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We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular
zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously
evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A
configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered
row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive
for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative
characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases
exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually
merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble
shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for
both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally
activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves
a collapse process regardless of the temperature.
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I. INTRODUCTION

There has been a lot of interest in pattern formation in the
general context of instabilities in extended systems [1]. In some
cases, the patterns are solitons, which means that a complete
description of the interactions between localized patterns is
available [2]. The complete integrability of nonlinear partial
differential equations is seldom, and most often nonlinear
patterns are solitary waves but not solitons, so one has to resort
to perturbative methods to calculate their interactions [1,3–7].
Moreover, the link between the underlying “microscopic”
equations (for instance, the Navier-Stokes equations in the
context of convection rolls patterns) and the relevant amplitude
equation is difficult to establish quantitatively [1]. In this paper,
we study a system with explicit microscopic equations, so all
coefficients in the corresponding partial differential equation
are known explicitly.

We consider a quasi-one-dimensional system of particles
interacting with short-range repulsive potential and trans-
versely confined. There are many practical examples of
such a system, like optically confined paramagnetic colloidal
particles [8–11], plasma dusts in electrostatic traps [12–16],
vortices in supraconductors [17–19], and electrostatically
interacting macroscopic beads [20–23]. We have done in
Ref. [23] the coarse graining of this discrete system in
a consistent fashion and obtained the relevant amplitude
equation explicitly, expressing all coefficients in terms of the
known interaction potential between the particles.

At a critical transverse confinement, this system has a
conformational phase transition which is called the zigzag
transition. For an even number of particles, the particles are
regularly distributed along a line for strong confinement or
along a staggered row (zigzag configuration) for a weak con-
finement. Localized patterns can be observed in these quasi-
one-dimensional systems of particles when they are confined in
an annular cell [15,22]. For an intermediate confinement, these
two phases coexist and the systems present localized patterns,

called bubbles, of zigzag domains surrounded by particles in
line. Indeed, these systems undergo a subcritical pitchfork
bifurcation below a critical confinement [23]. For a given
number of particles and channel sizes, the bubbles’ shapes
only depend on the confinement. In a previous article, we have
shown that its envelope can be assimilated to a solitary wave
which can be calculated in the framework of our nonlinear
coarse-grained model [23].

These bubbles are stable in a large range of temperatures
[24]. Indeed, under the influence of thermal noise, they diffuse
without any distortion of their envelope and the spontaneous
splitting of a single bubble never occurs. Note that this solitary
wave motion does not correspond to a global displacement
of the particles constituting the bubbles. Actually, the bubble
envelope moves with respect to the particles. During this
displacement the particles are continually reorganized along
the solitary wave envelope according to a specific distribution
associated to each bubble position. Therefore, bubble motions
over large-enough distances induce complete renewal of the
entire set of particles participating to the bubble [25]. The
change of particles configurations during the bubble motion
results in a periodic modulation �E of the potential energy
of the system, of period the interparticles distance. This
amplitude �E only depends on the transverse confinement.
This modulation is a feature of the discrete character of the
particles system [25].

By studying the motion of a single bubble at high tem-
perature (kBT > �E), we have evidenced that the bubble
diffuses at long times as a free quasiparticle [25]. Indeed,
its mean-square displacement depends on time t as 2DBt ,
where DB = kBT /MBγ is the bubble diffusion coefficient, T

the thermodynamic temperature, γ the dissipation coefficient,
and MB the effective mass of the bubble calculated in the
framework of the continuous model [25]. By contrast, at low
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(a) (b)

FIG. 1. Schematic representation of the particles configurations for a NF system in (a) and for a F system in (b). In both plots the blue +
signs (respectively, red ×) represent the virtual position of the particles in the presence only of the left bubble (respectively, right bubble), the
open black circles correspond to the actual position of the particles in presence of both bubbles, and the cyan dashed lines correspond to the
analytic transverse displacement field presented Eq. (8). In (b) the black box indicates the location of the topological defect.

temperature, the bubble motion is dominated by the potential
energy modulation �E. The bubble motion might nevertheless
still be described as the diffusion of a quasiparticle of mass
MB , in an external periodic potential with the same period and
the same amplitude as the bubble potential energy [25].

For intermediate confinement, metastable configurations
with several bubbles may also be observed. When the system
of particles is coupled to a thermal bath, these multibubbles
configurations quickly transit toward a simpler system with
fewer bubbles, with the thinner bubbles disappearing to the
benefit of the wider ones. This seems to be quite a generic
process that has already been observed in several nonlinear
systems [26–28]. In this paper we focus on the last stage of such
a reorganization process, when the system adopts a transient
configuration of two identical bubbles before reaching the
single bubble equilibrium state.

For discrete systems two kinds of bubble pair configurations
have to be considered according the number of particles
between the two bubbles. When this number is even, all the
particles may organize into a modulated staggered row without
any constraint [see Fig. 1(a)]. These systems will be called
nonfrustrated (NF) systems. By contrast, for an odd number of
particles between the bubbles, the relative particles’ locations
imposed by the two bubbles cannot be simultaneously satisfied
and the resulting geometric constraints induce a topological
defect [see the black box in Fig. 1(b)]. This defect implies that
at least one particle cannot take a position compatible with
a regular (even if modulated) zigzag pattern. Such systems
are therefore called frustrated (F) systems. This distinction
is mandatory to analyze the bubbles reorganization since the
effective force experienced by the bubbles and the processes
involved in the bubble pair reorganization differ for NF systems
and F systems.

