
PHYSICAL REVIEW E 95, 012211 (2017)
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Given any background (or seed) solution of the nonlinear Schrödinger equation, the Darboux transformation
can be used to generate higher-order breathers with much greater peak intensities. In this work, we use the
Darboux transformation to prove, in a unified manner and without knowing the analytical form of the background
solution, that the peak height of a high-order breather is just a sum of peak heights of first-order breathers plus
that of the background, irrespective of the specific choice of the background. Detailed results are verified for
breathers on a cnoidal background. Generalizations to more extended nonlinear Schrödinger equations, such as
the Hirota equation, are indicated.
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I. INTRODUCTION

The study of high-intensity optical solitons and breathers
of the cubic nonlinear Schrödinger (NLS) equation, has
became a cornerstone of modern nonlinear physics and is
of special importance in modern nonlinear photonics. For a
comprehensive review of optical solitons and breathers, see
the work by Dudley et al. [1].

While the inverse scattering [2] and the direct method [3]
have been used in the past to study solitons of the NLS equa-
tion, many of the recent advances in understanding breathers
[4] and rogue waves [5,6] are based on using the Darboux
transformation (DT) [7]. Given any background (or seed)
solution of the NLS equation, the Darboux transformation
can be used to generate a high-order solution on top of that
background with either greater peak intensity [4–6], or greater
shape complexity [8,9].

The Darboux transformation is generic in that by iter-
ating a pair of generating solutions of the Lax-pair [10]
equation containing the background as an input function,
it provides a systematic procedure for creating new so-
lutions. The Darboux transformation itself knows nothing
about the evolution equation it is transforming, or the back-
ground wave function it is using. The Darboux iterations
are therefore the same for the cubic NLS equation, the
Hirota equation [11–13], and other extended NLS equations
[14–16], regardless of the choice of the background. Variants
in the evolution equation and the background solution are only
reflected in the initial generating solutions of the Lax-pair
equation. Different evolution equations have different Lax-pair
equations and therefore different generating solutions. The
same Lax-pair equation with different background solutions
will also have different generating solutions.

In this work, we first prove in Sec. II a remarkable generic
result for DT. If the initial generating functions of DT satisfy a
simple phase condition (7) below, then the peak-height formula
(6) follows. This formula states that the peak height of a
high-order soliton or breather is just a sum of its constituent
first-order soliton or breather peak heights plus that of the
background. Thus, as long as (7) is true, regardless of the
choice of evolution equation or the background wave function,

one has the peak-height formula (6). Hence, Eq. (7) guarantees
the peak-height formula for the cubic NLS equation, the
Hirota equation [11–13], and any other extended NLS equation
[14–16] that evolves according to the Lax-pair equation
[10]. This then greatly generalizes the peak-height formula
first stated for solitons [17] and more recently proved for
Akhmediev breathers [18]. We recall that in Ref. [18], we have
shown that the peak-height formula on a constant background
is essential for determining what first-order breathers are
necessary for producing a higher-order breather of a given
intensity. One can then extract an initial profile of the light
pulse, with the correct Fourier components, so that when
such a pulse is initiated in an optical fiber (assuming that
its propagation is well described by the NLS equation), it
will be compressed into a breather of the required intensity.
Such an initial light pulse can be produced in experiments
similar to those described in Refs. [19,20], particularly via the
latter reference’s frequency comb. By proving a more general
peak-height formula here, we hope to pave the way for a
possible future practical realization of these more general NLS
equations.

The phase condition (7), however, is simply a relative phase
between the two generating functions of the Lax equation, and
can always be conveniently so chosen in the soliton case of
ψ0 = 0. This is also shown in Sec. II. Thus, the peak-height
formula holds for solitons of all the NLS equations mentioned
above.

Furthermore, when ψ0 �= 0, the background generates a
nontrivial phase for the two generating functions of the
Lax equation. We prove in Sec. III that for the cubic NLS
equation, and without knowing the analytical form of the
background wave function, Eq. (7) remains true despite the
added background phase. That is, the peak-height formula (6)
for the cubic NLS equation is true regardless of the choice of
the background solution: vanishing, uniform, or varying. In
this manner, the proof of the peak-height formula for the cubic
NLS equation is made complete.

