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The understanding of interacting dynamics is important for the characterization of real-world networks. In
general, real-world networks are heterogeneous in the sense that each node of the network is a dynamics with
different properties. For coupled nonidentical dynamics symmetric interactions are not straightforwardly defined
from the coupling strength values. Thus, a challenging issue is whether we can define a symmetric interaction in
this asymmetric setting. To address this problem we introduce the notion of the coupling impact. The coupling
impact considers not only the coupling strength but also the energy of the individual dynamics, which is conveyed
via the coupling. To illustrate this concept, we follow a data-driven approach by analyzing signals from pairs of
coupled model dynamics using two different connectivity measures. We find that the coupling impact, but not
the coupling strength, correctly detects a symmetric interaction between pairs of coupled dynamics regardless of
their degree of asymmetry. Therefore, this approach allows us to reveal the real impact that one dynamics has on
the other and hence to define symmetric interactions in pairs of nonidentical dynamics.
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I. INTRODUCTION

The characterization of interdependence between inter-
acting dynamics is important for the understanding of the
behavior of many real-world systems. Prominent examples
include the stock market [1,2], the cardiorespiratory sys-
tem [3,4], the brain [5,6], or the climate [7,8]. In general, the
interacting dynamics are nonidentical. This raises the question:
Is it possible to define a symmetric interaction between
nonidentical coupled dynamics? To address this question,
we use a data-driven approach by analyzing pairs of signals
derived from coupled model systems. For this type of analysis,
in the bivariate or multivarite case, a variety of different
approaches has been proposed. Among them are approaches
based on state-space reconstruction [9–14], phases [15–21],
information theory [22–27], linear correlation [28–30], dy-
namical Bayesian inferrence analysis [31–35], as well as
on neural networks [36,37], among others. A comparison
between many of these approaches was done in model systems
and also in experimental data [21,35,38–42]. In this study
we apply a state-space approach [14] and a phase-based
approach [15,18,19].

We consider two bidirectionally coupled dynamics X and
Y , the evolution of which is described by the time-dependent
state-space vectors x(t) = {x1(t),x2(t), . . . ,xk(t)} and y(t) =
{y1(t),y2(t), . . . ,yl(t)}, respectively. Their equations of motion
have the form

ẋ(t) = F (x(t), f (yi(t),xj (t),εy)),

ẏ(t) = G(y(t), g(xj (t),yi(t),εx)). (1)

The function f represents an interaction from the Y to the X

dynamics with coupling strength εy . The yi and xj components
are involved in this interaction, with j = 1, . . . ,k and i =
1, . . . ,l. Analogously, the function g represents the interaction
from the X to the Y dynamics with coupling strength εx .

Rosenblum and Pikovsky [15] applied a directional phase-
based approach in a system of bidirectionally coupled dynam-
ics X and Y . They found that when the coupled dynamics X and
Y are almost identical, equal estimates of the interdependence
in both directions, as judged by their phase-based approach,
were correctly obtained for equal εx,εy values. On the other
hand, they indicated that when the X and Y dynamics are
nonidentical, equal estimates of the interdependence in both
directions are obtained for different εx,εy values.

To address this asymmetry in coupled dynamics we in-
troduce the notion of coupling impact. The coupling impact
takes into account both the coupling strength and the energy
of the individual dynamics. As a data-driven estimator of this
energy we use the variance of the signals. In particular we
use the variance of the variables through which the dynamics
are coupled. This is straightforward, since it is this variance in
combination with the coupling strength that reflects the energy
that is transmitted from one dynamics to the other. In order to
characterize the interdependence among the bidirectionally
coupled dynamics we use the directional state-space measure
L introduced by Chicharro and Andrzejak [14] and the phase-
based directionality index dx,y introduced by Rosenblum and
Pikovsky [15,18,19]. We determine the coupling strength
values as well as the coupling impact values for which the
two directional connectivity measures L and dx,y judge the
interaction to be symmetric. First, we explain the measures L

and dx,y (Secs. II A and II B) and present the coupled dynamics
(Sec. II C). In Sec. II D, we introduce the coupling impact, and
the results are shown in Sec. III. Finally, in Sec. IV we discuss
the conclusions of this study.