On the other hand, the reorganization of a bubble pair
configuration toward a single bubble may involve two distinct
mechanisms. In the first process, the bubbles move toward
each other, come into contact, and merge into a single bubble.
This is the coalescence process, which occurs only for NF
systems and dominates their dynamics at low temperatures.
In the second mechanism, one bubble shrinks and the other
one extends, while their positions remain basically constant.

We call this process the collapse process. It is relevant for NF
systems at high temperature and is the only one observed in
the reorganization of F systems.

The aim of this article is to discuss in detail the interac-
tion between two bubbles and the processes that lead their
reorganization toward a single one. In Sec. II, we calculate
the effective interaction between bubbles in the framework of
the continuous model, using a simple and nonformal approach
(see Appendix B for a formal and rigorous derivation of the
bubble interaction which validates this simpler description).
We emphasize a remarkable difference between NF and F
systems: The bubbles’ interaction in a NF system is shown to
be attractive, whereas it is repulsive in a F system. The actual
motions of interacting bubbles obtained by simulation are
described in detail in Sec. III and compared to the theoretical
predictions. In particular, we exhibit the influence of the
periodic modulation �E on these motions at low temperatures.
In Sec. IV, we focus on the coalescence and collapse processes
themselves. Then a conclusion summarizes our results in
Sec. V. The details of the simulation method are given in
Appendix A.

II. BUBBLES INTERACTION

A. Normal form of the zigzag bifurcation

We consider N identical point particles of mass m moving
on a plane, held in a cell of length L along the x axis with
cyclic boundary conditions at the extremities and transversely
confined along the y axis by a harmonic potential of stiffness
β. Assuming that N is even, when the confinement becomes
smaller than a bifurcation threshold βZZ , a chain of equidistant
particles undergoes a pitchfork bifurcation toward an homo-
geneous staggered row of transverse amplitude 2h. The ith
particle, which is located at the point {x = id,y = 0} with
d = L/N before the bifurcation (β > βZZ) is part of one of
the symmetrical patterns {id, ± (−1)ih} after the bifurcation
(β < βZZ). In this framework, the zigzag bifurcation appears
basically as a supercritical pitchfork bifurcation, which implies
a soft mode at the bifurcation threshold. Nevertheless, in the
thermodynamic limit (N → ∞), the homogeneous patterns
(line and zigzag) are translationally invariant, and for finite N
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with cyclic boundary conditions they are rotationally invariant.
In both cases, this invariance implies a soft Goldstone mode.
The two soft modes are nonlinearly coupled at the bifurcation,
following a mechanism identified in the context of crystal
growth [29] and therefore induce a subcritical pitchfork
bifurcation.

Indeed, let us consider inhomogeneous patterns, such
that the ith particle is found at the position {x +
φ(x,t),(−1)ih(x,t)} after the bifurcation, where φ(x,t) de-
scribes the longitudinal deviation from the regular particles
distribution and where h(x,t) is the local zigzag height.
Introducing the dimensionless distance to the bifurcation
threshold ε, defined by β ≡ βZZ(1 − ε), we can expand the
energy density near the bifurcation in powers of the small
quantity |ε| � 1. Because of the pitchfork bifurcation, the
zigzag height h scales as ε1/2. The fields φ(x,t) and h(x,t) are
assumed to be slowly varying functions, and in order to recover
the acoustic modes in the low-frequency and long-wavelength
limit the slow space and time variables have to scale as ε1/2.
The scale of the space variable defines the scale of the field φ

as ε1/2.
Taking d as the unit distance, the velocity c⊥ of the long-

wavelength linear transverse waves as the unit velocity, and
mc2

⊥ as the unit energy, a consistent expansion in powers of ε

gives the Lagrangian density

L = 1

2

(
∂h

∂t

)2

+ 1

2

(
∂φ

∂t

)2

+ βZZε

2
h2 − a3

2

(
h4 + h2 ∂φ

∂x

)
− 1

2

(
∂h

∂x

)2

− b3

2

(
∂φ

∂x

)2

− a5

6
h6, (1)

where all coefficients are explicit positive functions of the
interparticles potential [23]. The first two terms are the kinetic
energy density, and the remaining terms are the opposite of
the potential energy density, −eP . The corresponding field
equations are

∂2φ

∂t2
= a3h

∂h

∂x
+ b3

∂2φ

∂x2
, (2)

∂2h

∂t2
= βZZεh − a3

(
2h3 + h

∂φ

∂x

)
+ ∂2h

∂x2
− a5h

5. (3)

Assuming inhomogeneous fields [30], Eq. (2) is readily
integrated to give

dφ

dx
= −αh(x)2 where α ≡ a3

2b3
. (4)

For small-enough interaction range, α > 2 and injecting the
result (4) into (3) gives a subcritical normal form.

