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Maintaining the stability of synchronization state is crucial for the functioning of many natural and artificial
systems. In this study, we develop methods to optimize the synchronization stability of the Kuramoto model by
minimizing the dominant Lyapunov exponent. Using the recently proposed cut-set space approximation of the
steady states, we greatly simplify the objective function, and further derive its gradient and Hessian with respect
to natural frequencies, which leads to an efficient algorithm with the quasi-Newton’s method. The optimized
systems are demonstrated to achieve better synchronization stability for the Kuramoto model with or without
inertia in certain regimes. Hence our method is applicable in improving the stability of power grids. It is also viable
to adjust the coupling strength of each link to improve the stability of the system. Various operational constraints
can also be easily integrated into our scope by employing the interior point method in convex optimization. The
properties of the optimized networks are also discussed.
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I. INTRODUCTION

Synchronization occurs widely in many natural and ar-
tificial systems, such as firefly flashes, pacemaker cells of
heart, Josephson junctions, and power grids [1–4]. In general,
the synchronous states are subject to different kinds of
perturbations, and maintaining the stability of the systems
against these perturbations is crucial for the functioning of the
systems under consideration. For instance, the power grids are
subject to various disturbances and real-time active controls
are needed to maintain a stable synchronization state [4]. The
future power grids will sustain larger and larger fluctuations
with the introduction of more and more renewable energies
such as wind and solar power, which raise needs to enhance
the robustness and stability of existing power networks [5].

To describe these synchronization phenomena, statistical
physicists have proposed many simple but explanatory models,
e.g., chaotic oscillator systems, the Kuramoto model, and
their various generalizations [3,6–8]. A remarkable relation
between spectral aspects of network structure and synchro-
nizability in a broad range of coupled oscillator models
has been developed in the master stability function (MSF)
framework [7,9]. In particular, the second smallest eigenvalues
of the graph Laplacian matrix λ2, namely the graph algebraic
connectivity, is crucial in the synchronizability of models with
unbounded MSF [7]. The graph algebraic connectivity is an
interesting measure of network connectivity [10,11], whose
role in dynamical stability can be exemplified in consensus
dynamics or diffusion on networks ẋi = −∑

j Lij xj , where
λ2 determines the rate of convergence of the slowest mode [7].
The graph algebraic connectivity is solely determined by the
network topology. However, in many networks such as the
power grid and transportation networks, stable behavior also
depends on attributes other than topology.

In this study, we focus on the stability of the Kuramoto
model on general networks. Due to the heterogeneity of
power supply and demand, the stability of the frequency
synchronization state of this nonlinear dynamical model is
no longer determined by the graph algebraic connectivity
or network structure itself, but is replaced by an algebraic

connectivity that has an intricate dependence on the system
steady state [12]. The optimization of synchronization stability
should take into account both the graph connectivity and the
dynamical parameters.

Enhancing the synchronization stability in these settings
has been stressed in a few recent studies [13,14], where the
effects of network structures or power grid parameters, e.g.,
the damping coefficients and power injections, on the system
stability were explored. However, a practical consideration
in implementing real-time flow control of the networks is
the efficiency in calculating the gradient of the objective
function in the space of variables, as was done in the cases of
power scheduling and line impedance modification in power
grids. Conventionally this requires us to solve the nonlinear
flow equations in each update step, seriously slowing down
the process. In this paper, we introduce the cut-set space
approximation [15], enabling us to express the objective
function in terms of the graph algebraic connectivity, thereby
saving the need for the stepwise solution of the nonlinear flow
equation and greatly simplifying the calculation of power flow
and the evaluation of the gradients of the objective function.

II. THE MODEL

A. First-order Kuramoto model

We focus on the nonuniform first-order Kuramoto model
on a connected network in the form of

θ̇i = ωi +
∑

j

Kij sin(θj − θi), (1)

where θi denotes the phase angle of node i, ωi the natural
frequency, and Kij (=Kji) the coupling strength between node
i and node j . Without loss of generality, we assume

∑
i ωi = 0.

