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We explore the classical dynamics of two interacting rotating dipoles that are fixed in the space and exposed to
an external homogeneous electric field. Kinetic energy transfer mechanisms between the dipoles are investigated
by varying both the amount of initial excess kinetic energy of one of them and the strength of the electric field.
In the field-free case, and depending on the initial excess energy, an abrupt transition between equipartition
and nonequipartition regimes is encountered. The study of the phase space structure of the system as well as
the formulation of the Hamiltonian in an appropriate coordinate frame provide a thorough understanding of
this sharp transition. When the electric field is turned on, the kinetic energy transfer mechanism is significantly
more complex and the system goes through different regimes of equipartition and nonequipartition of the energy
including chaotic behavior.
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I. INTRODUCTION

The mechanism of energy exchange between molecules,
mediated either by the Coulomb, dipole-dipole, or van der
Waals interactions, is an active research area with several
intriguing perspectives in physics, chemistry, biology, and
materials sciences. The wide range of applications covers, for
instance, the photosynthesis of plants and bacteria [1–5], the
emission of light of organic materials [6–8], and molecular
crystals [9–11]. On the other hand, cooling and trapping
cold molecules in an optical lattice allow one to fix their
positions while exploiting their interactions [12,13]. The latter
becomes particularly interesting for strongly polar diatomic
systems where the dipole-dipole interaction is sufficiently long
range that novel structural as well as dynamical and collective
behaviors can be expected [14–16]. External electric fields
provide then a versatile tool to control these interactions, e.g.,
the alignment of the dipoles with the field [17].

One of the most popular approaches to investigate the
energy transfer in a many-body system is to describe it by
a linear chain of nonlinear oscillators with different coupling
between them. These models are based on the seminal work
of Fermi, Pasta, and Ulam [18], the so-called FPU system.
This work was the first to realize that, in the infinite time
limit, this system of nonlinear oscillators does not reach the
expected smooth energy-equipartition behavior. After several
decades of research and a plethora of works, see, for instance,
Refs. [19–25], the question concerning the energy sharing
mechanism in a chain of nonlinear oscillators, and, therefore, in
a many-body system can be considered still an open question.
Furthermore, in Refs. [26–28] the energy flow in a linear chain
of interacting rotating dipoles and in a two-dipole system are
explored. For the two-dipole system, the authors conclude the
existence of a critical excitation energy up to which there is no
energy transfer.

In order to provide further insights in the energy transfer
mechanisms in dipole chains, in this work, we consider two

interacting rotating dipoles exposed to an external electric
field. One important motivation to select this model is to
mimic the dipole-dipole interaction between two cold polar
diatomic molecules trapped in an optical lattice. The aim is to
investigate the classical phase space in relation to the energy
transfer mechanism between the two rotors, both in the absence
and in the presence of an electric field. Assuming that their
positions are fixed in space, we employ a classical description
of their internal dynamics within the rigid rotor approximation.
A certain amount of kinetic energy is then given to one of the
dipoles and the energy transfer mechanism between the two
dipoles is explored as the excess kinetic energy and the field
strength are varied. For the field-free system, we encounter
energy-equipartition and nonequipartition regimes depending
on the initial excess energy. In the field-dressed system, there
exists a competition between the anisotropic dipole-dipole
interaction of the rotors and the electric field interaction.
If the strengths of these two interactions are comparable,
the classical dynamics is chaotic. As the strength of the
electric field increases, and the field interaction dominates,
we encounter an energy-equipartition regime that is followed
by an energy-localized one for even stronger fields.

The paper is organized as follows: In Sec. II we establish
the classical rotational Hamiltonian governing the dynamics of
two identical rotating dipoles in an external electric field with
fixed spatial positions. The equations of motion and the critical
points in an invariant manifold are also presented. Sections III
and IV are devoted to the investigation of the exchange of
energy between the two rotors in the field-free case and in the
presence of the external field, respectively. The conclusions
are provided in Sec. V.