II. METHODS

In this section we present the two approaches that we
use for the characterization of directional interdependence
between two coupled dynamics X and Y . The first one is
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based on the state-space reconstruction and is denoted by
L [14], while the second one is based on the reconstruction
of the phase dynamics and is denoted by dx,y [15,18,19]. The
state-space approach utilizes directly the measured amplitudes
to reconstruct an estimator of the attractor of the underlying
dynamics using delay coordinates. This is based on the
assumption that the particular measured signal reflects all
the degrees of freedom of the dynamics. Furthermore, it
requires the dynamics to be aperiodic. For the phase-based
approach, techniques such as the Hilbert transform are used
to extract phases from the amplitudes of the signals. This
approach is based on the assumption that the dynamics can
be described by a phase variable and this phase variable can
be reconstructed from the signal [43]. Moreover, it is assumed
that the interacting dynamics X and Y are self-sustained. For
both approaches, strong coupling between X and Y should not
be present. When two dynamics are synchronized in the phase
or in the amplitude domain then the detection of the interaction
direction is no longer possible [14,15,24–26,39]. Additionally,
in both approaches we assume stationarity in the sense that the
generating dynamics has no explicit time dependence. In the
first part of our analysis we investigate chaotic dynamics. For
most of these particular dynamics phases are not well-defined.
Thus, we analyze them using the state-space approach. We
furthermore study noisy-limit cycle oscillators. Since here
phases are well-defined we use the phase-based approach.

A. State-space approach

The state-space approach L [14] is a bivariate directional
interdependence measure and it belongs to the category of
the nonlinear state-space measures. After reconstruction of
the state-space of the dynamics, the measure L quantifies the
degree to which spatially close neighbors of one dynamics are
mapped to spatially close neighbors on the other dynamics.
It was successfully applied to experimental data, like neu-
ronal [44] and musical data [45]. Moreover, in combination
with surrrogates it was applied to electroencephalographic
recordings from epilepsy patients and it was shown that it
is able to localize the epileptic focus [46] as well as to assess
the nonlinear interdependence in the brain [47].

We now review the algorithm [14] for the calculation
of L(X|Y ) and L(Y |X), which are used to estimate the
interdependence from X → Y and Y → X, respectively.
Suppose that we have two simultaneously measured signals
xi,yi,i = 1, . . . ,N derived from the dynamics X and Y ,
respectively. Using the method of delays [48], we reconstruct
the X and Y dynamics with embedding delay τ and embedding
dimension m. The embedding vectors for the X dynamics are
xn = (xn,xn−τ , . . . ,xn−(m−1)τ ) and for the Y dynamics they are
yn = (yn,yn−τ , . . . ,yn−(m−1)τ ), where n = h + 1, . . . ,N and
h = (m − 1)τ .

To calculate L(X|Y ), we start with a nearest-neighbor
search in the X dynamics. For each reference embedding vec-
tor xi we calculate its squared Euclidean distance d(xi ,xo) from
all the other embedding vectors xo, i,o = h + 1, . . . ,N, i �= o.
With ui,j , j = 1, . . . ,k, we denote the time indices of the
k spatially nearest neighbors of the reference embedding
vector xi . In order to avoid the selection of temporally close
neighbors, we apply a Theiler window, W [49]. This means

that the time indices of all neighbors of xi should satisfy
|ui,j − i| > W . We perform the same steps for the Y dynamics
and with wi,j ,j = 1, . . . ,k we denote the time indices of
the k nearest neighbors of each reference embedding vector
yi . Finally, for each reference point of the X dynamics,
xi , we calculate the Y -conditioned mean rank Gk

i (X|Y ) =
1
k

∑k
j=1 gi,wi,j

. The term gi,wi,j
denotes the rank that the

distance d(xi ,xwi,j
) takes in a sorted ascending list of all the

distances {d(xi ,xo)}, i,o = h + 1, . . . ,N and i �= o.
L(X|Y ) is defined by

L(X|Y ) = 1

N − h

N∑
i=h+1

Gi(X) − Gk
i (X|Y )

Gi(X) − Gk(X)
. (2)

The term Gk(X) = k+1
2 is a constant and denotes the mean

value of the ranks of the k nearest neighbors of each reference
point xi . Furthermore, we have Gi(X) = (Mi + 1)/2, where
Mi = N − 2W − 1 holds for the range W < i < N − W + 1.
Below and above the bounds of this range Mi increases linearly
and reaches Mi = N − W − 1 at i = 1 and i = N .

When we have identical synchronization (Y = X) then
Gk

i (X|Y ) = Gk(X), and L(X|Y ) = 1. If there is an interaction
from X → Y then 0 < L(X|Y ) < 1. When the dynamics X

and Y are independent, then Gk
i (X|Y ) ≈ Gi(X) and the values

of L(X|Y ) are distributed symmetrically around zero. To assess
the interdependence L(Y |X) from Y to X we follow the above
process by exchanging the roles of X and Y . Accordingly,
we define �L = L(X|Y ) − L(Y |X) for the characterization
of the predominant direction of interaction between the X and
Y dynamics [50].