For the Hirota and other extended NLS equations on a
uniform background, others [11–16] have shown that (7) is true
and therefore the peak-height formula also holds. However, for
a nonuniform background, the Lax-pair equations for these
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extended equations are more complex and it is difficult and
beyond the scope of this work to prove (7) for the extended
equations on a general background.

Finally, in Sec. IV we show that for the cubic NLS equation,
the only nonuniform background that can support Akhmediev-
type breathers is the Jacobi elliptic function dn(t,k), which
forms a “dnoidal” background. In the end, in Sec. V we
verify our theoretical results with numerical calculations and
summarize our conclusions in Sec. VI.

II. BASIC RESULT FOR THE DARBOUX
TRANSFORMATION

The N th-order DT wave function of any nonlinear evolution
equation, such as the cubic nonlinear Schrödinger equation

i
∂ψ

∂x
+ 1

2

∂2ψ

∂t2
+ |ψ |2ψ = 0, (1)

is given by [7]

ψN (x,t) = ψ0(x,t) +
N∑

n=1

2(l∗n − ln)sn1r
∗
n1

|rn1|2 + |sn1|2 , (2)

where ψ0(x,t) is the background solution and the sum
goes over N constituent soliton or breather solutions, each
characterized by an eigenvalue

ln = iνn, with νn > 0.

Here, x and t are the conventional propagation distance and
transverse variable of fiber optics. At a given n, the functions
rn1(x,t) and sn1(x,t) depend recursively on all the lower n

functions via [7]

rnj = [(l∗n−1 − ln−1)s∗
n−1,1rn−1,1sn−1,j+1

+ (lj+n−1 − ln−1)|rn−1,1|2rn−1,j+1

+ (lj+n−1 − l∗n−1)|sn−1,1|2rn−1,j+1]/(|rn−1,1|2

+ |sn−1,1|2), (3)

snj = [(l∗n−1 − ln−1)sn−1,1r
∗
n−1,1rn−1,j+1

+ (lj+n−1 − ln−1)|sn−1,1|2sn−1,j+1

+ (lj+n−1 − l∗n−1)|rn−1,1|2sn−1,j+1]/(|rn−1,1|2

+ |sn−1,1|2). (4)

These DT iterations are “generic” in that they are of the same
form for all NLS or extended equations they are designed to
solve. The knowledge of a particular nonlinear equation or a
background solution is encoded only in the initial solutions
r1j (x,t) and s1j (x,t) of the Lax-pair equation (to be described
below), which kick-start the iterations of (3) and (4).

For the general wave function ψN (x,t), iterations (3) and
(4) are recursively too complex to be written down analytically
beyond the lowest few orders. However, we can prove a
fundamental result on the basis of (3) and (4) alone, that if
for all 1 � n � N , sn1(0,0) and rn1(0,0) only differ by an
arbitrary phase φ,

sn1(0,0) = eiφrn1(0,0), (5)

then

ψN (0,0) = ψ0(0,0) +
N∑

n=1

(−ieiφ)2νn

= ψ0(0,0) +
N∑

n=1

2νn. (6)

This peak-height formula (6) follows from (5) by simply
evaluating (2) at the origin x = t = 0 with the choice of the
phase

φ = π

2
.

Note that (6) gives the wave function itself, not its modulus.
Since one can always center the soliton or breather at the origin,
this formula gives the peak height of the N th-order soliton or
breather as a linear sum of peak heights of individual solitons
or breathers plus the height of the background solution. The
choice of the phase eiφ = i is natural, in that the resulting peak
height is real and positive.

We will now prove that (5) is true if the initial Lax solutions
also satisfy the phase condition

s1j (0,0) = eiφr1j (0,0), (7)

for each j -constituent soliton or breather. We defer the proof of
(7) to the next section, since these initial Lax solutions require
knowledge of the specific equation and the background.

To prove (5) on the basis of (7), we apply iterations (3)
and (4) at x = t = 0 and suppress the notation (0,0). Starting
from (7), which is s1j = eiφr1j for 1� j �N , one can prove
successively that s2j = eiφr2j for 1� j �N−1, s3j = eiφr3j

for 1� j �N−2, etc. Therefore, given sn−1,j = eiφrn−1,j , (3)
and (4) read as

rnj = −(ie−iφ)νn−1sn−1,j+1 + iνj+n−1rn−1,j+1,

snj = (−ieiφ)νn−1rn−1,j+1 + iνj+n−1sn−1,j+1,

which means that

eiφrnj = −iνn−1sn−1,j+1 + iνj+n−1(eiφrn−1,j+1)

= (−ieiφ)νn−1rn−1,j+1 + iνj+n−1sn−1,j+1

= snj .