The steady state is given by

0 = ωi +
∑

j

Kij sin(θ∗
j − θ∗

i ). (2)
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In the leading order, the small deviation from the steady
state δθi = θi − θ∗

i follows [12]

δθ̇i ≈
∑

j

Kij cos(θ∗
j − θ∗

i )(δθj − δθi) = −
∑

j

L(θ∗)ij δθj ,

where L(θ∗)ij := δij

∑
l Kil cos(θ∗

l − θ∗
i ) − Kij cos(θ∗

j − θ∗
i )

is a state-dependent Laplacian matrix with edge weight
W (θ∗)ij = Kij cos(θ∗

j − θ∗
i ). Note that this Laplacian matrix

depends on the steady state of the system, in contrast with the
state-independent Laplacian, which we denote as L[K]ij :=
δij

∑
l Kil − Kij . The Jacobian matrix is J = −L(θ∗), which

has a null-space of dimension one, corresponding to the
rotational symmetry of the model. If |θ∗

j − θ∗
i | < π/2 holds

for every edge (i,j ), then all the edge weights Wij are positive
and the lowest eigenvalue is 0, corresponding to the mode of
uniform displacement. All the other eigenvalues of L(θ∗) are
positive, making the dynamical system locally exponentially
stable. In this case, the slowest mode corresponds to the
second lowest eigenvalue of L(θ∗), that is, the negative of
the largest Lyapunov exponent excluding the null exponent of
J . We denote it as λ2(L(θ∗)) and call it the state algebraic
connectivity to distinguish it from the usual graph algebraic
connectivity λ2(L[K]). To improve the stability, our objective
is to maximize λ2(L(θ∗)) as in Ref. [13].

B. Second-order Kuramoto model

The second-order Kuramoto model is gaining attention
due to its resemblance to the swing equation of power grids
neglecting the transmission losses [12],

Miθ̈i + Diθ̇i = Pi +
∑

j

|Vi ||Vj |
Xij

sin(θj − θi), (3)

where Mi and Di are the inertia and damping coefficient of
node i, respectively, Pi and |Vi | are the mechanical power and
voltage magnitude of node i, and Xij is the line reactance of
edge (i,j ). The connection to the Kuramoto model is obvious if
Pi is identified as the natural frequency ωi and |Vi ||Vj |/Xij is
identified as coupling Kij . For simplicity, we consider uniform
inertia and damping coefficient Mi = M and Di = D and
focus on the following model:

Mθ̈i + Dθ̇i = ωi +
∑

j

Kij sin(θj − θi). (4)

The steady state (θ̇∗ = 0,θ∗) is again given by Eq. (2), with
the Jacobian matrix evaluated at this point as [13,14]

J (θ̇∗ = 0,θ∗) =
[
− D

M
I − 1

M
L(θ∗)

I 0

]
.

As derived in Ref. [14], J (θ̇∗,θ∗) can be diagonalized by
the eigenvectors of L(θ∗), with corresponding eigenvalues

μj±(λj ,D,M) = − D

2M
± 1

2

√(
D

M

)2

− 4

M
λj (L(θ∗)). (5)

The maximal nontrivial eigenvalue is μ2+ = − D
2M

+
1
2

√
( D
M

)
2 − 4

M
λ2(L(θ∗)). When λ2(L(θ∗)) < D2/4M , improv-

ing λ2(L(θ∗)) will always lead to the increment of μ2+. In this

regime, optimizing λ2(L(θ∗)) is also applicable to stabilizing
the uniform second-order Kuramoto model, therefore it can
be applied in the stabilization of power grids. This regime
can correspond to large damping, small inertia, or close to
bifurcation.

III. METHOD

A. Variation of state algebraic connectivity

Viewing ωi and Kij as control variables, we aim at
maximizing λ2(L(θ∗)) in order to improve the stability of both
Eqs. (1) and (4). We first derive the variation of state algebraic
connectivity due to change of natural frequency. We assume
that the state algebraic connectivity is nondegenerate through-
out optimization, which usually holds when the corresponding
graph algebraic connectivity λ2(L[K]) is nondegenerate.

There is no explicit expression of λ2(L(θ∗)). Nevertheless,
it is possible to derive its derivatives using the perturbation
theory, as commonly practiced in quantum mechanics. In the
case that λ2(L(θ

∗)) is nondegenerate, the variation of λ2(L(θ∗))
is given by [16]

δλ2(L(θ∗)) = 〈v2(θ∗)|δL(θ∗)|v2(θ∗)〉
= v2(θ∗)T δL(θ∗) v2(θ∗), (6)

where v2(θ∗) is the normalized eigenvector of L(θ∗) corre-
sponding to λ2(L(θ∗)). Since L(θ∗) is a Laplacian matrix with
edge weight W (θ∗)ij = Kij cos(θ∗

j − θ∗
i ), one has δL(θ∗)ij =

δij

∑
l δW (θ∗)il − δW (θ∗)ij and

δλ2(L(θ∗)) =
∑
(i,j )

δW (θ∗)ij [v2(θ∗)i − v2(θ∗)j ]2. (7)

So the gradient of the state algebraic connectivity with respect
to ω is

[∇ωλ2(L(θ∗))]k =
∑
(i,j )

δW (θ∗)ij
δωk

[v2(θ∗)i − v2(θ∗)j ]2. (8)

The computational complexity comes from the implicit
dependence between shift of steady state δθ∗ and change
of natural frequency δω. In Ref. [13], δθ∗/δω is proved to
be related to the pseudoinverse of L(θ∗). These expressions
lead to a gradient ascent method to maximize λ2(L(θ∗)) by
scheduling ω. However, this method requires solving the
steady-state Eq. (2) and computing the pseudoinverse of L(θ∗)
in every iteration, both of which are time consuming. In
addition, convergence to the optimal solution can be very slow
for gradient ascent update. In this paper, we propose to use
the cut-set space approximation to simplify the problems as
follows.