In a preanalysis we scanned the ranges k = [3,5,10,15,20],
m = [4,5,6,7,8,9], and τ = [4,5,6,7,8,9] sampling times.
For all the possible combinations between k,m, and τ the
values of �L were stable for k = [3,5,10], m = [4,5,6],
and τ = [4,5,6]. Therefore, without performing any kind of
optimization, we set the values of k,m, and τ to the middle
value of these ranges. In other words, we set the parameters
of L: k = 5 nearest neighbors, embedding dimension m = 5
and embedding delay τ = 5 sampling times. For the Theiler
window we use W = 15. Like described below in more detail,
we sample all our dynamics such they have approximately 20
samples per cycle. Accordingly, for the parameters τ and W ,
which are in units of time, we can use the same values across
all dynamics.

B. Phase-based approach

The bivariate directional phase-based approach
dx,y [15,18,19] aims at the reconstruction of pairs of coupled
phase dynamics through an analysis of the instantaneous
phases and the instantaneous frequencies. Later, it was
extended to characterize interactions in networks of coupled
oscillators [20,21]. It was successfully applied not only
in bivariate but also in multivariate model systems and
experimental data [4,15,18–21,51–54].

This approach is based on the fact that an autonomous
periodic oscillator can be characterized by a phase φ, which
grows uniformly in time,

φ̇ = ω, (3)
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where ω is the natural frequency and the dot denotes the time-
derivative. For the case of two coupled dynamics X,Y we have
to take into account their interaction. Accordingly, they can be
described

φ̇x = ωx + qx(φx,φy),
(4)

φ̇y = ωy + qy(φy,φx),

where φx,y are the phase variables, ωx,y govern the natural
frequencies, and qx,y are the coupling functions which are
2π -periodic with respect to their arguments [15,43]. The
interaction between the X and Y dynamics can be quantified
with the norms of the coupling functions qx,y . The interaction
from Y → X and viceversa can be characterized by cx = ||qx ||

ωx

and cy = ||qy ||
ωy

, respectively. Finally, the directionality index
dx,y [15] is calculated as

dx,y = cy − cx

cx + cy

. (5)

For uncoupled dynamics, zero values of dx,y are expected. With
increasing unidirectional coupling from X to Y , positive values
of dx,y with an upper bound of 1 are obtained. For the opposite
coupling direction, negative values are attained with a limit of
−1. The sign of dx,y can be used to conclude the predominant
coupling direction. Additionally, equal estimates of interaction
in both directions between X and Y result in zero values of dx,y .
When we want to assess the interdependence in real-world
dynamics we only have measurements while the frequencies
and the coupling functions of the phase dynamics [Eqs. (4)]
are unknown. Therefore, we have to reconstruct the phase
dynamics. If the measurements are given by some amplitude
variables the first step of this approach is to obtain phases from
the available measurements. This process is done in two stages.
First, we extract with a two-dimensional embedding, e.g., the
analytic signal approach based on the Hilbert transform cyclic
variables θ , which are called protophases [18,19]. For any
autonomous dynamics protophases do not, in general, grow
linearly in time but they follow θ̇ = f (θ ). Moreover, they
are 2π -periodic and they depend on the embedding method.
Therefore, the second stage is to obtain the genuine phases
φ of Eq. (3) through a transformation from θ → φ. This
transformation is invertible and it is neither an interpolation
nor a filtering [18,19]. After obtaining the genuine phases
we numerically calculate their time derivatives. According to
Eq. (4) the derivatives of the phases are 2π -periodic functions
of the phases. Hence, we represent the right-hand side of
Eq. (4) as double Fourier series of order p:

φ̇x,y = ωx,y + qx,y(φx,φy) + ξx,y

=
p∑

m=−p

p∑
l=−p

Q
(x,y)
m,l ei(mφx+lφy ) + ξx,y .

Here, we include noise terms ξx,y that are always present
in real-wold data. The coefficients Q

(x,y)
m,l are estimated by

means of a least-mean-square fit. From the coefficients Q
(x,y)
0,0

we estimate the natural frequencies ωx,y that are denoted by
ω̄x,y [18,19]. The norms of the coupling functions are given

by

N (x,y) =
⎛
⎝

p∑
m=−p

p∑
l=−p

∣∣Q(x,y)
m,l

∣∣2

⎞
⎠

1/2

. (6)

From the summation and for both X and Y dynamics the
case for which m = l = 0 (estimated natural frequencies) is
excluded. In the end the norms N (x,y) of the coupling functions
are normalized by the estimated natural frequencies in order
to obtain the influence of one dynamics on the other,

cx = N (x)

ω̄x

, cy = N (y)

ω̄y

. (7)

Finally, by substituting Eqs. (7) in Eq. (5) we obtain the
directionality index dx,y [55].