II. CLASSICAL HAMILTONIAN AND EQUATIONS
OF MOTION

We consider two identical dipoles, fixed in space and
separated by a distance al along the laboratory fixed frame
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(LFF) X axis. Here, we employ the rigid rotor approximation
to describe the dynamics of the two dipoles. In the presence
of an external homogeneous time-dependent electric field
parallel to the LFF Z axis and with strength Es(t), the
interaction potential, V ≡ V(θ1,φ1,θ2,φ2,t), can be shown to
be as follows [26,28,29]:

V = −μEs(t)(cos θ1 + cos θ2) + μ2

4πε0a
3
l

[cos θ1 cos θ2

+ sin θ1 sin θ2(sin φ1 sin φ2 − 2 cos φ1 cos φ2)], (1)

where (θi,φi), with i = 1,2, represent the Euler angles of each
rotor. The first term in (1) stands for the interaction of the
dipole moment, μ, of the two rotors with the external electric
field of strength Es(t) = Esf (t) that is turned on with the linear
function

f (t) =
{

t
t1

if 0 � t < t1,

1 if t � t1.
(2)

This linear ramp-up envelope was previously used in Ref. [30]
and it mimics more complex theoretical [31] and experimental
laser pulses [32]. The last term in (1) represents the dipole-
dipole interaction between the two rotors. The classical
Hamiltonian describing the rotational motion of this system
reads

H =
2∑

i=1

1

2I

[
P 2

θi
+ P 2

φi

sin2 θi

]
+ V, (3)

where I is the moment of inertia of the dipoles, and where
the first two terms stand for the rotational kinetic energy of the
dipoles. Expression (3) defines a (4 + 1/2)-degree-of-freedom
Hamiltonian dynamical system in (θ1,φ1,θ2,φ2), in the corre-
sponding momenta (Pθ1 ,Pφ1 ,Pθ2 ,Pφ2 ) and in time. For the sake
of simplicity, it is convenient to handle a dimensionless Hamil-
tonian. Since our model is relevant to describing two interact-
ing rigid-rotor polar diatomic molecules, it is natural to express
energy in units of the molecular rotational constant B = �

2/2I

and time in units of the characteristic time tB = �/2B.
In this way, we arrive at the dimensionless Hamiltonian given
by

H ≡ H
B

=
2∑

i=1

[
P 2

θi
+ P 2

φi

sin2 θi

]
+ V, (4)

with the rescaled potential, V ≡ V (θ1,φ1,θ2,φ2,t), being

V = −f (t)β(cos θ1 + cos θ2) + χ [cos θ1 cos θ2

+ sin θ1 sin θ2(sin φ1 sin φ2 − 2 cos φ1 cos φ2)], (5)

where the dimensionless parameters

χ = μ2

4πε0a
3
l B

and β = μEs

B
(6)

control the dipole-dipole and electric field interactions, respec-
tively.

Since the two rotors are identical, Hamiltonian (4)
possesses an exchange symmetry of even character.
Moreover, Hamiltonian (4) presents two invariant manifolds,

namely,

M = {(θ1,θ2,Pθ1 ,Pθ2 ) | φ1 = φ2 = Pφ1 = Pφ2 = 0}, (7)

N = {(θ1,θ2,Pθ1 ,Pθ2 ) | φ1 = φ2 = π/2,Pφ1 = Pφ2 = 0}, (8)

where the dynamics is limited to planar motions confined to
the XZ plane and to the YZ plane, respectively. Our study
focuses on the invariant manifold M because for β = 0,
the field-free case, the Hamiltonian associated to Eq. (7) is
structurally stable in the sense that, if we slightly perturb this
model away from the manifold M, the dynamics remains
in the neighborhood of φ1 = φ2 = Pφ1 = Pφ2 = 0. However,
for β = 0, the Hamiltonian system described by Eq. (8)
is structurally unstable because trajectories starting in the
vicinity of φ1 = φ2 = π/2, Pφ1 = Pφ2 = 0 tend to move away
from the manifold N . This instability is due to the fact that
the Hessian matrix associated to N is singular for β = 0. As a
consequence of this singular character of the Hessian matrix,
the potential energy surface associated to N has no critical
points for β = 0.

