoid of any regular regions. In contrast
to the results in Figs. 6 and 8, the time-averaged correlation
measures shown in Fig. 9 increase with j . Based on the results
in Figs. 4 and 5 we can expect that at every value of j the
time-averaged D, DG, and Q agree with those found using the
appropriate COE ensemble.

For a coherent state the quantum correlation measures are
0. However, after time evolution, the correlation values will
depend on the corresponding measures for Floquet eigenstates.
Thus, it is important to study the typical values of these mea-
sures for these eigenstates. This can be analytically obtained
for the average Q measure. An exact analytical formula for
the average Q measure is derived (see the Appendix for the
detailed derivation) for a typical COE ensemble modeling the
Floquet operator in the globally chaotic case. It is given by

〈Q〉E = 1 − 16j (j + 1)

3(2j + 3)(2j + 1)2
. (14)

-2 0 2
φ

0

1

2

3

θ

FIG. 7. Phase-space picture of the classical kicked top for
k = √

2π . Filled red circles indicate the initial position of the
spin-coherent state.
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FIG. 8. Variation of time-averaged quantum correlations (circles connected by lines) as a function of j for k = √
2π and the initial position

of the spin-coherent state as shown in Fig. 7.

For large j , 〈Q〉E ≈ 1 − 2/(3j ), implying that the measure
tends to 1 for large j . The numerically computed correlations
for the eigenvectors of the COE ensemble and for the
eigenvectors of the Floquet operator under conditions of
globally classical chaos are compared with the analytical result
in Eq. (14) and Fig. 10.

For generating sufficient statistics for the eigenvectors of
the Floquet operator, we use a range of k values such that the
corresponding classical section does not have any significant
regular islands and is highly chaotic. The analytical result in
Eq. (14) agrees with that for the eigenvectors of the COE.
In order to derive similar expressions for the average discord
and geometric discord for the eigenvectors of the COE, the
analytical expression for the distribution of the matrix elements
of the two-qubit density matrix for this class of states is
required. Such an expression is not known yet, to the best
of our knowledge. Thus, the derivation of the average discord
and geometric discord as a function of j remains an open
question.

It is instructive to compare these results with those for
other well-studied ensembles such as the Gaussian ensembles.
In this case, the states are distributed uniformly, also known
as the Haar measure, on the unit sphere. Consider a tripartite
random pure state. The entanglement between any of its two
subsystems shows a transition from an entangled to a separable
state as the size of the third subsystem is increased [61,62].
Another example is that of definite particle states. This shows
algebraic to exponential decay of entanglement when the
number of particles exceeds the size of two subsystems [63].
In both these cases, the discord and geometric discord between
two qubits in a tripartite system goes to 0 as the size of the third
subsystem is increased. It is known that the average Q measure
for Haar distributed states of N qubits, for large N , goes as
1 − 3/2N [62]. In terms of j (=N/2) it equals 1 − 3/22j ,
implying that the measure tend to 1 for large j . But, the rate at

which it approaches 1 is much faster than that for eigenvectors
of the COE ensemble corresponding to the kicked top in the
globally chaotic case. In contrast to the standard Gaussian or
circular ensemble, the random matrix ensemble appropriate for
the kicked top is the COE with additional particle exchange
symmetry. Hence, this ensemble displays properties different
from those of the standard circular or Gaussian ensembles as
far as the quantum correlations are concerned.

Interestingly, it is found numerically in the globally chaotic
case that DG = 0.317D − 0.018 holds good. This is sshown
in Figs. 3, 4, 5, and 9. Such a simple relation relating the
Q measure and the discord or geometric discord could not
be discerned. It is known that for two-qubit states, the discord
and geometric discord are related to each other by DG � D2/2
[17,20,64]. This inequality is respected throughout numerical
simulations performed here.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the effect of classical
bifurcations on measures of quantum correlations such as the
quantum discord, geometric discord, and Meyer and Wallach
Q measure using the kicked top as a model of the quantum
chaotic system. In a related work [29], the signature of classical
chaos in the kicked top was found in the dynamics of quantum
discord and this work explores this relation in the more
general context of quantum correlations including multipartite
entanglement. The suitability of the kicked top is due to the
fact that it can be represented as a collection of qubits. Most
importantly, this system has been realized in experiments [46].
A prominent feature in its phase space is the period 1 fixed
point whose bifurcation is associated with the quantum discord
climbing from nearly 0 to a value that is in agreement with the
numerically determined random matrix equivalent. The tran-
sition in the quantum discord reflects the qualitative change in