We use the source code resources of Ref. [55] to obtain the
directionality index. Particularly, we use the Hilbert transform
to obtain the protophases. We make the transformation from
protophases to phases with the optimization according to Ten-
reiro [56]. For the calculation of the derivatives of the genuine
phases we use the central finite difference. Furthermore, the
order p of the Fourier expansion is 10. For the calculation of
the norms of the coupling functions we use the trapezoidal
method [55].

C. Coupled dynamics

We analyze pairs of bidirectionally coupled deterministic
chaotic dynamics as well as noisy limit-cycle oscillators. The
pairs of chaotic dynamics comprise identical, almost identical,
and nonidentical coupled Lorenz, Rössler, and Rössler-Lorenz
dynamics. We also use noisy nonidentical van der Pol oscilla-
tors as an example of limit-cycle oscillators. As we mentioned
before (Sec. II), we want to avoid synchronization between
the X and Y dynamics. Therefore, we restrict our analysis
to coupling strength values that do not result in a functional
relation between the amplitudes (for the chaotic dynamics) and
between the phases (for the limit-cycle oscillators). Without
loss of generality, we fix the coupling strength from X to Y ,
denoted by εx , and we vary the coupling strength from Y to
X, denoted by εy . Our first dynamics are coupled Lorenz:

ẋ1(t) = 10 [−x1(t) + x2(t)] + εy [y1(t) − x1(t)],

ẋ2(t) = Rx x1(t) − x2(t) − x1(t) x3(t), (8)

ẋ3(t) = x1(t) x2(t) − 8
3 x3(t),

and

ẏ1(t) = 10 [−y1(t) + y2(t)] + εx [x1(t) − y1(t)],

ẏ2(t) = Ry y1(t) − y2(t) − y1(t) y3(t), (9)

ẏ3(t) = y1(t) y2(t) − 8
3 y3(t).

Here, the coupling strength from X → Y is fixed to εx = 1.2
and the coupling strength εy from Y → X runs from 0.5 to 2.48
in steps of 0.02. All dynamics depend on some parameters.
Therefore, we can control the degree of asymmetry between
the dynamics by changing these parameters. For the coupled
Lorenz dynamics, we vary the values of Rx,Ry from 48 to
54 in steps of 2. Taking all the possible combinations of
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Rx,Ry values we obtain 12 pairs of nonidentical and 4 pairs
of identical coupled Lorenz dynamics. We analyze the signals
that are obtained from the components x1,y1.

For the integration of all chaotic dynamics we use the the
fourth-order Runge-Kutta method. For the coupled Lorenz
dynamics [Eqs. (8) and (9)], the step size for the integration
is 0.005 time units and the sampling interval is �t = 0.03
time units. As a consequence, every rotation period of the
Lorenz dynamics contains approximately 20 samples, which
we consider as an appropriate sampling of the dynamics [39].
We always use random initial conditions and in order to discard
transients we apply preiterations in the numerical integration.
The signals that we use for the analysis consist of 4096 points
and they correspond to 200 basic periods approximately.

For the coupled Rössler dynamics [57] the equations read

ẋ1(t) = −ωx x2(t) − x3(t) + εy[y1(t) − x1(t)],

ẋ2(t) = ωx x1(t) + 0.25 x2(t), (10)

ẋ3(t) = (x1(t) − 8.5) x3(t) + 0.4,

and

ẏ1(t) = −ωy y2(t) − y3(t) + εx [x1(t) − y1(t)],

ẏ2(t) = ωy y1(t) + 0.25 y2(t), (11)

ẏ3(t) = (y1(t) − 8.5) y3(t) + 0.4.

The mean frequencies ωx,ωy take the values ωx,ωy =
{0.9,0.905,1.045,1.05}. Thus, the 16 possible combinations
between the ωx,ωy values can be classified as follows. We
obtain four pairs of identical (e.g., ωx = 0.9,ωy = 0.9), four
pairs of almost identical (e.g., ωx = 0.9,ωy = 0.905) and
eight pairs of nonidentical coupled Rössler dynamics (e.g.,
ωx = 0.9,ωy = 1.05). We fix εx = 0.02 and the εy values run
from 0.01 to 0.0298 in steps of 0.0002. The integration step is
0.05 time units, and the sampling interval is set to �t = 0.3
time units, again resulting in approximately 20 points per
cycle. We use the variables x1,y1 as observables.