In the invariant manifold M, the Hamiltonian reads

HM ≡ E = P 2
1 + P 2

2 + VM(θ1,θ2,t), (9)

where VM(θ1,θ2,t) ≡ V (θ1,0,θ2,0,t) is the potential energy
surface of this system in M. In the rest of the paper, we focus
our study on the manifold M. The Hamiltonian equations of
motion arising from HM read as follows:

θ̇1 = 2P1, θ̇2 = 2P2,

Ṗ1 = [χ cos θ2 − βf (t)] sin θ1 + 2χ cos θ1 sin θ2,

Ṗ2 = [χ cos θ1 − βf (t)] sin θ2 + 2χ cos θ2 sin θ1. (10)

A. The critical points of the energy surface

Part of the dynamics can be inferred from the landscape of
the potential energy surface VM(θ1,θ2,t), and its critical points,
which are the equilibrium points of the Hamiltonian flux (10)
equated to zero. Since Hamiltonian (9) is an even function
with exchange symmetry, the critical points are located along
the directions θ1 = θ2 and θ1 = −θ2. Note that, for the sake of
completeness, the polar angles (θ1,θ2) are varied in the interval
(−π,π ]. For t � t1 [f (t) = 1] the electric field parameter
has reached it maximal value β and the critical points of
VM(θ1,θ2,t) are the roots of the equations

(β − 3χ cos θ1) sin θ1 = 0 with θ2 = θ1,

(β + χ cos θ1) sin θ1 = 0 with θ2 = −θ1. (11)

There exist five critical points, their conditions of existence
and stability and energies are summarized in Table I. The
positions and energies of these critical points as the electric
field parameter β increases are presented in Fig. 1.

For 0 � β/χ < 1, the five equilibria exist. In the field-free
case β = 0, the energy surface VM(θ1,θ2,t � t1) shows the
characteristic landscape of the dipole-dipole interaction shown
in Fig. 2(a). The minima C1 correspond to the stable head-tail
configurations of the dipoles, while the maxima C5 correspond
to the unstable head-head or tail-tail configurations. Thus,
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TABLE I. Conditions of existence, stability, and energy of the critical points of VM(θ1,θ2,t > t1). The saddle points are denoted by SP.

Equilibrium Existence Stability Energy E

C1 = (± cos−1(β/3χ ),± cos−1(β/3χ )) β � 3χ Minima E1 = −(6χ 2 + β2)/3χ

C2 = (±π,0), (0,±π ) Always SP E2 = −χ

C3 = (0,0) Always If β < 3χ , SP; if β > 3χ , minimum E3 = χ − 2β

C4 = (±π,±π ) ≡ (±π, ∓ π ) Always If β < χ , SP; if β > χ , maxima E4 = χ + 2β

C5 = (± cos−1(−β/χ ), ∓ cos−1(−β/χ )) β � χ Maxima E5 = (2χ 2 + β2)/χ

if the energy of the system is below the energy of the
saddle points C2, E2 = −χ , the two dipoles are confined in
the potential wells created by the minima C1 and they oscillate
around the stable head-tail configuration. If the energy of the
system is larger than E2 = −χ , and smaller than the energy of
the saddle points C3 and C4, E3 = E4 = χ , the oscillations of
the dipoles are of large amplitude but still around the stable
head-tail configurations. Finally, if the total energy is larger
than E3 = E4 = χ , the rotors can perform complete rotations.

For 0 < β/χ < 1, as the ratio β/χ approaches 1, the min-
ima C1 (maxima C5) move towards the saddle point C3 (C4).
However, the shape of the energy surface VM(θ1,θ2,t � t1)
remains qualitatively the same, though being somewhat dis-
torted as compared to the field-free case; see Fig. 2(b) for
β/χ = 0.9. As a rough approximation, for 0 < β/χ < 1, the
interaction due to the electric field could be considered a per-
turbation to the dipole-dipole interaction, which dominates the
dynamics. For β/χ = 1, a pitchfork bifurcation takes place be-
tween the saddle points C4 and the maxima C5 (see Fig. 1), and
from there on only the saddle points C4, which become max-
ima, survive, which is illustrated in Fig. 2(c) for β/χ = 1.1.
As the electric field parameter increases in the interval
1 � β/χ < 3, the minima C1 keep moving towards C3; see
Fig. 1 and the contour plot in Fig. 2(d) for β/χ = 2.9. At
β/χ = 3, C1 and C3 collide and a second pitchfork bifurcation
occurs. From this bifurcation on, only the critical point C3

survives now as minimum; see Fig. 2(e) for β/χ = 3.1. For
β/χ � 3, the shape of the energy surface VM(θ1,θ2,t = t1)
is qualitatively similar to the χ = 0 case, where only the
interaction due to the electric field is taken into account; cf.
Figs. 2(e) and 2(f). Indeed, for β/χ � 3, the dipole-dipole
interaction could be considered a perturbation to the electric
field interaction.