The calculations only assume short-ranged interactions
between the particles and cyclic boundary conditions in the
longitudinal direction. They are thus relevant for plasma dusts
in electrostatic traps [12–16] (Yukawa interaction), vortices
in supraconductors [17–19], or electrostatically interacting
macroscopic beads [20–23] which exhibit the same interaction
potential (modified Bessel interaction, see Refs. [19,31]) and
optically confined paramagnetic colloidal particles [8–11]
(dipolar magnetic interactions). Similar equations have been
obtained phenomenologically in Ref. [29] for overdamped
dynamics on the basis of symmetry arguments, whereas in

our calculation the numerical coefficients in the normal form
are explicit functions of the interaction potential [23].

B. Single bubble description

The bubbles are localized zigzag patterns that may be found
as stationary solutions which are such that h(x → ±∞) = 0.
We get

h(x) = h−√
(1 − χ2) cosh2(

√−βZZεx) + χ2
with

0 � χ < 1, (5)

where the parameter χ and the bubble amplitude h− are given
in Ref. [23]. It is easy to check from (5) that for x → ±∞ we
have H (x) ∼ H̃ exp(∓√−βZZε x) with

H̃ ≡ 2h−√
1 − χ2

. (6)

This asymptotic behavior is generic [6] and is a key point for
the calculations of Sec. II D and Appendix B.

From the expression of h(x), using the stress-energy tensor
[32] deduced from the Lagrangian density, we can also
determine the mass MB that may be associated to the bubble
[25]. It is given by

MB =
∫ ∞

−∞

[
α2h4 +

(
dh

dx

)2
]
dx. (7)

The integration may be done with the help of Eq. (5), as shown
in Ref. [25]. Qualitatively, as suggested by Eq. (7), we can
consider that the effective mass of the bubble increases with
its size, the first term accounting for the width of the bubble and
the second term for the bubble edges. When the system is put
into a thermal bath, the bubbles are found to be stable patterns
that behave as quasiparticles, which exhibit a random walk
with the diffusion coefficient DB = kBT /(MBγ ) [25]. Here T

is the thermodynamic temperature, kB the Boltzmann constant,
γ the dissipation coefficient, and MB is the quasiparticle mass
defined in Eq. (7).

C. Nonfrustrated and frustrated bubble pair configurations

In the case of a bubble pair configuration, the discrete
character of the system of particles imposes to consider the
exact location of each particle in the modulated zigzag pattern.

To qualitatively understand this point, let us consider, for
instance, a schematic configuration of two zigzag bubbles in
a NF system, such as the one displayed in Fig. 1(a). When
the bubbles get closer, each bubble induces a displacement
in the same direction for evenly indexed particles and in
the opposite direction for the oddly indexed ones. Thus the
particles between bubbles move away from the confinement
axis and eventually take positions satisfying the order imposed
by the modulated staggered configuration.

Consider now two zigzag bubbles in a F system, displayed
in Fig. 1(b). Now when the bubbles get closer, each bubble
induces for each particle a displacement in opposite directions.
Therefore, the particle in the middle between the two bubbles
stays on the cell axis [see the black box Fig. 1(b)] and
appears as a topological defect which separates a zigzag pattern
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[yi = (−1)ih(xi), say] from a zagzig pattern [yi =
−(−1)ih(xi)]. In this case, the bubble merging is forbidden.
Note that in a cyclic channel, there are necessarily two such
topological defects, one in each domain between bubbles.

This frustration effect is basically a consequence of the
discrete character of the system but may be incorporated in
a simple fashion in our continuous description. Indeed, let
{φL,HL} be the left bubble, centered at −D/2 and {φR,HR}
be the right bubble, centered at +D/2, with the x origin at the
middle of the distance between bubbles. Their superposition
is different for NF and F systems. As previously discussed, the
sign of the transverse displacements have to alternate strictly
for a NF systems (two zigzag bubbles), whereas in contrast a
topological defect should separate the two bubbles in F systems
[a zigzag bubble (blue +) and a zagzig bubble (red ×), see
Fig. 1(b)]. The zagzig bubble may thus be described with
transverse displacements of the particles that have opposite
signs with respect to the zigzag bubble.

Moreover, we take advantage of the bubble shape asymp-
totic behavior at large distance (6). Thus, for two bubbles
initially at a large distance (such that D

√−βZZε 
 1), the
displacements associated to one bubble are exponentially small
at positions for which the displacements associated to the other
one are large. In a first approximation [33], one may thus
neglect the nonlinear interaction and estimate the longitudinal
deviation φ(x) and the transverse height h(x) describing the
whole system as the superposition of single bubble solutions,
Eq. (5).

In order to take into account the difference between zigzag
and zagzig bubbles, we write the transverse displacement h(i)
of the ith particle as

h(i) = (−1)i
[
HL

(
i + D

2

)
± HR

(
i − D

2

)]
, (8)

where the sign + corresponds to NF systems and where the
sign − corresponds to F systems. Since the field φ only depends
on the square of the transverse displacement [see Eq. (4)], we
set

φ(i) = 
L

(
i + D

2

)
+ 
R

(
i − D

2

)
, (9)

for both F systems and NF systems. The relevance of this
description to a bubble pair system is evidenced in Fig. 3 which
displays the bubbles configurations and the corresponding
calculated envelopes.