Thus, the proof by induction is complete. Note that we only
need the above equality to evaluate (2) for the peak height; we
do not need the actual analytical expression for rnj and snj . This
is why the peak height can be evaluated simply, circumventing
the full nonlinear complexity of DT.

In the case of the cubic NLS equation, the initial functions
s1j (x,t), r1j (x,t) are solutions to the following set of four
Lax-pair partial differential equations [5] (subscripts dropped
for clarity):

rt = iψ∗
0 s + ilr, (8)

st = iψ0r − ils, (9)

rx =
(

il2 − i

2
|ψ0|2

)
r +

(
ilψ∗

0 + 1

2
(ψ∗

0 )t

)
s, (10)
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sx =
(

−il2 + i

2
|ψ0|2

)
s +

(
ilψ0 − 1

2
(ψ0)t

)
r, (11)

whose compatibility condition requires ψ0 to be a solution
of the NLS equation. For more extended NLS equations, the
Lax-pair equations remain linear, but are more complex, and
can be found in Refs. [14–16]. Since (8)–(11) is a set of
four linear equations, the solutions s1j (x,t) and r1j (x,t) will
contain four constants of integration. As the DT wave function
(2) is unaffected by a common phase (or a common scale
factor) of s1j (x,t) and r1j (x,t), one constant can be used to
normalize both to unit modulus. Two constants can be used
to shift the solution peak to x0 and t0 and the last constant
can be chosen to fix the relative phase, so that (7) is true.
Such a relative phase then guarantees a positive wave function
peak height. This argument suggests that (7) is always possible
(when x0 = t0 =0) by simply choosing

r1j (0,0) = e−iπ/4 and s1j (0,0) = eiφr1j (0,0) = eiπ/4.

(12)

This is indeed the case for solitons based on the background
ψ0 = 0. For example, integrating (8)–(11) with ψ0 = 0 gives

r1j (x,t) = exp[−νj (t − t0) − iν2
j (x − x0) − iπ/4], (13)

s1j (x,t) = exp[νj (t − t0) + iν2
j (x − x0) + iπ/4], (14)

which produces a first-order soliton (when setting x0 = t0 =0)

ψ1(x,t) = ψ0 + 2(l∗1 − l1)r∗
11s11

|r11|2 + |s11|2

= 2(−2iν1) exp
(
i2ν2

1x + iπ/2
)

exp(−2ν1t) + exp(2ν1t)

= 2ν1 exp
(
i2ν2

1x
)

cosh(2ν1t)

with a positive peak height at the origin

ψ1(0,0) = 2ν1. (15)

Since (13) and (14) satisfy (7) when x0 = t0 =0, the peak height
of an N th-order soliton is given by (6), with ψ0(0,0) = 0.
This result has been stated without a proof some time ago
[17], but with a different relative phase between r1j (x,t)
and s1j (x,t). Result (12) remains true for ψ0 = 0 in the
more extended NLS equations, including the Hirota and
the Lakshmanan-Porsezian-Daniel operators (see Ref. [14]).
Thus, the peak-height formula holds for solitons in all extended
NLS equations.

When ψ0 �= 0, as we shall see below, the background will
generate an additional phase on the initial Lax solutions, and
one must show that (7) remains true in spite of the added phase.

III. GENERAL BACKGROUND WAVE FUNCTIONS

For solutions of the NLS equation with a nonuniform
background of the form

ψ0(x,t) = AF (t)eiBx, (16)

where A �= 0 and F (t) is real, we will show that Eq. (7) remains
true, but now requires that φ = π/2. For ψ0(0,0) to be the peak,
we assume that F (t) is normalized such that

F (0) = 1 and Ft (0) = 0. (17)

This is all that we need to prove (7); we do not need to know
the analytic form of F (t). [We also do not need to require
Ftt (0) < 0; the case of Ftt (0) > 0 is covered by taking A < 0.]