B. The rotated reference system

A 3π/4 rotation around the axis perpendicular to the
plane (θ1,θ2) of Hamiltonian (9) takes the equilibria along the

FIG. 1. Evolution of the (a) position and (b) energy of the
critical points of VM(θ1,θ2,t � t1) as a function of the ratio between
the electric field parameter β and the dipole-dipole interaction
parameter χ .

bisector θ2 = θ1 to the axis θ2 = 0. This rotation is a canonical
transformation between the coordinates (θ1,θ2,P1,P2) and the
new ones (θ ′

1,θ
′
2,P

′
1,P

′
2) given by

θ ′
1 = θ1 + θ2√

2
, θ ′

2 = θ2 − θ1√
2

,

P ′
1 = P1 + P2√

2
, P ′

2 = P2 − P1√
2

, (12)

and with generating function W:

W = P ′
1

(
θ1 + θ2√

2

)
+ P ′

2

(
θ2 − θ1√

2

)
. (13)

FIG. 2. Evolution of the landscape of the potential energy surface
VM(θ1,θ2,t) for t > t1 and different values of the ratio between the
electric field parameter and the dipole-dipole interaction β/χ .
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FIG. 3. Landscape of the rotated potential energy surface
V ′(θ ′

1,θ
′
2,t) for β = 0. The period of the rotated potential for β = 0

is π/
√

2, but for the sake of clarity, we plot it in the interval [−π,π ].

The rotated Hamiltonian H ′ reads

H ′ = E′ = P ′2
1 + P ′2

2 + V ′
M(θ ′

1,θ
′
2,t), (14)

where

V ′
M(θ ′

1,θ
′
2,t) = V ′

1(θ ′
1) + V ′

2(θ ′
2)

− 2βf (t) cos

(
θ ′

1√
2

)
cos

(
θ ′

2√
2

)
, (15)

with

V ′
1(θ ′

1) = 3
2χ cos(

√
2 θ ′

1), V ′
2(θ ′

2) = − 1
2χ cos(

√
2 θ ′

2).

The potential V ′
M(θ ′

1,θ
′
2,t) represents the potential energy of

two pendula coupled by the external electric field. Note that
the period of these pendula is π/

√
2.

In the field-free case, β = 0, the dipole-dipole Hamiltonian
is separable, H ′ = H ′

1 + H ′
2, with

H ′
1 = E′

1 = P ′2
1 + 3

2χ cos(
√

2 θ ′
1),

H ′
2 = E′

2 = P ′2
2 − 1

2χ cos(
√

2 θ ′
2), (16)

and the dynamics is that of two uncoupled pendula. The
contour plot of V ′

M(θ ′
1,θ

′
2,t) for β = 0 is depicted in Fig. 3.

III. ENERGY TRANSFER IN THE FIELD-FREE CASE

In this section, we explore the energy transfer mechanism
between the two field-free rotors assuming that, initially, they
do not have the same kinetic energy. Indeed, we assume that
initially the two rotors are at rest, with zero kinetic energy, in
the bottom of the potential well C1, i. e., θ1 = θ2 = π/2, in the
stable head-tail configuration with total energy −2χ . From this
situation, we assume that a certain amount of kinetic energy
δK is given to the first dipole, in such a way that the initial
conditions at t = 0 are

θ1(0) = θ2(0) = π

2
, P1(0) =

√
δK, P2(0) = 0. (17)

With these initial conditions, the Hamiltonian equations of
motion (10) for β = 0 are integrated up to a final time tf by
means of an explicit eighth-order Runge-Kutta algorithm with

FIG. 4. For the field-free system, the normalized time-averaged
kinetic energies of the dipoles P̂ 2

1 (solid blue line) and P̂ 2
2 (dotted red

line), see (18), as a function of the initial excess energy of the first
dipole δK. The dipole-dipole interaction strength is χ = 1 × 10−5.

step-size control and dense output [33]. During the numerical
integration, we compute the normalized time average of the
kinetic energy of each dipole, P̂ 2

i , given by

P̂ 2
i =

〈
P 2

i

〉〈
P 2

1

〉 + 〈
P 2

2

〉 , 〈
P 2

i

〉 = 1

tf − t1

∫ tf

t1

P 2
i (t)dt. (18)