D. Bubbles interaction in the continuous model

The force between the bubbles may be deduced from the
potential energy of the whole system. To this end, we inject
the ansatzs (8) and (9) into the potential energy density. In
principle, one has to take into account that, because of the
nonlinear terms, this ansatz is not an exact solution of the
dynamical equations (2) and (3). A rigorous calculation of
the force between two bubbles is possible, using a general
formalism developed by Elphick, Meron, and Spiegel [6]. This
calculation is described extensively in Appendix B. We give
below a less formal and much simpler presentation, which
clearly exhibits the main underlying physical mechanism that
is responsible for the force between bubbles.

We simply estimate the potential energy density, neglecting
all terms smaller than the product HLHR which, because of
Eq. (6), is exponentially small for large D. We thus obtain

eP = eL
P + eR

P ∓ βZZεHLHR ± a3(2 − α)
(
H 3

LHR + HLH 3
R

)
±H ′

LH ′
R ± a5

(
H 5

LHR + HLH 5
R

)
, (10)

where the primes denote x derivatives, where we have used
Eq. (4) which gives 
′

L,R = −αH 2
L,R , and where e

L,R
P denotes

the potential energy density of the single bubble {L,R}, which
is deduced from (1). The potential energy of the two bubbles is
then obtained by integration on the x axis, and after integration
by part it reads

Eint
P = EL

P + ER
P

±
∫ ∞

−∞

[−βZZεHL+a3(2 − α)H 3
L+a5H

5
L−H ′′

L

]
HRdx

±
∫ ∞

−∞

[
a3(2 − α)H 3

R + a5H
5
R

]
HLdx. (11)

Since HL is a solution (5) of (2), the first integral van-
ishes. In the remaining integral, we get a consistent ap-
proximation if we replace HL by its asymptotic expression
HL ∼ H̃ exp[−√−βZZε (x + D/2)]. The potential energy
now reads

Eint
P = EL

P + ER
P ± H̃√−βZZε

e−√−βZZεD

×
∫ ∞

−∞
[a3(2 − α)H (w)3 + a5H (w)5]e−wdw, (12)

where w = √−βZZε(x − D/2). This change of variables
evidences that the remaining integral is independent of D.
Because of the translational invariance of the system, the
potential energies of each bubble are equal, EL

P = ER
P , and

do not depend on D either.
Once the integration is performed, we obtain the potential

energy of interaction between two bubbles as

Eint
P (D) = ∓8

√
−βZZε

h2
−

1 − χ2
e−√−βZZεD, (13)

where the integration constant is such that this energy vanishes
when the bubbles are infinitely distant. Then we obtain the
force exerted by the left bubble on the right one as

F (D) = −dEint
P

dD
= ∓F0e

−√−βZZεD, where

F0 ≡ 8βZZ|ε| h2
−

1 − χ2
� 0. (14)

The most striking result is that the force is attractive for NF
systems and repulsive for F systems. Moreover, this expression
shows that the intensity of the interaction between bubbles only
depends on their distance. All these results are consistent with
the rigorous derivation given in Appendix B. An exponentially
decreasing interaction has also been calculated for interacting
kinks in Ref. [4]. The relevant phenomenon is indeed basically
the same, because this latter calculation assumes that the kinks
are remote enough for the spatial variations induced by one
kink to be small at the location of the other one.
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Using the expression of the interacting force, the equation
of evolution of the distance between the two bubbles, D(t), is

MB

d2D

dt2
= ∓2F0e

−√−βZZεD. (15)

For an attractive interaction, assuming initial conditions
such that D(t = 0) = D0 and dD/dt |(t=0) = 0, we get after
integration

D(t) = D0 + 2√−βZZε
log

[
cos

( √−βZZεF0

MBe
√−βZZεD0

)1/2

t

]
.

(16)

The bubbles merge when D(tmax) = 0, which happens at
time tmax,

tmax =
[
MB exp(

√−βZZεD0)√−βZZεF0

]1/2

× arccos

[
exp

(
−

√−βZZεD0

2

)]
. (17)

Note that this last result is only approximate, because the
calculation assumes a large distance D(t), which is not
true during the last stage of the coalescence. For practical
calculations, the arccos function is very near π/2.

E. Modulation of the interaction potential

An additional potential has to be added to the interaction
potential Eint

P (D). Indeed, the reorganization of particles
during the bubble displacement along the cell axis induces
a small periodic modulation of the potential energy of the
system, with a period that is the interparticle distance 1 (since
d is taken as the unit length). This modulated potential is a
direct consequence of the discreteness of our system, and we
have shown in Ref. [25] that it is very well described as a
sinusoidal function of amplitude �E(ε) that only depends on
the confinement. For a set of two bubbles, the period is 2
and the modulation amplitude is doubled, so the full potential
energy of a bubble pair reads

EP (D,ε) = Eint
P (D) + 2�E(ε) sin πD. (18)

FIG. 2. Plot of the modulated interaction potential energy EP

[in 10−5 nJ; see Eq. (18)] as a function of the distance D between
bubbles (in mm). The inset is a zoom on the large distance behavior
that evidences the local minima of energy.