B. Cut-set space approximation of network flows

The natural frequency ωi can be viewed as supply or
demand of node i in a supply network as Pi in the power
grid, and Kij sin(θj − θi) is the resource or power transported
from node j to node i. The steady-state Eq. (2) implies the
flow conservation on each node.

Solving the nonlinear steady-state equation can be com-
putationally costly. Recently, it has been shown that the
cut-set space approximation of power flows can be rather

012207-2



OPTIMIZING SYNCHRONIZATION STABILITY OF THE . . . PHYSICAL REVIEW E 95, 012207 (2017)

FIG. 1. φj − φi vs. sin(θ
∗
j − θ∗

i ). (a) Erdös-Rényi graph of 50
nodes (ER50), where ω is drawn from a Gaussian distribution and
Kij = 1. Inset: root-mean-square error (RMSE) of estimator φj − φi

for sin(θ∗
j − θ∗

i ) among all the edges. Each data point is averaged over
100 samples. (b) IEEE reliability test system 96 (RTS96) [19], where
ω is modified from the power injection data in the test system and
Kij is defined to be the inverse of line reactance of edge (i,j ). Inset:
RMSE of estimator φj − φi for sin(θ∗

j − θ∗
i ) among all the edges.

Each data point is averaged over 100 samples.

accurate in many regimes [15,17]. For completeness, the main
steps are outlined as follows. We first formally rewrite the
antisymmetric quantity sin(θ∗

j − θ∗
i ) as βij (= −βji), which we

try to decompose into the sum of two parts βij = βcut
ij + β

cycle
ij .

The first part βcut
ij is expressed by the potential difference

βcut
ij = φj − φi , where φi is an unknown potential function to

be solved self-consistently. The second part β
cycle
ij satisfies the

circular flow relation
∑

j∈∂i Kijβ
cycle
ij = 0 ∀i. In the language

of graph theory, βcut and βcycle are said to live in the cut-set
space and cycle space, respectively [15,18]. Substituting βij =
φj − φi + β

cycle
ij into Eq. (2), we have

0 = ωi +
∑
j∈∂i

Kij

(
φj − φi + β

cycle
ij

)

= ωi −
∑
j∈∂i

L[K]ij φj , (9)

where L[K] is the graph Laplacian matrix, which depends
only on the network topology and edge weights. By taking the
pseudoinverse of L[K], denoted as L[K]†, the potential φ is
obtained by φ = L[K]†ω, and subsequently, βcut

ij = φj − φi =∑
l(L[K]†j l − L[K]†il)ωl . It turns out that φ coincides with the

DC approximation of AC power flow in power engineering
θDC [15]. To simplify the calculation, it is proposed to
approximate β by its cut-set space component βcut, i.e.,
sin(θ∗

j − θ∗
i ) ≈ φj − φi = ∑

l(L[K]†j l − L[K]†il)ωl .
Such an approximation is exact in some specific systems,

such as acyclic graphs and systems with cut-set-inducing
frequencies, while it has also been tested numerically in
many generic networks that the approximation is surprisingly
accurate [15,17]. We demonstrate two examples in Fig. 1. To
quantify the stress of the system, the L2 norm (or the Euclidean
norm) of the natural frequency is used, i.e., ‖ω‖2:=

√∑
i ω2

i . It
is shown that the potential difference φj − φi approximates
sin(θ

∗
j − θ∗

i ) quite well even in the stress cases with large
‖ω‖2.