Note that in the field-free case β = 0, and we use t1 = 0.
The outcome depends on the parameter of the dipole-dipole
interaction χ and the amount of excess energy δK. Here, we fix
the dipole-dipole interaction and investigate the energy transfer
as the energy given to the first dipole increases. This dipole-
dipole interaction parameter depends on the molecular species,
through the rotational constant and permanent electric dipole
moment, and on the separation between the dipoles. In this
work, we use χ = 1 × 10−5. In case we were considering the
dipoles to be cold LiCs molecules trapped in an optical lattice,
the value χ = 1 × 10−5 would correspond to an optical lattice
with al = 429 nm. The parameter δK is given in units of χ , i.e.,
in the energy units of the potential energy surface VM(θ1,θ2,t)
for β = 0, and we investigate the interval 0χ � δK � 8χ . The
final time is fixed to tf = 5 × 104. Our numerical tests have
shown that this value for the stopping time is appropriate for
the correct characterization of the outcomes.

The normalized time-averaged kinetic energies of the
dipoles are shown in Fig. 4 as the excess energy δK increases.
If the excess energy δK is smaller than the critical value
δKc ≈ 6χ , the system is in an equipartition-energy regime,
P̂ 2

1 is very close to P̂ 2
2 , and there is a continuous energy flow

between the rotors. This behavior is illustrated for δK = 4χ

in Fig. 5(a) with the time evolution of the kinetic energies
P 2

1 (t) and P 2
2 (t), and the potential energy VM(θ1,θ2,t). For

δK ≈ 6χ , this equipartition regime abruptly breaks and for
δK � 6χ , most of the kinetic energy remains in the first dipole.
As a consequence, the energy flow between the dipoles is
interrupted as shown in Fig. 5(b) for δK = 7χ . The dynamics
of this first rotor is essentially different in these two regimes.
For δK < 6χ , the kinetic energy P 2

1 (t) oscillates and reaches
zero as a minimal value [see Fig. 5(a)], which indicates
a noncontinuous rotation and this first dipole is at rest at
these minima. For δK > 6χ , P 2

1 (t) > 0, cf. Fig. 5(b), which
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FIG. 5. For the field-free system, time evolution of the kinetic
energies P 2

1 (t) (blue lines) and P 2
2 (t) (red lines) and the potential

energy VM(θ1,θ2,t) (green lines). The initial excess energies of the
first dipole are (a) δK = 4χ and (b) δK = 7χ . The dipole-dipole
interaction strength is χ = 1 × 10−5.

indicates that the first dipole is performing a continuous
rotation. In contrast, the smaller kinetic energy of the second
rotor P 2

2 (t) oscillates with a noncontinuous rotation and has as
a minimum value zero in both regimes. This behavior in the
energy flux between the dipoles was already observed by de
Jonge et al. [28]. In that paper, the authors provide an analytical
explanation showing that the energy transfer is only possible
in a low energy regime.

To gain a deeper physical insight into the energy transfer
mechanism, we present in Fig. 6 the Poincaré surface of section
in the plane (P1,θ1) with θ2 = π/2 for three initial excess
energies. This surface of section provides a good illustration
for the trajectory τ with initial conditions (17). For δKc < 6χ ,

the orbit τ has a vibrational nature [see Fig. 6(a)], whereas
we observe in Fig. 6(c) that its nature becomes rotational for
δKc > 6χ . At the critical value δKc = 6χ , the τ orbit is the
separatrix [cf. Fig. 6(b)] that keeps rotational and vibrational
regions away from each other. That is why the transition from
the energy equipartition regime to the nonequipartition occurs
at the critical value δKc = 6χ .

These energy transfer mechanisms can be explained ana-
lyzing the dynamics of the two pendula in the rotated reference
frame. The momenta in the LFF and in the rotated frame are
related according to

P1 = P ′
1 − P ′

2√
2

, P2 = P ′
1 + P ′

2√
2

, (19)

and the time-averaged kinetic energy of each dipole can be
written as

〈
P 2

1

〉 =
〈
P ′2

1

〉 + 〈
P ′2

2

〉
2

− 〈P ′
1P

′
2〉, (20)

〈
P 2

2

〉 =
〈
P ′2

1

〉 + 〈
P ′2

2

〉
2

+ 〈P ′
1P

′
2〉; (21)

that is, the time-averaged kinetic energies of the dipoles differ
by twice the time average of the product of momenta of the
pendula, 〈P ′

1P
′
2〉.