It is plotted in Fig. 2. At small distance, the potential
energy is completely dominated by the bubbles interaction
potential, but since this latter is exponentially decreasing, the
discrete periodic potential dominates at large distance. This is
evidenced in the inset of Fig. 2 which shows that, at sufficiently
large distance, there are local energy minima such that the
bubbles may be trapped in potential wells.

III. BUBBLE MOTIONS AT ZERO TEMPERATURE

In this section, we focus on the deterministic motions
of a pair of bubbles. We compare our theoretical analysis
to molecular dynamics simulations at zero temperature. The
initial configuration is a metastable bubble pair configuration,
with a distance D0 between the two bubbles. Details about
this initial configuration are given in Appendix A. Since the
interaction force has opposite signs for NF systems and F
systems, we discuss these two initial configurations separately.

A. Bubble motion in NF systems

Let us consider a NF system of two bubbles at T = 0 K
without dissipation. As soon as their initial distance D0 is
such that d|(dEint

P /dx)
D0

| > �E(ε), there is no local energy
minimum, and the interaction between the two bubbles is
attractive. We display in the left column of Fig. 3 several
snapshots of a NF system, taken at increasing time. These
plots evidence the attractive interaction and the beginning
of the merging of the two bubbles (These snapshots are
parts of a movie in the Supplemental Material of this paper,
see Ref. [34]). We also plot the ansatz of Eq. (8). We see
that this is indeed a very good approximation of the bubble
envelope when the distance between the bubbles is large, but
that some discrepancy is seen during the merging process, in
agreement with the more rigorous approach of Appendix B.
The corresponding bubbles trajectories are displayed in Fig. 4.
The trajectories are symmetric with respect to the middle
of the bubble pair, and each bubble is increasingly accelerated
by the attractive force. These observations are consistent with
our prediction (14) of an attractive force that only depends
on the bubbles distance and that decreases quickly with
the distance. On another hand, if d|(dEint

P /dx)
D0

| < �E(ε),
which happens when the distance D0 is large enough, there
is a local minimum in the bubbles pair energy. Therefore,
the bubbles are trapped and oscillate around positions which
correspond to local minima of the modulated potential.

In order to check the influence of the initial distance D0 and
of the amplitude �E(ε), the bubbles distance D(t) obtained
in the simulations is displayed in Fig. 5 as a function of
time for four initial distances D0 and for two confinements
that correspond to very different amplitudes �E(ε). In the
first three plots [Figs. 5(a)–5(c)] �E(ε) is such that no
trapping occurs. Thus, the bubbles’ motions exhibit the same
phenomenology, with a very strong attractive force at small
distance and eventually the merging of the bubbles.

The duration of the bubbles motion increases very quickly
with the initial distance D0. This is consistent with the result
(17), which predicts that the collapse time depends basically
exponentially on the distance D0. Moreover, the independence
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FIG. 3. Snapshots of instantaneous configurations of the particles (both axis in mm) inside a NF system (left plots) and a F system (right
plots). For the NF system the configurations are displayed at time 0 s (a), 90 s (c), and 108 s (e). For the F system the configurations are
displayed at time 0 s (b), 50 s (d), and 100 s (f). The cyan solid line is the ansatz (8). For both systems there are N = 128 particles and the
confinement is ε = 0.05 (see also the Supplemental Material of this paper [34]).

of the final decrease of D(t) with the initial condition is
consistent with a bubble acceleration that depends only on
D and not of the velocity, in agreement with expression (14)
of D(t). Furthermore, notice that the final decrease of D(t) is
independent of the initial bubbles distances. This duration also
increases when the amplitude �E(ε) of the periodic potential

0 20 40 60 80
70
80
90
100
110
120
130
140

time s

x
m
m

FIG. 4. Positions of the two bubbles (in mm) as a function of
the time (in s) for a NF system of N = 128 particles, a confinement
ε = 0.05, and with two bubbles initially separated by a distance of
D0 = 39.7 mm.

increases. The most striking effect of the periodic potential
is seen in Fig. 5(d). For a given initial distance D0, when
�E(ε) is large [here �E(ε1) = 7.9 10−10 nJ], the bubbles
are stuck in a potential well and always stay around their
initial positions. In contrast, with a much smaller �E(ε) [here
�E(ε2) = 1.0 10−10 nJ] the bubbles are still attracted until
their eventual merging. These behaviors cannot be explained
by the continuous model, for which there is no threshold
of distance which forbids the bubbles motions. Thus, the
dynamics described by the continuous model is always faster
than that observed in the simulations and the discrepancies are
all the more important that the initial distance between bubbles
is large enough for the amplitude �E(ε) to be relevant.

From the bubbles trajectories, we may calculate the ac-
celeration of the bubbles. The resulting plots are displayed
in Fig. 6. When plotted in a log-linear scale [see Fig. 6(b)],
the data evidence an exponential decrease of the acceleration
with the distance, in qualitative agreement with the theoretical
analysis (15).