C. Optimization by tuning natural frequencies

With the cut-set-space approximation, the edge weight of
the state-dependent Laplacian matrix L(θ∗) can be approxi-
mated as

W (θ∗)ij = Kij cos(θ∗
j − θ∗

i ) = Kij

√
1 − sin2(θ∗

j − θ∗
i )

≈ W̃ (φ)ij = Kij

√
1 − (φj − φi)2

≡ Kij

√
1 −

∑
kl

ωkA
(ij )
kl ωl,

where A(ij ) is defined to be a matrix with entry A
(ij )
kl =

(L[K]†jk − L[K]†ik)(L[K]†j l − L[K]†il) and we have made use
of the fact that φ = L[K]†ω. Provided that L[K]† is calculated
and recorded, every time we calculate W (θ∗) we only need
to solve for φ by simple matrix multiplication instead of
solving the nonlinear steady-state equation Eq. (2). Now we
work on the state algebraic connectivity λ2(L̃(φ)), which
corresponds to the state-dependent Laplacian matrix with edge

weight W̃ (φ)ij = Kij

√
1 − ∑

kl ωkA
(ij )
kl ωl . We assume in the

following discussion that |φj − φi | < 1 always holds such that
W̃ (φ)ij is real for every edge (i,j ). This assumption can fail
when the system is so stressed that |θ∗

j − θ∗
i | is close to π/2

along some edges, in which case a preprocess to destress the
system before optimization is needed.

The gradient in Eq. (8) can be estimated by ∇ωλ2(L̃(φ))

[∇ωλ2(L̃(φ))]k =
∑
(i,j )

Kij

−∑
l A

(ij )
kl ωl√

1 − ωT A(ij )ω
[v2(φ)i − v2(φ)j ]2,

(10)
where v2(φ) is the normalized eigenvector corresponding to
λ2(L̃(φ)).

Similarly, the Hessian of the state algebraic connectivity is
estimated by

Hkl = ∂2λ2(L̃(φ))
∂ωk∂ωl

=
∑
(i,j )

∂2W̃ (φ)ij
∂ωk∂ωl

[v2(φ)i − v2(φ)j ]2

+
∑
(i,j )

2
∂ ˜W (φ)ij

∂ωk

[v2(φ)i−v2(φ)j ]

[
∂v2(φ)i

∂ωl

−∂v2(φ)j
∂ωl

]
,

where ∂v2(φ)/∂ω can also be obtained from the nondegen-
erate perturbation theory, which is computationally costly.
We found in all our numerical experiments that truncating
the second term of the Hessian can still lead to efficient
optimization but simplify the calculation significantly. Hence,
in the following we use the approximated Hessian Hkl ≈∑

(i,j ) ∂
2W̃ (φ)ij /∂ωk∂ωl[v2(φ)i − v2(φ)j ]2 for optimization.

Obtaining the gradient and Hessian, we can define the
update direction of gradient ascent and quasi-Newton method
to maximize λ2(L̃(φ)),


ωgradient = ∇ωλ2(L̃(φ)),


ωNewton = H−1∇ωλ2(L̃(φ)).

The natural frequency is updated by ω ← ω + s
ωgradient

or ω ← ω + s
ωNewton with the step size s determined by
backtracking line search [20], after which ω is enforced to be
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FIG. 2. λ2 and ‖ω‖2 through optimization for RTS96 power
network. The initial natural frequency is modified from the power
injection data in the test case. (a) Gradient ascent update. Both
λ2(L̃(φ)) and λ2(L(θ∗)) increase gently in the later stage, and the
natural frequency ω is approaching the optimal state ω = 0 very
slowly due to the flat landscape. (b) Quasi-Newton update. Both
λ2(L̃(φ)) and λ2(L(θ∗)) approach the optimum λ2(L(θ∗ = 0)) =
0.6889 after six iterations.

zero-sum by ωi ← ωi − 1/N
∑

j ωj so that it admits a steady
state.

In general, λ2(L̃(φ)) is an increasing function with W̃ (φ)ij ,
which favors small phase angle difference across each edge.
Without imposing any constraint, the optimal solution should
take place at ω = 0, in which case the optimum λ2(L(θ∗ =
0)) coincides with the graph algebraic connectivity. In Fig. 2
we show the the optimization process for the RTS96 power
network with gradient ascent update and quasi-Newton update.
It is observed in this case that (i) λ2(L̃(φ)) is close to the
exact state algebraic connectivity λ2(L(θ∗)) at the same ω

[obtained by solving the steady-state Eq. (2) with ω given at
that iteration]; (ii) the Newton’s method is much more efficient
than the gradient ascent, approaching the optimum within only
a few steps, despite the extra efforts for computing the Hessian
H and solving the linear equation H
ωNewton = ∇ωλ2(L̃(φ))
to obtain 
ωNewton. By taking the advantages of the cut-set
space approximation and the Newton’s method, our approach
here provides a much more efficient algorithm compared to
the previous study that relied on the full calculation of the
nonlinear steady state and the gradient ascent update [13].