In the rotated reference frame, using the transforma-
tions (12), the initial conditions (θ1(0),P1(0),θ2(0),P2(0))
give rise to two (uncoupled) pendular motions governed by
Hamiltonians (16) with energies E′

1 and E′
2. These energies

determine the motion in the rotated frame and the kinetic
energy transfer mechanism between the rotors. If the energies
of the pendula are smaller than the maxima of the potentials
V ′

1(θ ′
1) and V ′

2(θ ′
2), i.e., E′

1 < 3χ/2 and E′
2 < χ/2, respec-

tively, the total energy of the system is E = E′
1 + E′

2 < 2χ ,
and both pendula describe periodic oscillations, i.e., the
momenta P ′

1 and P ′
2 are periodic functions around zero with

〈P ′
1〉 = 〈P ′

2〉 = 0, and the time-averaged product 〈P ′
1P

′
2〉 is

zero. As a consequence, 〈P 2
1 〉 = 〈P 2

2 〉, which means that
the system will always belong to the equipartition kinetic
energy regime. The same behavior occurs when E′

1 > 3χ/2 or
E′

2 > χ/2, and at least one of them is in the vibrational regime
with 〈P ′

i 〉 = 0, whereas the other one describes complete
periodic rotations and its momentum is a periodic function
around a nonzero value having a nonzero time average, and
again it holds that 〈P ′

1P
′
2〉 = 0. Finally, if the initial condition

FIG. 6. For the field-free system with dipole-dipole interaction χ = 1 × 10−5, Poincaré surfaces of section in the plane (P1,θ1) with
θ2 = π/2 for three different initial excess energies in the neighborhood of the critical value δKc = 6χ . The red thick points correspond to the
trajectory τ with initial conditions (17).
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FIG. 7. For the field-free system, time evolution of the momenta
P ′

1(t) (blue lines) and P ′
2(t) (red lines) of the uncoupled pendula (left

column) and the product P ′
1(t)P ′

2(t) (green lines, right column) for
the excess energies (a, b) δK = 1.8χ , (c, d) δK = 5.9χ , and (e, f)
δK = 6.1χ , for P ′

1(t) and P ′
2(t), and P ′

1(t)P ′
2(t), respectively. The

dipole-dipole interaction strength is χ = 1 × 10−5.

leads to a pendular energy distribution with E′
1 > 3χ/2 and

E′
2 > χ/2, then both pendula are in the rotational regime, the

time-averaged product 〈P ′
1P

′
2〉 is nonzero, and the equipartition

regime is not met.
For the orbit τ , the initial conditions (17) expressed in the

rotated frame read

θ ′
1(0) = π√

2
, θ ′

2(0) = 0, P ′
1(0) =

√
δK
2

, P ′
2(0) = −

√
δK
2

.

In this rotated frame, the excess kinetic energies in the pendula
are the same, δK/2, whereas their energies are

E′
1 = δK

2
− 3

2
χ, E′

2 = δK
2

− 1

2
χ. (22)

If the excess energy satisfies δK < 2χ , both pendula are in
an oscillatory motion, and the dipoles belong to the energy
equipartition regime. This is illustrated for δK = 1.8χ in
Figs. 7(a) and 7(b) with the time evolution of P ′

1(t), P ′
2(t)

and P ′
1(t)P ′

2(t), respectively. If the excess energy satisfies
2χ < δK < 6χ , the second pendulum performs complete
rotations, whereas the first one still performs a vibrational
motion [see in Figs. 7(c) and 7(d) the evolution of the
momenta and the product of momenta for δK = 5.9χ ]. In this
situation, the dipole relaxes again to the equipartition regime.
However, if the excess energy is δK > 6χ , both pendula
have a rotational motion and the dipoles do not reach the
equipartition regime. As an example see for δK = 6.1χ the
time evolution of the momenta and the product of momenta
in Figs. 7(e) and 7(f).

FIG. 8. The normalized time-averaged kinetic energies of the
dipoles P̂ 2

1 (blue solid line) and P̂ 2
2 (red dashed line) as a function

of the ratio between the electric field parameter β and the dipole-
dipole parameter χ for two initial excess energies of the first rotor
(a,c) δK = 4χ and (b,d) δK = 7χ . The dipole-dipole interaction
parameter is set to χ = 1 × 10−5. The ramp-up time for the electric
field is t1 = 1200 in panels (a) and (b) and t1 = 600 in panels
(c) and (d).