For F (t) not constant, one cannot solve all four Lax-pair
equations. However, one can still solve (10) and (11) by
invoking (16) and (17). Fixing t = 0 with l = iν, the last two
Lax-pair equations read [suppressing the subscripts and (x,0)
dependence]

rx = −i
(
ν2 + 1

2A2
)
r − νAe−iBxs,

sx = i
(
ν2 + 1

2A2
)
s − νAeiBxr.

Letting

r = ae−iBx/2 and s = beiBx/2

gives

ax = −iUa − νAb, (18)

bx = iUb − νAa, (19)

where U = ν2 + 1
2 (A2 − B). It follows that

bxx = (ν2A2 − U 2)b = ν2ω2b (20)

with

ω =
√

B − ν2 −
(

A2 − B

2ν

)2

, (21)

and hence the solution is

b = Ceνωx + De−νωx.

In this work, we focus on the breathers with real ω, thus
restricting

B − ν2 − 1

ν2

(
A2 − B

2

)2

� 0. (22)

The boundary value of this equation defines the rogue wave
limit of ω = 0. When ω is imaginary, one has Kuznetsov-Ma-
type solutions periodic in x [21,22].

For breathers, the solution for a follows from (19),

a = 1

νA
(iUb − bx) = D

(
νω + iU

νA

)
e−νωx

−C

(
νω − iU

νA

)
eνωx.

From (20), the parentheses are just pure phases,

a = Dei2χ−νωx − Ce−i2χ+νωx,

given by

cos(2χ ) = ω/A and sin(2χ ) = U/(νA). (23)

To make a and b symmetrical, we can choose

D = e−iχ−iδ and C = eiχ+iγ ,
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with phases δ and γ yet to be determined. This then gives,
restoring all subscripts,

r1j (0,0) = eiχj −iδ − e−iχj +iγ = eiχj −iδ + e−iχj +iγ−iπ ,

s1j (0,0) = eiχj +iγ + e−iχj −iδ.

The above will satisfy (7) if the phase φ is given by

φ = δ + γ = π

2
.

Note that only the sum δ + γ is fixed to be π/2; however, the
symmetrical choice of δ = γ = π/4 is universally adopted
in the literature [6,7,23]. Thus, for the above choice of
φ, (7) remains true independent of the phase χj gener-
ated by the background. Therefore, the peak-height formula
(6) for breathers is true regardless of the choice of the
background.

To verify that 2ν1 is indeed the peak height of the first-order
DT wave function, we compute directly

ψ1(x,0) = ψ0(x,0) + 2(l∗1 − l1)s1j r
∗
11

|r11|2 + |s11|2 =
(

A + 2ν1[1 − sin(2χ1) cosh(2ν1ω1x) + i cos(2χ1) sinh(2ν1ω1x)]

cosh(2ν1ω1x) − sin(2χ1)

)
eiBx. (24)

At x → ±∞, we have intensity

|ψ1(±∞,0)|2 = [A − 2ν1 sin(2χ1)]2 + [2ν1 cos(2χ1)]2 = A2 − 4Aν1 sin(2χ1) + 4ν2
1 = A2 − 4U + 4ν2

1 = 2B − A2, (25)

provided that ω �= 0. For Akhmediev breathers on a uniform
background ψ0 = eix with A = B = 1, the above reproduces
the background intensity |ψ1(x → ±∞,0)|2 = 1, as compared
to the peak height ψ1(0,0) = 1 + 2ν1.

Breathers of the Hirota and extended NLS equations on the
uniform background have initial Lax solutions satisfying (7)
[13,16]. Therefore, these breathers obey the same peak-height
formula as the Akhmediev breathers.

IV. CNOIDAL BACKGROUND BREATHERS

For solutions of the cubic NLS equation with nonuniform
backgrounds, we substitute (16) into (1), to find

d2F

dt2
= 2BF − 2A2F 3.