D. Optimization by tuning for coupling strengths

Instead of optimizing the natural frequencies, one can also
tune the coupling strengths of edges to improve the stability. In
power grids, this corresponds to the change of line reactance
of each edge, which may be implemented by tuning the
transmission lines or using FACTS devices [21]. Similarly,
we can also derive the gradient and Hessian of λ(L̃(φ)) with
respect to the coupling strength

[∇Kλ2(L̃(φ))](k,l) =
∑
(i,j )

δW̃ (φ)ij
δKkl

[v2(φ)i − v2(φ)j ]2

=
∑
(i,j )

{
δ(i,j ),(k,l)

√
1 − ωT A(ij )ω

+1

2
Kij

−∑
mn ωm

∂A
(ij )
mn

∂Kkl
ωn√

1 − ωT A(ij )ω

}

× [v2(φ)i − v2(φ)j ]2, (11)

where the evaluation of ∂A(ij )/∂Kkl relies on the computation
of ∂L[K]†/∂Kkl , which is attainable as long as the rank of
L[K] remains unchanged [22]. The gradient ascent update is
simply given by K ← K + s∇Kλ2(L̃(φ)). The Hessian matrix
and update of Newton’s method can also be obtained straight-
forwardly, although the expression is extremely tedious. The
update of coupling strength renders the modification of L[K]
and recalculation of L[K]†, making it much more time
consuming than the update of natural frequencies.

Although we have been dealing with the oscillatory
system with sinusoidal coupling, we remark that the general
framework developed here can also be applicable to systems
with other coupling functions, and even other eigenvalue
optimization problems, especially when nonlinearity comes
into play and the usual semidefinite programming is not
directly applicable [20].

IV. RESULTS

A. Behavior at optimal natural frequencies

To obtain a nontrivial solution with optimal stability, we
introduce an additional Euclidean norm constraint,

‖ω‖2
2 =

∑
i

ω2
i � c, (12)

which treats all nodes in equal footing and doesn’t emphasize
the role of import nodes, say, hubs. The constraint optimization
is solved by the barrier method, which is a particular interior
point algorithm [20]. Although the constraint Eq. (12) is
nonconvex and global optimum may not be attainable, we
find in our numerical experiments that the barrier method can
efficiently achieve a satisfactory stationary point.

In Fig. 3(a) we plot the optimization process of the RTS96
power network with constraint parameter c = 0.99‖ω0‖2

2,
where ω0 is the same as the initial natural frequency in Fig. 2.
The corresponding unoptimized and optimized system is
shown in Fig. 3(b). The edge (318,223) and edge (325,121) are
the interconnections between two components. In the extreme
case, if both of them are overloaded with |θ∗

i − θ∗
j | = π/2

or cos(θ∗
i − θ∗

j ) = 0, then the metagraph with edge weight
W (θ∗)ij becomes disconnected into two parts, and λ2(L(θ∗))
will become zero, signaling the onset of instability of the
system [12,23]. In our case, edge (325,121) is heavily loaded in
the unoptimized system, while it is significantly destressed in
the optimized system, achieving a more stable state as revealed
by the increment of λ2(L(θ∗)).

To illustrate the improved stability of the optimized system
related to an unoptimized one, we impose a small disturbance
δi to the steady state at t = 0, θi(t = 0) = θ∗

i + δi and let the
system evolve according to both the first- and second-order
Kuramoto model. In Figs. 3(c) and 3(d) we monitor the discrep-
ancy between θ (t) and the steady state ε(t) := ∑

i |θi(t) − θ∗
i |.

It is observed that the optimized system converges to the steady
state more rapidly than the unoptimized system.

B. Properties of optimized systems

In the following, we explore some general properties of
the optimal systems under the Euclidean norm constraint. The
networks are ER random graphs with 50 nodes and every pair
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FIG. 3. (a) λ2 through optimization for the RTS96 power network
under Euclidean norm constraint. (b) The unoptimized and optimized
system, where white square nodes have positive natural frequencies
(generators) while gray circular nodes have nonpositive natural
frequencies (loads or relay nodes). Edge color intensity encodes
cos(θ∗

i − θ∗
j ). (c) Response of the RTS 96 power network governed by

the first-order Kuramoto model. (d) Response of the RTS 96 power
network governed by the second-order Kuramoto model with unit
damping Di = 1 and small inertia Mi = 0.2. In both (c) and (d), the
disturbance, drawn from the Gaussian distribution with mean zero
and standard deviation 0.05 rad, was applied to the steady state of
phase oscillators at t = 0.