We also study the Rössler-Lorenz dynamics an example
where the dynamics do not only have different parameters but
they also have different structure:

ẋ1(t) = 10[−ωx x2(t) − x3(t)] + εy[y2(t) − x1(t)],

ẋ2(t) = 10[ωx x1(t) + 0.25 x2(t)], (12)

ẋ3(t) = 10{[x1(t) − 8.5] x3(t) + 0.4},
and

ẏ1(t) = 10 [−y1(t) + y2(t)],

ẏ2(t) = Ry y1(t) − y2(t) − y1(t) y3(t) + εx [x1(t) − y2(t)],

ẏ3(t) = y1(t) y2(t) − 8
3 y3(t). (13)

We vary the ωx values as well as the Ry values in the same
ranges that we used for the coupled Rössler and coupled
Lorenz dynamics, namely ωx = {0.9,0.905,1.045,1.05} and
Ry = {48,50,52,54}. Therefore, across all the combinations
of ωx and Ry we obtain 16 pairs of coupled Rössler-Lorenz
dynamics. The fixed coupling strength from X to Y is
εx = 0.55 and the varied coupling strength from Y to X

is εy = 0.3/1.02i−1, i = 1, . . . ,100. The step size for the
integration is 0.005 time units and the sampling interval is

�t = 0.03 time units. Since we use the same Rössler and
Lorenz dynamics as in the previous coupled dynamics, we
multiply the right-hand side of the Rössler equations with the
factor of 10 to continue to have approximately 20 points per
cycle for both dynamics. In this dynamics we analyzed the
signals from the x1,y2 components.

The limit-cycle oscillators consist of van der Pol oscillators
which read

ẍ(t) = 0.2[1 − x2(t)]ẋ(t) − ω2
xx(t) + εy[y(t) − x(t)] + ηx,

(14)

ÿ(t) = 0.2[1 − y2(t)]ẏ(t) − ω2
yy(t) + εx[x(t) − y(t)] + ηy,

where ηx,ηy are independent white Gaussian noises with zero
mean and correlation functions 〈ηx,y(t)ηx,y(t ′)〉 = 2Dx,yδ(t −
t ′)δx,y . For the integration of this type of dynamics we use
the Euler method with step size dt = 0.01π time units. The
variables x,y are used as observables. The sampling interval
is 0.1π time units again resulting in approximately 20 points
per cycle for each oscillator. The values of the frequencies
ωx,ωy vary in steps of 0.01 in the ranges [1.09,1.12] and
[0.88,0.91], respectively. Accordingly, we obtain 16 pairs
of nonidentical coupled oscillators. For the aforementioned
ranges of frequency we fix the standard deviation of noise,
the so-called noise level ξx,y = √

2Dx,y to 0.04. We also vary
the values of ξx,y in the range [0.02, 0.05] in steps of 0.01,
while the frequencies are fixed to ωx = 1.1 and ωy = 0.9.
Concerning the coupling values, εx is set to 0.05, and the εy

values vary in steps of 2 × 10−4 in the range [0.04002,0.06].
Like for the chaotic dynamics we limit the range of the
coupling values such that we do not have synchronization.
A study of the effect of the coupling strength and noise on
synchronization can be found in Ref. [58].

D. Coupling impact

The relevant components in a bidirectional interaction
between two coupled dynamics are the coupling strengths as
well as the variables of the dynamics, which are contained in
the coupling terms. For diffusively coupled dynamics X and
Y that are identical (or almost identical), these variables are
the same (or almost the same). Thus, symmetric interactions
between X and Y can be defined directly from the coupling
strengths. On the other hand, when X and Y are nonidentical
the variables that are contained in the coupling terms are
different. Hence, the coupling strengths are not by themselves
sufficient to characterize an interaction to be symmetric.
Instead, in order to define a symmetric interaction between
X and Y we also have to consider the energy of the variables
through which the coupling is conveyed from one dynamics to
the other.

In this paper we propose the notion of the coupling impact as
a quantity that takes into account both the coupling strengths
and the variables’ energy. As a data-driven estimator of the
variables’ energy we use the variance of their corresponding
signals. Accordingly, the coupling impact γx from X to Y

dynamics is given by

γx = εx

σ 2
y

, (15)
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where εx is the coupling strength from X → Y and σ 2
y is

the variance of the signal that corresponds to the variable
of the Y dynamics, which is contained on the coupling term.
For the coupling impact γy of the other direction Y → X, we
exchange the roles of the x and y components in Eq. (15).

What is the relation between the values of the coupling
strength and between the values of the coupling impact when
there is a symmetric interaction in the coupled X and Y

dynamics as estimated by L or dx,y? In other words, what is the
relation between the εx,εy values as well as the one between
the γx,γy values for which we obtain �L = 0 or dx,y = 0?