We can determine the potential energy of a bubble pair,
Eq. (18), as a function of the bubbles distance D from the
simulation results. With the instantaneous particles positions
we can compute easily the interaction energy from the
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(a) (b)

(c) (d)

FIG. 5. Plot of the distance D(t) (in mm) between a bubble pair as a function of time t (in s) for a NF system of N = 128 particles. For
four different initial distances: 35.4 mm (a), 39.7 mm (b), 42.8 mm (c), and 45.6 mm (d). Solid black line: For a confinement ε1 = 0.085 and
�E(ε1) = 7.9 10−10 nJ. Solid cyan (light gray) line: For a confinement ε2 = 0.093 and �E(ε2) = 1.0 10−10 nJ. Dashed black line: Analytical
solution, Eq. (16), with a periodic potential energy amplitude �E(ε) = 0.

analytical expression of the inter-particles interaction, together
with the energy due to the confinement. Figure 7 displays
the potential energy as a function of D when two bubbles
of a NF-system become closer. At small distance, this energy
decreases monotonically with the distance. Even if this section
is devoted to motions at zero temperature, let us indicate
that for nonzero temperatures, as soon as kBT > �E(ε),
we observe behaviors that are basically the same as those
displayed in Figs. 5(a)–5(c). However, at finite temperature,
the thermal bath induces random motions of the bubbles, as
shown in Fig. 10(a). We can see that the bubbles seem to
diffuse independently as long as they are far enough for their
interaction to be small compared to the thermal excitation.
In contrast, when the bubbles are close enough, the thermal
motions become irrelevant so their final motion is basically
deterministic and very similar to what it was at T = 0 K.

B. Bubble motion in F systems

The repulsive interaction between bubbles in F systems is
evidenced in the right plots of Fig. 3. Initially, the bubbles
are very close to the cell center [Fig. 3(a)] and then they
repel each other [Figs. 3(d) and 3(f)]. With cyclic boundary
conditions, this motion persists until the repulsion becomes
strong enough for the bubbles to turn back. Without dissipation
this mechanism induces oscillatory trajectories as displayed in
Fig. 8(a). These oscillatory motions are also evidenced in a
movie provided in the Supplemental Material of this paper,
see Ref. [34]. If a small dissipation is introduced, then these
oscillatory motions are damped and eventually the bubble
positions are such that their final distance is L/2 [see Fig. 8(b)].

As for NF systems, the variations of the acceleration with
the bubble distance can be determined from the trajectories.
The acceleration of a F system as a function of the bubbles

(a) (b)

FIG. 6. Acceleration D̈ [in mm s−2; (a) linear scale, (b) logarithmic scale] extracted from the trajectories obtained by simulation, such as
in Figs. 4 and 3, as function of the distance D between bubbles [in mm; (a) and (b) linear scales]. For both plots the cyan (light gray) curve
corresponds to a NF system and the blue (dark gray) curve corresponds to a F system. In (a) the thin black curves correspond to the theoretical
expression of the acceleration calculated from Eq. (15). For a system of N = 128 particles, ε = 0.05, with initial distances of D0 = 42.8 mm
for the NF system and of D0 = 34.6 mm for the F system.
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FIG. 7. Plot of the configurational energy (in 10−5 nJ) as a
function of the distance between bubbles (in mm), with the zero
energy taken when the bubbles are at infinite distance. The thick cyan
(light gray) solid line curve corresponds to the configurational energy
of the NF system in Fig. 6, and the thick magenta (darker) solid line
corresponds to the F system in Fig. 6. The thin black solid line is the
opposite of the F-system energy and is shown to be identical to the
NF-system energy.

distance D is shown in Fig. 6. It is clear that, when measured at
a same distance D, the bubbles accelerations in F systems and
in NF systems are of opposite signs. These accelerations are
shown to have the same absolute value and to exponentially
decrease with the distance D, which is consistent with Eq. (15)
[see Fig. 6(b)].

In Fig. 7 we plot the potential energy of a bubble pair as a
function of their distance. This energy increases as the bubble
distance decreases, in contrast with NF systems. As expected
from Eq. (13), this energy is the opposite of the energy of a NF
system. Therefore, the simulations evidence the consistency of
our description of a F system by the minus sign in the ansatz (8).
Furthermore, the energy of an F system is measured on a larger
distance than for NF systems. If the initial condition in an F sys-
tem is a pair of two close bubbles, then they will gain because
of their repulsion a rather large kinetic energy, which allows
them to explore the periodic potential energy at large distance.

IV. REORGANIZATION TOWARD EQUILIBRIUM

A. The two paths toward the single bubble

The coalescence and the collapse are the two processes
by which bubble pair systems can be reorganized toward the
equilibrium state of a single bubble. In the coalescence process,
the bubbles come into contact and eventually merge together.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6
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T 109 K

P
ro
b.

FIG. 9. Probability to observe the reorganization of the bubble
pair system via the coalescence process (cyan dots) or via the collapse
process (magenta squares) as a function of the temperature (109 K).
For NF systems of N = 64 particles and confinement ε = 0.13, with
bubbles initially separated by D0 = 44.1 mm.

The required contact is only allowed for NF systems because
of the repulsive interaction between bubbles in F systems. In a
collapse process, one bubble shrinks in favor of the other one,
which becomes the final equilibrium state. During the whole
collapse process, the bubbles positions remain constant apart
from thermal fluctuations. Since this process does not require
any contact between bubbles, it is observed for NF systems
and F systems as well.