of nodes are connected with probability p = 0.1. As found in
Fig. 4(a), not only does the optimization result in improving
the objective function λ2(L(θ∗)), but also the Kuramoto
order parameter r := N−1| ∑j eiθ∗

j |. In fact, more coherent
phase angles in general imply smaller phase angle differences
|θ∗

i − θ∗
j | and larger edge weight W (θ∗)ij = Kij cos(θ∗

i − θ∗
j ),

in which case the state-dependent network will be better
connected with a higher algebraic connectivity. Thus, it is not
surprising that there is a correlation between the enhancements
of r and λ2(L(θ∗)). We show in Fig. 4(b) that the decrease of
phase angle differences |θ∗

i − θ∗
j | after optimization is much

more common than increase.
It is found in previous studies that natural frequencies which

optimize r subject to constraint of the form ‖ω‖2
2 = constant

have negative correlations between neighboring frequencies,
and align with eigenvectors corresponding to large eigenvalues
of graph Laplacian [24]. We show in Figs. 4(c) and 4(d)
that such properties are also observed in natural frequencies,
which optimize λ2(L(θ∗)). In the case of power grids on
such networks, the negative correlations between neighboring
frequencies at the optimum imply that a supply node (ωi > 0)
is more likely to be connected to demand nodes (ωi < 0)
and viceversa. This indicates that the system stability favors
distributed power sources if all the nodes are not constrained,
which is similar to the phenomenon observed in Ref. [25] that
decentralized power grids promote synchrony.

However, the pathways of achieving optimality with decen-
tralized networks are different. In Ref. [24] decentralization
was achieved by maximizing the overlap of the configuration

FIG. 4. Properties of the optimal system compared to systems
with random frequencies. The networks are 100 realizations of ER
random graphs with 50 nodes and edge connection probability p =
0.1. (a) Correlation of increment of λ2(L(θ∗)) and order parameter
r . (b) Histogram of changes of phase angle differences among
all edges (i,j ) in all realizations. (c) Average neighbor frequency
〈ω〉i = ∑

j∈∂i ωj /di vs. natural frequency ωi . (d) Alignments of
natural frequencies with graph Laplacian eigenvectors, i.e., |〈vi |ω〉|2
where vi is the normalized eigenvector corresponding to the ith
smallest eigenvalue. The data was divided into 10 bins and |〈vi |ω〉|2
was first summed inside every bin for each sample, after which the
sample mean and standard deviation of the bin summation quantity∑

i∈bin |〈vi |ω〉|2 was calculated.

with the eigenvector of the largest eigenvalue of the graph
Laplacian matrix, whereas in our work, optimal stability is
achieved by maximizing the smallest positive eigenvalue of
the state-dependent Laplacian matrix.

Further insight can be obtained from the alignments of
optimal frequencies or power injections with the eigenvectors
of graph Laplacian matrix L[K]. We depict in Figs. 5(a)
and 5(b) the eigenvectors corresponding to the second smallest
and largest eigenvalues of L[K] of an ER graph, denoted as
v2 and vN . In Fig. 5(a), the network is partitioned into two
connected subgraphs by v2, with the positive components of
v2 belonging to one subgraph and the negative components
belonging to the other, and there are only limited number of
edges connecting them. It constitutes an example of graph
bipartition by spectral method [26,27]. If the power injection
is aligned with v2, i.e., ω ∝ v2, then the implication is an
extensive transportation of resources from one group to the
other, as illustrated by the large phase difference across the
link (325,121) in Fig. 3(b), rendering the boundary between
the two groups vulnerable. On the contrary, as shown in
Fig. 5(b), the subset of positive components of vN (white)
is maximally connected to the subset of negative components
(gray), yielding a decentralized configuration. The observed
suppression of alignment of ω with v2 in Fig. 4(d) in the
optimized systems implies that the domain-wide fluctuations
of resource or power is inhibited to enhance stability after
optimization. On the other hand, the alignment of ω with vN
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FIG. 5. (a) Eigenvector v2 corresponding to the second smallest eigenvalue λ2 of the graph Laplacian matrix of a specific ER random graph,
depicted on the network. The color indicates the sign of v2j on node j , i.e., white node corresponds to v2j > 0, while gray node corresponds
to v2j � 0. The size of the node indicates the strength of |v2j | on that node. (b) Eigenvector vN corresponding to the largest eigenvalue λN of
the graph Laplacian matrix depicted on the network. (c) Frequencies ωopt corresponding to the algebraic connectivity of the state-dependent
Laplacian matrix evaluated at the optimal algebraic connectivity. Similarly, the white nodes correspond to ωopt > 0, while the gray nodes
correspond to ωopt � 0.

is enhanced, which implies that the optimization of the system
stability encourages local transmission. As shown in Fig. 5(c),
power injection on the white nodes tends to have distributed
power sources.