Comparing this to the equation satisfied by any of the 12 Jacobi
elliptic functions [24] zn(t,k)

d2zn

dt2
= βzn + 2αzn3,

we must have α = −A2 and β = 2B. Among the 12 elliptic
functions, only four have α negative [24], given by

(1) F (t) = cn(t,k) with A = k,B = k2 − 1/2,

(2) F (t) = dn(t,k) with A = 1,B = 1 − k2/2,

(3) F (t) = nd(t,k) with A =
√

1 − k2,B = 1 − k2/2,

(4) F (t) = sd(t,k) with A = k
√

1 − k2,B = k2 − 1/2,

where k is the modulus of the elliptic function. For cases (1) and
(2), t = 0 is the peak of cn(t,k) and dn(t,k). However, for cases
(3) and (4) the peaks are at nd(K,k) and sd(K,k), where K is
the quarter-period of cn. Therefore, for these to peak at t = 0,
one must set F (t) = nd(t + K,k) and F (t) = sd(t + K,k). For
case (3) this means

AF (t) =
√

1 − k2 nd(t + K,k) =
√

1 − k2

dn(t + K,k)
= dn(t,k),

which is identical to case (2). For case (4), one has

AF (t) = k
√

1 − k2 sd(t + K,k) = k
√

1 − k2
sn(t + K,k)

dn(t + K,k)

= k dn(t,k)
cn(t,k)

dn(t,k)
= k cn(t,k),

which is identical to case (1). There are therefore only two
cnoidal background solutions, (1) and (2). For these two cases,
respectively, our general formula (23) for the background
phase,

cos(2χj ) =
√

1 − 1

k2

(
νj + 1

4νj

)2
,

cos(2χj ) =
√

1 −
(
νj + k2

4νj

)2
,

agrees with the results of Ref. [23].
For the cn background, the restriction (22) for breathers

gives

k2 �
(

ν + 1

4ν

)2

� 1,

since the right-hand side has a minimum of 1. There is
therefore no breather except possibly at k = 1. However, at
k=1, cn(t,1) = sech(t), which is the same as the dn case
at k = 1, described below. Thus, all breathers are contained
in the dn case and the cn background only supports the
Kuznetsov-Ma-type [21,22] breathers.

For the dn background, the breather condition (22) gives(
ν + k2

4ν

)2

� 1 → k2 � 4ν(1 − ν),

which restricts the range of ν to
1
2 − 1

2

√
1 − k2 � ν � 1

2 + 1
2

√
1 − k2. (26)

As k ranges from 0 to 1, the range of ν narrows from [0,1] to
[1/2,1/2]. In contrast to the Akhmediev breather case, where
there is only a single rogue wave at ν = 1, corresponding to the
Peregrine breather, here, at each value of k, there are two rogue
waves, corresponding to the lower and upper boundary values
of (26). (These are called the DCRW and CCRW, respectively,
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FIG. 1. A breather on the dn(t) elliptic function background, with
ν = 1/2 and k2 = 1/2. The peak intensity is 4.

in Ref. [23]). The peak intensity of the brighter rogue wave is

|ψ1(0,0)|2 = (2 +
√

1 − k2)2, (27)

to be compared to the background intensity from (25):

|ψ1(x → ±∞,0)|2 = 1 − k2. (28)

While the absolute peak intensity (27) is less than that of the
Peregrine breather, its ratio with respect to the background
intensity (28) is always greater than 9, with increasing k.

V. NUMERICAL VERIFICATION

We have implemented the Darboux transformation on
cnoidal backgrounds with the same initial conditions as used
by Kedziora et al. [23].

In Fig. 1, we show a breather on the dn(t) elliptic function
background at ν = 1/2 and k2 = 1/2. The peak intensity is
precisely 4, in agreement with the peak-height formula. While
the evolution of |ψ(x,0)|2 given in Fig. 2 only reaches a single

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FIG. 2. Comparing the DT evolution of |ψ(x,0)|2 (symbols)
with prediction (24) (lines) at ν = 1/2 and at three values of
k2 = 1/4,1/2,3/4. The peak intensity at the origin is 4 for all three
cases, but the background intensities given by (28) are respectively
3/4, 1/2, and 1/4.

FIG. 3. The bright rogue wave at k2 = 1/2 and ν = 1
2 +

1
2

√
1 − k2. The numerical peak intensity is 7.3284; the peak-height

formula intensity is 4 + 1/2 + 2
√

2 = 7.3284.

peak, its variation in the t direction is modulated by the periodic
elliptic function background.

In Fig. 2, the DT profile |ψ(x,0)|2 is compared to the general
theoretical result (24) at ν = 1/2, but at three values of k2 =
1/4,1/2,3/4. Since the peak height only depends on ν, all
three cases have the same peak intensity of 4. However, the
background intensity changes according to k2, as given by
(28). The agreement between numerical DT simulations and
theoretical predictions is perfect.