We carry out an analysis in two stages. We start by
describing the process we follow for the chaotic dynamics
that we analyze with the measure �L = L(X|Y ) − L(Y |X).
At first, we pair the fixed value of the coupling strength εx

with a range of 100 values of εy . The exact range of εy

is determined in a preanalysis such that in its intermediate
range, and given εx , we obtain equality in the values of L

in both directions [Fig. 1(a)]. For each pair of dynamics and
for each of the 100 sets of the coupling strength (εx,εy) we
generate 500 independent realizations. In Fig. 1(b) we show the
mean values of �L across the 500 realizations in dependence
on the ratio rε = εy/εx of the coupling strength values. As
a consequence of the adjustment of the εy range, the curve
of �L crosses zero. In order to estimate the abscissa of the
zero-crossing point (�L = 0), we fit a third-order polynomial
on the curve of the mean values of �L using the Brent-Dekker
method [59]. The resulting abscissa value is denoted by rεo.
In other words, rεo is the approximated value of εy/εx for
which there is a symmetric interaction between the X and
Y dynamics as judged by the measure L. We illustrate the
second stage of our analysis in Fig. 1(c). We plot the mean
values of the measure �L not in dependence on the ratio of
the coupling strength values rε = εy/εx , but in dependence on
the ratio of the coupling impact values rγ = γy/γx . We denote
by rγ o the abscissa of the point for which we have �L = 0.
Similarly, for the limit-cycle oscillators we follow exactly the
same process, but instead of �L we use the directionality
index dx,y = (cy − cx)/(cx + cy).

If we get rεo = 1 this would mean that equal estimates
of the interaction between the X and Y dynamics as judged
by the measure �L (or dx,y) are obtained for equal coupling
strength values. Analogously, rγ o = 1 means that symmetric
interaction in the coupled X and Y dynamics is obtained for
equal coupling impact values. In order to quantify deviations
of rεo and rγ o from one, we define the quantities ρε = ln(rεo)
and ργ = ln(rγ o).

III. RESULTS

We start by illustrating the influence of the asymmetry
between the dynamics and the coupling on the variances
of the signals. We do this since the variance is the basic
component of the coupling impact values. Thus, we inspect
the relation between the ratio of the coupling strength values
rε = εy/εx and the ratio of the variance of the signals rv =
σ 2

y /σ 2
x across different pairs of Lorenz dynamics (Fig. 2).

For coupled identical dynamics with equal coupling strength
values (rε = 1), the rv ratio is 1, correctly reflecting the
symmetry of the dynamics and the coupling. For increasingly

FIG. 1. The coupling impact but not the coupling strength detects
a symmetric interaction in strongly asymmetric coupled Lorenz
dynamics. Values of L and �L for the coupled Lorenz dynamics
(Rx = 48, Ry = 54). The error bars depict the mean ± one standard
deviation across 500 independent realizations. In (a) we depict values
of L(X|Y ), L(Y |X) in dependence on the coupling strength εy . The
vertical dashed line marks the fixed coupling strength εx = 1.2 from
X → Y . In (b) the �L = L(X|Y ) − L(Y |X) values are shown in
dependence on the ratio of the coupling strength values rε = εy/εx .
Panel (c) shows the �L values in dependence on the ratio of the
coupling impact values rγ = γy/γx. In panels (b) and (c) the dashed
vertical lines highlight the abscissa value of one. The black solid line
in (a) marks the crossing point of L(X|Y ), L(Y |X) in (b) the solid
line stands for the rεo value and in (c) for the rγ o value.

nonidentical dynamics, the rv ratio gradually diverges from the
one obtained for identical dynamics. In addition, for any degree
of asymmetry between the dynamics, rv covaries with rε .

We now consider strongly asymmetric coupled Lorenz
dynamics [Eqs. (8) and (9) for Rx = 48, Ry = 54). The
coupling strength εx from X → Y dynamics is fixed. As a
consequence the values of L(X|Y ) form an almost horizontal
line [Fig. 1(a)]. In contrast, since the εy coupling strength from
Y to X dynamics is increasing, so do the values of L(Y |X)
[Fig. 1(a)]. The graphs in Fig. 1(b) and Fig. 1(c) show the
resulting �L = 0 values. In each panel, however, the abscissa
is scaled differently. We use εy in Fig. 1(a), rε in Fig. 1(b),
and rγ in Fig. 1(c). Nonetheless, by construction, the crossing
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FIG. 2. Both the asymmetry and the coupling strength of the
dynamics affect the variance of the signals. Mean values of the ratio
of the variances of the signals rv = σ 2

y /σ 2
x in dependence on the ratio

of the coupling strength values rε = εy/εx . Each curve corresponds
to a different coupled Lorenz dynamics with the Rx and Ry values
specified in the legend.

point of L(X|Y ) and L(Y |X) in Fig. 1(a) and the zero crossing
of �L = 0 in Figs. 1(b) and 1(c) all have approximately the
same relative position with regard to the abscissa limits. These
lines are all positioned in the 29th data point. However, in
Fig. 1(c) the distance between pairs of subsequent points is
not constant but depends on the ratio of variances. The ratio
of variances in turn depends on the εy (see again Fig. 1).