C. Difference between λ2(L(θ∗)) and r

Observing the similarity of the results of optimizing
λ2(L(θ∗)) with the Euclidean norm constraint and those of
optimizing r with the same constraint, it is tempting to
conclude that the more synchronized a system the more
stable it is and one can improve the system stability by just
increasing the order parameter r , which can be much simpler.
However, we argue that while such a judgment is valid in
many cases like the above homogeneous ER graphs, it is not
necessarily a universal rule. In most cases, optimizing r will
not be the most efficient way to enhance the system stability.
Moreover, there is a conceptual difference between the two
quantities. The Kuramoto order parameter r is a measure of
coherence of phase angles of all oscillators in a global and
average sense, which cannot identify the role of critical edges
in maintaining stability, e.g., the interconnections between
modules. To be more concrete, we consider a simple network
which is composed of two modules, each corresponding to a
small random graph, as sketched in Fig. 6(b). The coupling of
each edge is set to be Kij = 1.

In Case 1, we suppress the intramodule transportation
and encourage the intermodule transportation, which leads to
phases that are coherent inside each module but have a large
separation between the two modules, as shown in Fig. 6(a).
The phase coherence inside each module leads to a relatively
high Kuramoto order parameter r = 0.823. However, the large
intermodule phase difference indicates the edge (0,15) and
edge (1,16) are highly stressed with a low state dependent
edge weight W (θ∗)ij = Kij cos(θ∗

i − θ∗
j ), resulting in a small

state algebraic connectivity λ2(L(θ∗)) = 0.058 as shown in
Fig. 6(b). In Case 2, the system is perturbed and the phases
become more dispersed, leading to a smaller Kuramoto order
parameter r = 0.725. But the phase differences along edge
(0,15) and edge (1,16) are much reduced. This significantly
increases the edge weights W (θ∗)ij of these two edges and
hence the state algebraic connectivity reaches λ2(L(θ∗)) =
0.151, since edge (1,15) and edge (1,16) are the intermodule
connections whose edge weights are crucial for the algebraic

connectivity. This simple example highlights the essence of
using λ2(L(θ∗)) as a cost function for measuring stability in
general networks.

D. Inclusion of practical power grid constraints

The Euclidean norm-constrained optimization problem
above treats all nodes on equal footing where a supplier can
become a consumer and vice versa. This will not be realistic
if we consider power-grid applications. In this section, we
consider two problems regarding practical constraints of power
grid operations.

In Problem 1, both the supply and the demand are restricted
to vary within a certain range. Furthermore, regulating both the
generation and consumption may be necessary in future grids
with the introduction of renewable energy. Hence specifically

FIG. 6. Phase angles θ∗ and state-dependent edge weights W (θ∗)
in a two-module network. In both cases, the L2-norm of natural
frequency is ‖ω‖2 = 4.26. (a) Phases of the system depicted on the
unit circle in Case 1. (b) The state-dependent edge weight W (θ∗)ij =
Kij cos(θ∗

i − θ∗
j ) in Case 1. (c) Phases of the system depicted on the

unit circle in Case 2. (d) The state-dependent edge weight W (θ∗)ij =
Kij cos(θ∗

i − θ∗
j ) in Case 2.
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FIG. 7. (a) λ2 and ‖ω‖1 through optimization for the RTS96
power network under linear constraints at α = 0.1. The L1-norm
of natural frequency ‖ω‖1 := ∑

i |ωi | is twice of total generation or
total consumption. (b) λ2(L(θ∗)) and ‖ω‖1 of the optimal system as
a function of α with variable demand (Problem 1) and fixed demand
(Problem 2).

we consider the constraint ω0i − α|ω0i | � ωi � ω0i + α|ω0i |
for i to be either a supply node or demand node, where
ω0i is the natural frequency of the original system and the
parameter α satisfies 0 < α � 1. For the relay node with ω0i =
0, the natural frequency will remain unchanged throughout
optimization ωi = ω0i = 0.

In Problem 2, only the supply nodes with ω0i > 0 are
allowed to schedule their productions with fraction α, while
the demands must be satisfied and the relay nodes should also
be fixed, i.e., ωi = ω0i for ω0i � 0. To deal with both the
inequality and equality constraints, the primal-dual interior
point method in convex optimization is applied in these
problems. Although we always make the supply and demand
balanced in every iteration, we discovered that imposing the
additional constraint

∑
i ωi = 0 into the definition of the

problem can significantly facilitate the convergence of the
algorithm.