IV. ENERGY TRANSFER IN AN EXTERNAL
ELECTRIC FIELD

In this section we explore the energy transfer between the
two dipoles in the presence of an external electric field. Again,
we assume that the dipoles are initially in the stable head-tail
configuration with zero kinetic energy. At time t = 0, a certain
amount of kinetic energy δK is given to the first dipole, and
simultaneously the electric field is turned on with the linear
profile (2). Using the initial conditions (17), the equations of
motion (10) are integrated up to a final time tf , and we compute
the normalized time-averaged momenta P̂ 2

1 and P̂ 2
2 from (18).

As in the field-free system, we are using a dipole-dipole
interaction with strength χ = 1 × 10−5, and a final time
tf = 5 × 104. The strength of the electric field is varied in
the interval 0.01χ � β � 1000χ . Based on the results for
the field-free system, we investigate the time-averaged kinetic
energies P̂ 2

1 and P̂ 2
2 for δK = 4χ and δK = 7χ as the field

parameter varies. In order to explore also the influence of the
ramp-up of the field, we perform our calculations for t1 = 1200
and t1 = 600, which roughly correspond to 100 and 50 ns,
respectively, which could be achieved in current experiments
with realistic field strengths. The results are depicted in Fig. 8.
For the two excess energies and for the longer ramp-up
t1 = 1200, P̂ 2

1 and P̂ 2
2 follow essentially different behaviors

as β increases [see Figs. 8(a) and 8(b)]. However, four
common patterns can be identified in Figs. 8(a) and 8(b).
For small values β � 0.2χ , the dipole-dipole interaction is
dominant and adding the external electric field has no relevant
effect. As a consequence, we encounter the energy partition
regimes for δK = 4χ (equipartition for β = 0) and δK = 7χ

(nonequipartition for β = 0). By increasing the electric field
in the interval 0.5χ � β � 20χ , the energy partition diagrams

012209-6



ANALYSIS OF THE CLASSICAL PHASE SPACE AND . . . PHYSICAL REVIEW E 95, 012209 (2017)

FIG. 9. Poincaré surface of section in the plane (P1,θ1) with P2 =
0 for different values of the electric field parameter β. The dipole-
dipole interaction is χ = 1 × 10−5 and the excess kinetic energy of
the first dipole is δK = 4χ . The thick (red) points correspond to the
trajectory τ with initial conditions (17).

show sudden (irregular) variations; see Figs. 8(a) and 8(b).
In this field range, the dipole-dipole and the electric field
interactions are comparable in magnitude and the system
dynamics is very sensitive to the variations of the electric
field parameter. For intermediate strengths, the dipoles relax
to an energy equipartition regime: see Figs. 8(a) and 8(b)
in the intervals 10χ � β � 40χ and 10χ � β � 100χ , for
δK = 4χ and δK = 7χ , respectively. Finally, for stronger
electric fields, the system falls out of the equipartition regime,
and most of the kinetic energy remains in one of the dipoles.
For the initial conditions investigated here, most of the kinetic
energy remains in the first dipole. By varying the initial
conditions, the role played by the two rotors could change, and
the second rotor could store most of the kinetic energy. For the
shorter ramp-up time t1 = 600, we find a qualitatively similar
behavior as for the t1 = 1200 case [see Figs. 8(c) and 8(d)], but
a higher global sensitivity. Due to this higher sensitivity, we
observe larger irregular variations in the intermediate interval
0.1χ � β � 10χ .

The Poincaré surfaces of section provide a global picture of
the phase space structure and are therefore suited to analyze
and understand the kinetic energy transfer. We analyze the
Poincaré surfaces of section for a fixed t > t1, once the electric
field parameter has reached its maximal strength β and the
energy is constant. To illustrate the trajectory τ with initial
conditions (17), a suitable surface of section for the Poincaré
map is given by the intersection of the phase space trajectories
with the plane (P1,θ1) with P2 = 0. In Figs. 9 and 10, we show
these Poincaré surfaces of section for different values of the
electric field parameter β and for the excess energies δK = 4χ

and δK = 7χ , respectively.
For β = 5χ , the system shows a sensitive dependence on

the electric field parameter (cf. Fig. 8), and the Poincaré
surfaces of section exhibit a chaotic sea. A single trajectory
with initial conditions in this sea covers randomly a large
portion of the Poincaré map [see Figs. 9(a) and 10(a)].