For the NF system, the relative efficiency of the coalescence
and collapse processes only depends on the temperature which
controls their respective characteristic times. The coalescence
time τD is typically the time required by two bubbles, initially
at distance L/2, to come into contact by diffusion, the
coalescence itself being assumed instantaneous. This time
scales as 1/T . On the other hand, a collapse process requires
us to overcome an energetic barrier δU in the phase space (see
Fig. 13). The characteristic time τA of this thermally activated
process is a Kramers’s time that scales as

√
T exp(−δU/kBT ).

If τA > τD , then the collapse process will always be less
efficient than the coalescence process. This is what happens
at low temperatures. On the contrary, when τA < τD , distant
bubbles are more likely to be reorganized by the collapse
process. This is what happens at high temperatures.

To quantify the relevance of both processes as a function
of the temperature, we have used a statistical approach. For
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FIG. 8. Positions of the two bubbles (in mm) as a function of the time (in s) for a F system of N = 128 particles, a confinement ε = 0.05,
and with two bubbles initially separated by a distance of D0 = 34.6 mm.
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FIG. 10. Positions x of the two bubbles (in mm) as a function of
the time (in s) for a NF system of N = 64 particles, a confinement
ε = 0.13, and with two bubbles initially separated by a distance of
D0 = 44.1 mm. The temperature is T = 3. 109 K and the damping
is γ = 1 s−1. (a) Coalescence process. (b) Collapse process. At this
temperature both processes are equally likely, see Fig. 9.

each temperature, a large number of simulations have been
performed with the same bubble pair initial configuration.
We may therefore deduce the probability of each process
by counting the number of coalescence or collapse events
at each temperature. This probability is plotted as a function
of the temperature in Fig. 9. The coalescence is clearly the
prevailing process at low temperatures, whereas the system
reorganization at high temperatures is mainly due to the
collapse process.

B. Coalescence process

At nonzero temperature, the bubbles behave as quasiparti-
cles in a thermal bath and undergo diffusive motions [24]. A
typical set of trajectories for the coalescence of a bubble pair
is shown in Fig. 10(a) and should be compared to Fig. 4. The

trajectories are noisy at nonzero temperatures because each
bubble diffuses in the attractive potential of the other one.
When the bubbles are close enough, their motion is leaded by
their attractive interaction until they eventually merge together.
The last steps of this process are shown in Fig. 11.

The merging process induces a potential energy gain,
because the single bubble configuration is more stable than
the bubble pair. This potential energy gain is transferred on the
vibrational modes of the chain of particles. If the dissipation
is small, the central particles exhibit strong transverse oscilla-
tions, so the bubbles seem to rebound onto each other (see the
movie in the Supplemental Material of this paper [34]). This is
illustrated in Fig. 12, which displays the transverse trajectories
of two adjacent particles in the middle of the two bubbles.
Before the contact, these particles are along the confinement
axis. As soon as the bubbles begin to overlap, their transverse
positions suddenly increase up to their final positions and
oscillate in opposite phase, in agreement with the zigzag
geometry. These intermediate states correspond to the lowest
energy mode of a single bubble [35]. The amplitude of these
oscillations decreases with time because of the redistribution
of the kinetic energy on all degrees of freedom of the system
and becomes eventually random.

Let us now follow more precisely the evolution of the
configurational energy E(t) of the system during its reor-
ganization by coalescence. Such events occur randomly, so
measuring E(t) requires many runs of simulations with the
same initials conditions. For each simulation, this energy is
calculated at each time step, with the coalescence event taken
as the time origin. Then an ensemble averaging is performed on
all similar events at the same temperature, which gives E(t)
for a coalescence process. A typical configurational energy
variation is displayed in Fig. 13(a). On this figure, we can
identify three distinct steps. The first one is a monotonous
energy decrease, which is very slow as long as the bubbles
are at large distance, followed by a very quick decrease just
before the merging. Then this energy oscillates somewhat,
which traces back to the vibrational excitations of the final
bubble induced during the coalescence event. Last, the energy
reaches the value associated to the stable single bubble
configuration. As previously said, the energy excess induced
by the coalescence is redistributed as kinetic energy on all the
other degrees of freedom of the system, ensuring the total
energy conservation. In the Supplemental Material of this
paper [34], we display movies of coalescence and collapse
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FIG. 11. Two instantaneous configurations (both axis in mm) of the particles inside a NF system taken during the final steps of the
coalescence, following the series presented Fig. 3. N = 128 particles and ε = 0.05. (a) At time 110 s; the cyan solid line is the ansatz (8).
(b) At time 340 s; the cyan solid line is the analytic solution (5).

012206-9



TOMMY DESSUP, CHRISTOPHE COSTE, AND MICHEL SAINT JEAN PHYSICAL REVIEW E 95, 012206 (2017)

FIG. 12. Transverse positions (in mm) of two successive particles
located just at the middle between the two bubbles as a function of
the time (in s). For a system of N = 128 particles, ε = 0.05, at zero
temperature and without dissipation.

processes, which show clearly that this excess in potential
energy is redistributed on the vibrational modes of the final
stable pattern.

C. Collapse process

Unlike the coalescence which occurs for NF systems
only, the collapse processes may happen in NF systems
and F systems. An example of the relevant typical bubbles
trajectories is presented in Fig. 10(b). Another example of
collapse is provided by one movie in the Supplemental
Material of this paper, see Ref. [34].