In Fig. 7(a), we plot the optimization process of the
RTS96 power network with constraints of Problem 1. The
primal-dual interior point algorithm can bring the system
to optimum effectively. We also monitor the L1-norm of ω,
defined as ‖ω‖1 := ∑

i |ωi |, which is twice the total production
or total consumption. During optimization, the system is also
destressed as indicated by the decrement of ‖ω‖1. In Fig. 7(b),
we plot λ2(L(θ∗)) and ‖ω‖1 as a function of α with constraints
of both Problem 1 and Problem 2. It is observed that λ2(L(θ∗))
increases with α for both cases with variable demands and fixed
demands. This is not surprising since the feasible region of the
problem with larger α is a superset of the one with smaller α,
and a larger feasible region gives the system more flexibility
to search for more stable state. The system can achieve higher
stability with variable demands in Problem 1 than the fixed
demand in Problem 2, which is also due to more degrees of
freedom to vary in Problem 1. Our method can solve both
problems satisfactorily.

E. Behavior at optimal coupling strengths

Last, we consider behavior at the optimal state algebraic
connectivity by updating the coupling strengths. To avoid
indefinite solutions, we impose a simple constraint,∑

(i,j )

Kij = Ktotal, (13)

FIG. 8. Optimizing the state algebraic connectivity by
updating coupling strengths. (a) State algebraic connectivity
λ2(L(θ∗)), λ2(L̃(φ)), and graph algebraic connectivity λ2(L[K])
through optimization. The initial state is the same as Case 1
in Sec. IV C. (b) The state-dependent edge weight W (θ∗)ij =
Kij cos(θ∗

i − θ∗
j ) in the optimal state. Note the scale of color code

is different from the cases of Fig. 6.

where Ktotal represents the availability of the total capacity,
and Kij is constrained to be nonnegative. Due to the high
complexity of computing the Hessian, we only consider the
gradient ascent update. To preserve the resource constraint, the
approximated gradient ∇Kλ2(L̃(φ)) as calculated by Eq. (11)
is projected onto the feasible region, after which the coupling
strengths are updated. In Fig. 8(a), we plot the optimization
process of the projected gradient update on the two-module
network discussed in Sec. IV C, and the initial condition is the
same as Case 1 in Sec. IV C. It is shown that redistributing
the coupling strengths can significantly improve both the
graph algebraic connectivity and state-algebraic connectivity,
reaching a more stable state. In Fig. 8(b), we sketch the
state-dependent edge weight in the optimal state. Contrary
to the unoptimized system in Fig. 6(b), the optimized system
exhibits large edge weight W (θ∗)ij in edge (1,16) and edge
(0,15), the interconnections between the two modules, which
favors higher state algebraic connectivity. For each module,
the nodes are well connected and the need for transporting
resource is modest. Thus, the coupling strengths inside each
module are sacrificed so that the system can invest more
on the the critical edges. The effects of increasing stability
by investments on the interarea links are also studied and
demonstrated in Ref. [28], where the interlinks are added
one by one according to the greedy search strategy instead
of updating the existing links as in our approach. These
phenomena highlight the importance of strengthening the
interconnections between different communities of the grid.

V. DISCUSSION

In this paper, we studied the optimization of synchroniza-
tion stability of the Kuramoto model by updating the natural
frequencies or coupling strengths. The proposed cut-set space
approximation can accurately estimate the network flows of
steady states and thus simplify the objective function, i.e., the
state algebraic connectivity whose increment can increase the
stability of the phase-locked steady states of both the first-
and second-order Kuramoto model. Such an approximation
leads to compact expressions of gradient and Hessian of the
cost function. Together with the interior point algorithm or
projected gradient ascent, our method can cope with various
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constraints, which is shown to be effective and efficient.
There is a general correlation between the optimization of
the Kuramoto order parameter and the state algebraic connec-
tivity, especially in the homogeneous networks. However, the
Kuramoto order parameter cannot represent the role of critical
links, e.g., intermodule connections, which is crucial to the
synchronization stability. In light of this consideration, the
state algebraic connectivity is a more appropriate cost function
for the measure of stability. Our framework has potential
applications in improving the stability of power grids which
are usually simplified to a second-order Kuramoto model. The
method also sheds light on the treatments of general nonlinear
eigenvalue optimization problems.

Nevertheless, there are many other aspects to consider
concerning the application of power grids, such as extending
our formalism to nonuniform inertia or damping, lossy
transmissions, effect of changes of network topology due to
breakdown of grid elements, etc. In addition, our method
is based on the assumption of nondegenerate state alge-
braic connectivity, which may not hold in highly symmetric

networks, and how to achieve an optimum under general
constraints in these networks remains to be explored. Last,
our study considers only linear stability which assumes
small disturbances. While we found that the decentralized
configuration has optimal stability for small disturbances,
there were indications that decentralization may reduce the
dynamic stability for moderate perturbations [25]. This may
require us to adopt an augmented objective function in future
studies. The recently developed basin stability approach [29]
can be complementary to our approach, and the combination
of the two views may be able to provide more comprehensive
understanding of the system stability.
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