0 100 200 300
j

0.16

0.18

0.2

0.22

D

0 100 200 300
j

0.03

0.04

0.05

D
G

0 100 200 300
j

0.94

0.96

0.98

1

Q

FIG. 9. Variation of time-averaged quantum correlations (circles) as a function of j for the globally chaotic case (k = 10).
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the classical phase space: from domination by an elliptic island
to a largely chaotic sea with a few small elliptic islands. The
other measures we have reported here, namely, the geometric
discord and Meyer and Wallach Q measure, both display trends
similar to those of the quantum discord. Other measures of
quantum correlations can be expected to display qualitatively
similar results. We have also presented numerical results for
the random matrix averages of these quantum correlation
measures.

In general, as a function of the chaos parameter, quantum
discord can be expected to increase under the influence of
a period-doubling bifurcation. However, after the bifurcation
has taken place, saturation to the random matrix average
will depend on the qualitative nature of dynamics in the
larger neighborhood around the fixed point. It must also be
pointed out that these results have been obtained through
time evolution of a spin-coherent state placed initially on an
elliptic island undergoing bifurcation. For reasonably large
elliptic islands, equivalent results could have been obtained
by considering the Floquet states of the kicked top as
well.

We have also investigated the fate of quantum correlations
in the semiclassical limit as the Planck volume tends to 0. In
the context of the kicked top, this limit translates as j → ∞.
In the case of bifurcation associated with larger islands, as
in k � 2, the measures of quantum correlations decrease as
a function of j and tend to 0 through a slow, approximately
power-law decay. In the case of bifurcation associated with
smaller islands and the creation of higher order periodic
cycles the average decay of quantum correlations is evident
but marked by strong fluctuations. The quantum correlation
measures reported here have been obtained as that for the time
average of an evolving spin-coherent state placed initially at
a chosen position in phase space. However, we note that if
the spin-coherent state is placed instead in the chaotic sea
initially, then a different behavior is obtained. As a function of
j , in this case, the quantum correlation measures increase and
are saturated to a constant value that can be understood based
on eigenvectors of the appropriate random matrix ensemble.
Evaluation of the exact analytical expression for the average
Q measure for the eigenvectors of the corresponding circular
unitary ensemble is carried out and agrees very well that for
the eigenvectors of the Floquet operator in the globally chaotic
case.

All the results presented in this work emphasize the special
role played by the bifurcations and the associated regular
phase-space regions in modifying general expectations for the
quantum correlations based on random matrix equivalents.
These results are important from the experimental point of
view, as the kicked top was first implemented in a system
of laser-cooled cesium atoms [46]. Recently this model
was implemented using superconducting qubits [5]. Here
the time-averaged von Neumann entropy has shown a very
close resemblance, despite the presence of decoherence, with
the corresponding classical phase-space structure for given
parameter values [5]. Hence, the detailed effects of bifurcations
presented here should be amenable to experiments as well.
The scaling of quantum correlations with the total spin should
also be observable with fewer than about 10 superconducting
qubits.
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APPENDIX: EXACT EVALUATION OF 〈 Q〉E

In this Appendix an exact evaluation of the ensemble
average of the Meyer and Wallach Q measure is calculated.
The states in the ensemble have identical qubits and remain
unchanged under qubit exchange. As explained in Sec. III one
needs to use the symmetric subspace spanned by the basis
states {|j,m〉; (m = −j,−j + 1, . . . ,j )}. Any pure state |φ〉 in
this basis is given as

|φ〉 =
j∑

m=−j

am|j,m〉, where
j∑

m=−j

|am|2 = 1. (A1)

In this case the Q measure is given as

Q = 1 − 4

(2j + 1)2
(〈Sz〉2 + 〈S+〉〈S−〉), (A2)

where Sz and S± are collective spin operators
such that Sz|j,m〉 = m|j,m〉 and S±|j,m〉 =√