For the case of k2 = 1/2, the bright rogue wave is at
ν = 1

2 + 1
2

√
1 − k2, with peak intensity (1 + 2ν)2 = 7.3284.

This is shown in Fig. 3. Rogue waves on a uniform back-
ground reach their peaks monotonically in both the x and t

directions. Rogue waves on a cnoidal background arise out of
a background periodic in the t direction.

In Fig. 4, we show the dim rogue wave with ν = 1
2 −

1
2

√
1 − k2 at the same value of k2 = 1/2. The intensity is more

than a factor of 4 dimmer and with much shorter wavelength
oscillations in the t direction, due to the smaller ν. This
intensity profile is similar to Fig. 8(a) of Ref. [23].

Using DT, one can form a second-order rogue wave by
combining the two ν-values of the bright and dim rogue waves.
This rogue wave is special in that, since the plus and minus
terms in ν cancel, i.e., from (6),

|ψ(0,0)|2 = (1 + 2ν1 + 2ν2)2

= (1 + 1 +
√

1 − k2 + 1 −
√

1 − k2)2 = 9,

FIG. 4. The dim rogue wave at k2 = 1/2 and ν = 1
2 − 1

2

√
1 − k2.

The numerical peak intensity is 1.6716; the peak-height formula
intensity is 4 + 1/2 − 2

√
2 = 1.6716.
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FIG. 5. Second-order rogue wave at k2 = 1/2 formed by the
bright and dim rogue waves of Figs. 3 and 4. The peak intensity
of 9 here is precisely the sum of those two figures’ intensities.

its intensity is always 9 independent of the background
parametrized by k. Its intensity is exactly at the border between
first- and second-order breathers. This is shown in Fig. 5. Such
a rogue wave was originally suggested, but not computed, by
Kedziora et al. [23]. What is even more remarkable is that the
intensity of this second-order rogue wave is exactly the sum of
the intensities of the previous two first-order rogue waves. We
have therefore found a “Pythagorean triplet” of rogue waves,
in the sense that the sum of squares of two wave function peaks
is equal to the square of a third wave function peak. Such a
result would seem inexplicable and unexpected without having
an analytical form for the wave function peak. The power of
our peak-height formula is that, in order for the sum of two
squares of wave function peaks to satisfy

(2 −
√

1 − k2)2 + (2 +
√

1 − k2)2 = 9,

the two first-order rogue waves must reside on a background
of k2 = 1/2. Thus our peak-height formula makes it easy to
see that among all possible rogue waves given by (26), this
Pythagorean triplet is unique to the background of k2 = 1/2.
There are no such rogue wave triplets on other backgrounds.

A fifth-order breather is shown in Fig. 6. Such a high-
order breather is very concentrated and one has to zero-in on
the origin, to see the extremely high, yet narrow, peak. Our
peak-height formula perfectly predicted the peak height of
this high-order breather.

VI. CONCLUSIONS

In this work, we have shown that for the NLS equation, the
peak-height formula (6) is true for all proper choices of the
background solution—vanishing, uniform, or varying.

FIG. 6. Fifth-order breather at k2 = 1/2, with five values of
νi = 0.4,0.5,0.6,0.7,0.8. The numerical DT peak intensity is 49. The
peak-height formula intensity is also 49.

More generally, we have also shown that, since the DT
iterations are generic, as long as (7) is true, the peak-height
formula (6) is true for all extended NLS equations. Such
a peak-height formula will be useful in guiding the design
and production of maximal-intensity breathers in physical
systems that can be modeled by the NLS equation [18]
and its extended variants. Also, while there is no direct
generalization of DT to higher spatial dimensions for the NLS
equation, the one-dimensional (1D) solution of the NLS can
be embedded into the three-dimensional (3D) solution via
similarity reductions [25,26] in the study of Bose-Einstein
condensates. The resulting 3D solution is then basically the
1D solution multiplied by some prefactors. Our peak-height
formula will be useful in determining the peak density of the
condensate by evaluating those prefactors.

Finally, our peak-height formula provided insights into
relating all breathers generated by DT. For example, it can
be used to prove the uniqueness of the Pythagorean triplet of
rogue waves. It also provides a simple check on the accuracy of
any numerical solution of the NLS equation. This is especially
useful when solving extended NLS equations with complex
higher-order terms.
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