FIG. 10. The same as in Fig. 9, but for an excess energy of the
first dipole of δK = 7χ .

In particular, the chaotic sea of these surfaces of section
results in strongly fluctuating kinetic energies P 2

1 (t) and
P 2

2 (t), as shown in Fig. 11(a) for the orbit τ with δK = 4χ

and β = 5χ . For stronger electric fields, the phase space of
the system is made up of three different types of regular
Kolmogorov-Arnold-Moser (KAM) tori organized around two
stable periodic orbits and kept apart by a separatrix attached
to an unstable periodic orbit (see Figs. 9 and 10). Each
type of KAM torus corresponds to one of the kinetic energy
partition regimes detected in Fig. 8. Indeed, when the dipoles
are in the energy equipartition regime, the trajectory τ falls
inside the KAM torus centered around the stable periodic
orbit located on the right-hand side of the Poincaré surfaces
of section. This is observed for the surfaces of section for
β = 20χ with δK = 4χ and δK = 7χ in Figs. 9(b) and 10(b),
respectively, and β = 50χ and δK = 7χ in Fig. 10(c). The
equipartition energy is manifest in the time evolution of the
kinetic energies P 2

1 (t) and P 2
2 (t) presented in Fig. 11(b) for

δK = 20χ and β = 20χ . In contrast, if the system falls out

FIG. 11. Time evolution of the kinetic energies P 2
1 (t) (blue lines)

and P 2
2 (t) (red lines) of the τ orbit for δK = 4χ and (a) β = 4χ , (b)

β = 20χ , and (c) β = 50χ . The dipole-dipole interaction parameter
is χ = 1 × 10−5.
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of the equipartition regime with the first dipole having most
of the kinetic energy, the reference trajectory τ appears in
the corresponding Poincaré maps inside a different type of
KAM torus located at the periphery of the Poincaré map, as
it is observed for β = 50χ and δK = 4χ in Fig. 9(c), and for
β = 100χ with δK = 4χ and δK = 7χ in Figs. 9(d) and 10(d),
respectively. In these orbits, the kinetic energy P 2

1 (t) reaches
significantly larger values than P 2

2 (t); see, for instance, P 2
1 (t)

and P 2
2 (t) shown in Fig. 11(c) for δK = 4χ and β = 50χ . For

other values of the excess energy δK, not shown in Fig. 8, the
second dipole could have most of the kinetic energy and the
corresponding Poincaré surface of section of the trajectory τ is
a KAM torus located around the central stable periodic orbit.

V. CONCLUSIONS

We have explored the classical phase space and related
energy transfer mechanisms between two dipoles in the
presence of a homogenous electric field. The dipoles are
described by the rigid rotor approximation and are assumed to
be fixed in space. In our numerical study, initially the dipoles
are at rest in the stable lowest energy head-tail configuration.
At t = 0, the system is pushed out of equilibrium by injecting
a certain amount of kinetic energy to one of the dipoles. The
following dynamics is investigated by analyzing in particular
the kinetic energies of the dipoles and their time averages.

In the field-free case, and depending on the amount of
excess energy in one of the dipoles, the system falls to either
an energy equipartition regime or a nonequipartition one. The
transition between these two regimes is abrupt and takes place
at δK = 6χ . The analysis of the phase space structure of the
system by means of Poincaré surfaces of section as well as
a rotation of the Hamiltonian provide the explanation of this
sharp transition.

The impact of the electric field on the energy transfer
between the dipoles is quite dramatic. Depending on the
field strength, the system shows different behaviors where
equipartition, nonequipartition, and even chaotic regimes are
possible. If the strengths of the dipole-dipole and electric field
interactions are comparable, the energy transfer is a chaotic
process and the time-averaged kinetic energies strongly
depend on the field parameter and show rapid and sudden
changes. Again, the phase space structure of the system by
means of the Poincaré surfaces of section provides a global
picture of the energy exchange mechanism.

We have here been focusing on an invariant subspace of the
full dynamics and, therefore, it would be a natural continuation
of this work to investigate the exchange of energy in the
remaining part of the energy shell. Besides this, an extension of
the system to a linear chain of dipoles is of immediate interest.
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