When the degree of interdependence is the same in both
directions, as judged by �L = 0, the corresponding ratio rεo of
the coupling strength values is different from 1 [Fig. 1(b)]. On
the other hand, when we use the ratio rγ of the coupling impact

values, for �L = 0 the rγ o value is almost equal to 1 [Fig. 1(c)].
This means that equal estimates of interdependence (�L = 0)
are obtained for unequal coupling strength values (rεo �= 1),
but for almost equal coupling impact values (rγ o ≈ 1).

We now turn to the effect of the degree of asymmetry
of the coupled dynamics on the quantities ρε = ln(rεo) and
ργ = ln(rγ o) (Fig. 3). We start with the coupled Lorenz
dynamics [Eqs. (8) and (9) for all the set of Rx,Ry values].
For pairs of identical dynamics we obtain zero values of ρε

[Fig. 3(a)]. In contrast, for pairs of nonidentical dynamics we
obtain nonzero values of ρε . We also find that an increase
in the asymmetry of the dynamics leads to an increase in the
absolute values of ρε [Fig. 3(a)]. In contrast, the use of coupling
impact renders the resulting values of ργ to be almost zero for
both identical and nonidetical bidirectionally coupled Lorenz
dynamics [Fig. 3(d)]. Similar findings are obtained for the
coupled Rössler dynamics [Eqs. (10) and (11) for all the set
of ωx,ωy values] as can be seen in Figs. 3(b) and 3(e). Again
we find that zero values of ρε and ργ are obtained for all the
pairs of identical dynamics. These results also hold for pairs
of almost identical dynamics [top left and bottom right blocks
of Figs. 3(b) and 3(e)]. Concerning the pairs of nonidentical
dynamics we obtain nonzero values of ρε [Fig. 3(b)]. On the
other hand, the values of ργ are almost zero [Fig. 3(e)].

We continue with an example of coupled dynamics with
different structure given by the Rössler and Lorenz dynamics
[Eqs. (12) and (13)]. Since these dynamics are completely
different, the ρε quantity takes nonzero values [Fig. 3(c)] for
all the pairs of dynamics. Moreover, these values are higher
than the ones of the coupled Lorenz [Fig. 3(a)] and Rössler
dynamics [Fig. 3(b)]. Despite the strong asymmetry between
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FIG. 3. The coupling impact correctly detects a symmetric interaction for the coupled deterministic chaotic dynamics. Values of ρε (a–c)
and ργ (d–f) for the coupled Lorenz (a, d), Rössler (b, e), and Rössler-Lorenz (c, f) dynamics.
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FIG. 4. High accuracy of the estimation of the coupling strength and coupling impact values. Mean values of ρε (a–c) and ργ (d–f) for
the coupled Lorenz (a, d), Rössler (b, e), and Rössler-Lorenz (c, f) dynamics obtained across five sets of 100 realizations each. The error bars
depict the corresponding ranges.

the coupled dynamics the use of coupling impact successfully
results in values of ργ that are very close to zero [Fig. 3(f)].

In order to assess the accuracy of our results we divide
the 500 independent realizations that we made for each pair of
dynamics in 5 groups of 100 realizations each. For every group
we repeat the analysis as described in Sec. II D and we deter-
mine the corresponding ρε and ργ values. Their mean value
and ranges are shown in Fig. 4. The small magnitude of these
ranges illustrates that our estimates of ρε and ργ are reliable.

We now study limit-cycle oscillators. We follow the exact
same procedure like the first three chaotic dynamics, but
instead of the measure L we use the directionality index dx,y .
In particular, we assure that the estimates ρε and ργ are of com-
parably high accuracy as the one obtained for the chaotic dy-
namics. For all the pairs of nonidentical van der Pol oscillators
[Eqs. (14) with ξx,y = 0.04] the values of ρε diverge from zero
[Fig. 5(a)]. Again the more asymmetry between the frequen-
cies ωx,ωy of the oscillators the higher absolute values of ρε we
get. In contrast, the use of coupling impact results in values of
ργ close to zero [Fig. 5(c)]. We also study the role of noise on
the coupling impact. For this purpose, we fix ωx = 1.1,ωy =
0.9 and we vary the noise levels ξx,ξy from 0.02 to 0.05 in steps
of 0.01. In general higher values of noise lead to higher abso-
lute values of ρε [Fig. 5(b)]. On contrary, the use of coupling
impact ends in values of ργ very close to zero [Fig. 5(d)].