(j ∓ m)(j ± m + 1)|j,m ± 1〉 [58]. The ensemble average
is carried out over the states such that they have the statistical
properties of the eigenvectors of the COE ensemble. For state
|φ〉 one obtains the following expression for the expectation:

〈Sz〉 =
j∑

m=−j

m|am|2. (A3)

This gives

〈Sz〉2 =
j∑

m,n=−j

mn|am|2|an|2

=
∑
m=n

m2|am|4 +
∑
m�=n

mn|am|2|an|2. (A4)

Now, an exact RMT ensemble average is carried out [45,65].
First, one obtains

〈〈Sz〉2〉E =
∑
m=n

m2〈|am|4〉E +
∑
m�=n

mn〈|am|2|an|2〉E. (A5)

It should be noted that the first expectation is for a given state
|φ〉 and the second expectation with subscript E denotes the
ensemble average over all |φ〉 having statistical properties of
COE eigenvectors. Using the RMT ensemble averages [45,65]

〈|am|4〉E = 3

(2j + 1)(2j + 3)
,

(A6)

〈|am|2|an|2〉E = 1

(2j + 1)(2j + 3)
,
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one obtains

〈〈Sz〉2〉E = 3

(2j + 1)(2j + 3)

∑
m=n

m2

+ 1

(2j + 1)(2j + 3)

∑
m�=n

mn. (A7)

The first summation in the above equation is calculated as
follows:

j∑
m=−j

m2 = 2
j∑

m=1

m2 = j (j + 1)(2j + 1)

3
. (A8)

The second summation is now calculated. Consider the
equality, ⎛⎝ j∑

m=−j

m

⎞⎠⎛⎝ j∑
m=−j

n

⎞⎠ = 0. (A9)

This gives ∑
m,n

mn =
∑
m=n

m2 +
∑
m�=n

mn = 0. (A10)

Thus, ∑
m�=n

mn = −
∑
m=n

m2 = −j (j + 1)(2j + 1)

3
. (A11)

The ensemble average in Eq. (A5) is given as follows:

〈〈Sz〉2〉E = 2j (j + 1)(2j + 1)

3(2j + 1)(2j + 3)
. (A12)

Considering the average of operators S± for state |φ〉,
〈S±〉 =

∑
ama∗

m±1

√
(j ∓ m)(j ± m + 1). (A13)

This gives

〈S+〉〈S−〉 =
∑
m,n

ama∗
m+1ana

∗
n−1

×
√

(j − m)(j + m + 1)(j + n)(j − n + 1).

(A14)

It can be seen that the ensemble average will have nonzero
contribution only when m = n − 1. Thus,

〈〈S+〉〈S−〉〉E

=
j−1∑

m=−j

〈|am|2|am+1|2〉E(j − m)(j + m + 1). (A15)

0 50 100 150 200 250 300
j
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0.96

0.97

0.98
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1

〈Q
 〉 E

Analytical result
Eigenvectors of 
 COE ensemble
Eigenvectors of 
 Floquet operator

FIG. 10. The average Q measure for the eigenvectors of the COE
ensemble and the Floquet operator in the globally chaotic case for
the parameter range 10 � k � 1000 and p = 1.7 is compared with
its analytical expression given in Eq. (14).

Using Eq. (A6) the following is obtained:

〈〈S+〉〈S−〉〉E

= 1

(2j + 1)(2j + 3)

j−1∑
m=−j

(j − m)(j + m + 1).

(A16)

We calculate the summation as follows:
j−1∑

m=−j

(j − m)(j + m + 1) =
j−1∑

m=−j

(j 2 + j − m2 − m)

= 2j (j 2 + j ) −
j−1∑

m=−j

m −
j−1∑

m=−j

m2

= 2j (j 2 + j ) + j + j 2 − j (j + 1)(2j + 1)

3
. (A17)

Thus,

〈〈S+〉〈S−〉〉E = 2j (j + 1)

3(2j + 3)
. (A18)

Using Eqs. (A12) and (A18) the final expression for the
ensemble average of the Q measure, denoted 〈Q〉E , is given
as follows:

〈Q〉E = 1 − 16j (j + 1)

3(2j + 3)(2j + 1)2
. (A19)

This analytical expression is plotted in Fig. 10.
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