IV. DISCUSSION

In this paper we proposed the notion of the coupling
impact as a way to define symmetric interactions between
nonidentical bidirectionally coupled dynamics. For this pur-
pose we followed a data-driven approach by analyzing signals
from pairs of coupled dynamics. In order to characterize the
interdependence between the interacting dynamics we used
the state-space measure L [14] as well as the phase-based

directionality index dx,y [15,18,19]. These measures estimate
the strength and direction of the interaction between two
dynamics X and Y . At first, we showed that in identical
and almost identical bidirectionally coupled dynamics, equal
estimates of the interdependence in both directions as judged
by L or dx,y are obtained for equal values of the coupling
strength. This finding is in accordance with expectation
and previous findings [15,25] as it reflects the symmetry
between the dynamics in this setting. On the other hand, we
showed that in nonidentical bidirectionally coupled dynamics
equal estimates of interdependence in both directions are
obtained for unequal values of the coupling strength. In other
words, in the case of nonidentical coupled dynamics, if the
coupling strength from the dynamics X to the dynamics Y is
stronger than in the opposite direction, this does not always
imply that also the interaction from X to Y is higher than
for the opposite direction. These findings do not reflect a
peculiarity of L or dx,y but are consistent with results of
previous studies [15,39], which used state-space [39] and
phase-based [15,39] approaches for the characterization of
interaction between bidirectionally coupled dynamics. For
increasingly different coupled dynamics, equal estimates of the
interaction between the dynamics are obtained for increasingly
different coupling strength values. Therefore, the coupling
strength values do not determine by themselves the real impact
that one dynamics exerts on the other.

In order to address this problem we here introduced the
notion of the coupling impact. The coupling impact takes
into account not only the coupling strength between the
dynamics but also the energy of the individual dynamics. As an
estimator of this energy we used the variance of the signal that
corresponds to the variable through which the dynamics are
coupled. We found that equal estimates of interdependence in
both directions are obtained for approximately equal coupling
impact values, regardless of the asymmetry between the
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FIG. 5. The coupling impact correctly detects symmetric interactions for the noisy van der Pol oscillators. Values of ρε (a, b) and ργ (c, d)
for different frequency and noise levels. In the first column we vary the frequencies ωx,y , while the noise levels ξx,y are fixed to 0.04. On the
second one, the frequencies ωx,ωy are fixed to 1.1 and 0.9, respectively, and the noise levels ξx,y vary.

coupled dynamics. Hence, this approach reveals the real impact
that one dynamics has on the other much more reliably than
the coupling strength.

We choose the variance as a data-driven estimator of the
dynamics’ energy because it is a simple and intuitive quantity.
Our results show that it is well-suited to address symmetric
interactions in nonidentical coupled dynamics. On the other
hand, we still at times have a remaining mismatch. In some
cases equal estimates of interaction in both directions are
obtained for only approximately equal coupling impact values.
Hence, an open topic for a future study is to test higher-
order moments for the estimation of the dynamics’ energy.
Furthermore, we can consider dynamics that are coupled not
only diffusively but which have more complex interactions.

It is important to underline the scope of this work. For
real-world data one does not know in general the values of the
coupling strength of the underlying dynamics. Furthermore,
the variance of real-world signals might not reflect well the
true energy that one dynamics exerts on the other, but instead
depends on the measurement. An important aspect is the path
between the place where the dynamics takes place and the lo-
cation of the measurement device. In electroencephalographic
recordings, for example, the activity of the interacting neurons
takes place in the brain but electrodes are placed on different
positions of the scalp. Moreover, the electrode impedance is
not identical across different electrodes. Hence, the variance of
electroencephalographic recordings cannot be the real variance
of the signal through which the coupling is conveyed. For these

reasons an application of the coupling impact to experimental
data is not straightforward.

We also note that noisy dynamics with time-varying
parameters can be analyzed with the dynamical Bayesian
inference approach [32–35] that reveals the effective connec-
tivity. However, the phase-based approach that we applied
here as well as the dynamical Bayesian inference approach
are model-based [60], while the state-space approach does not
assume any model of the interacting dynamics.

Concluding, we underline that the aim of the present
paper is not to propose the coupling impact as a measure
to analyze experimental data. Instead, it serves as a way to
define symmetric interactions between bidirectionally coupled
dynamics, regardless of whether or not they are identical.
Therefore, although we follow a data-driven approach our
contribution is toward an understanding of dynamical systems.
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[4] B. Kralemann, M. Frühwirth, A. Pikovsky, M. Rosenblum, T.

Kenner, J. Schaefer, and M. Moser, Nat. Commun. 4, 2418
(2013).

[5] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David,
and C. E. Elger, Phys. Rev. E 64, 061907 (2001).

[6] M. D. Fox, A. Z. Snyder, J. L. Vicent, M. Corbetta, D. C. V.
Essen, and M. E. Raichle, Proc. Natl. Acad. Sci. USA 102, 9673
(2005).

[7] I. I. Mokhov and D. A. Smirnov, Geophys. Res. Lett. 33, L03708
(2006).
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