The evolution of the potential energy of a system reor-
ganized by bubbles collapse is shown in Fig. 13(b), with
the time origin taken at the end of the collapse. A bubble
pair is a metastable state, so before the collapse, the energy
remains roughly constant. The collapse event is characterized
by a sudden increase of the system energy that reaches a
maximum, followed by an eventual quick decrease down to
the the energy of the stable single bubble configuration. This
characteristic bump defines the energetic barrier δU , which
has to be overcome in this process. It evidences that the
collapse is an activated process which therefore prevails at
high temperature.

In order to explore the influence of the frustration on this
process observed in NFsystems and F systems, we have studied
the evolution of the average time τ required to overcome the
barrier as a function of the temperature. Since all simulations
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FIG. 14. Plot of the mean time (in s) taken by the system to
reorganize toward one bubble via the collapse process as a function
of the temperature (in 109 K). The red dots correspond to NF systems
and the blue squares correspond to F systems. In both cases N = 64
particles, ε = 0.13, and the damping constant is γ = 1 s−1.

are done with the same initial condition, the collapse time is
the ensemble averaging, at a given temperature, of the times at
which a collapse happens in each simulation run, discarding
the simulations that exhibit a coalescence process. The plots
of this time as a function of temperature are shown in Fig. 14.
As expected the average time decreases as the temperature
increases. Moreover, this temperature dependence is roughly
the same for NF systems and F systems. This suggests that
the underlying mechanism of the collapse process, which
allows the system to reach its equilibrium state is roughly
independent of the existence of a topological defect between
the two bubbles.

D. Final configuration

Let us quickly describe the final bubble itself. The final state
of a coalescence process is shown in Fig. 11(b), which shows
that it is in very good agreement with the analytic shape (5).
More generally, the final single bubble configuration shares
the same characteristics for both initial configurations (the
bubble pair may be a NF system or an F system) and for
both processes (coalescence or collapse). In this way, the final
bubble always involves fewer particles in the modulated zigzag
phase than the initial state, its height is always slightly smaller
and the distance between the aligned particles is larger in the
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FIG. 13. Instantaneous configurational energy (in nJ) as a function of the time (in s). The configurational energy is averaged over many
simulations (see the text for details). In both plots N = 64, ε = 0.13, the temperature is T = 109 K and the damping constant is γ = 1 s−1.
(a) For a NF system, with the time origin taken at the coalescence event. (b) For an F system, with the time origin taken at the collapse event.
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FIG. 15. Left plots: Maximum bubble amplitude hmax (in mm) for a metastable bubble pair and then for the stable single bubble, as a
function of time (in s). Right plots: Nearest-neighbors distance d∗ (in mm) for particles outside the bubbles, for a metastable bubble pair, and
then for the stable single bubble, as a function of time (in s). Top plots for a coalescence process and bottom plots for a collapse process. In
each plots the dashed red line indicates the time at which coalescence or collapse happen. For a system of N = 64 particles, ε = 0.15, at a
temperature T = 5. × 109 K and with a damping constant γ = 1 s−1.

final state than in the initial state (see Fig. 15). This evidences
that the final single bubble is a potential energy minimum,
since both the interaction energy and the confinement energy
are decreased. The disappearance of a bubble pair in favor
of a single bubble has also been observed in systems in
which both the energy and the overall mass of the solitary
waves are conserved [26–28]. However, we do observe this
disappearance in a system which only conserves the total
energy. This suggests that this reorganization is quite a generic
process.

V. CONCLUSION

In this article the focus has been put on the path toward
equilibrium of nonlinear excitations in discrete systems. The
considered excitation are pairs of solitary wave envelopes
(bubbles) that modulate a regular zigzag pattern in an annular
channel with an even number of particles. Such bubbles are
observed for an intermediate transverse confinement of this
quasi-one-dimensional systems of interacting particles. We
observe bubble pairs that are metastable states which spon-
taneously evolve toward an equilibrium state characterized by
a single bubble.

Specific behaviors, not observable in continuous systems
have been exhibited due to the underlying discrete character
of this system. In particular, we have introduced the concept
of topological frustration associated to such bubbles pairs. A
configuration is said to be frustrated when a regular modulated
zigzag phase is impossible between the two bubbles. Using

numerical simulations, we have given evidence that when
a bubbles pair configuration is nonfrustrated, the bubbless
interaction is attractive. In contrast, when the bubble pair is
frustrated, the bubbles’ interaction is repulsive. We describe a
model of interacting solitary wave that takes into account the
frustrated or nonfrustrated character of the bubble pair. This
model provides all qualitative characteristics of the interaction
force: It is attractive for NF systems, repulsive for F systems,
and decreases exponentially with the bubbles distance.

For NF systems, the attractive force induces a first path
toward equilibrium, as the bubbles move closer and eventually
merge as a single stable bubble. This merging process is called
coalescence. There is another path toward equilibrium, along
which one bubble shrinks in favor to the other one, overcoming
an energetic barrier in phase space. We call this process the
collapse. This process occurs for NF systems and F systems as
well, whereas the coalescence process, which requires bubbles
contact, is specific to NF systems. In the NF systems, the
coalescence prevails at low temperatures because the activated
jump in phase space is seldom. In contrast, the collapse is
the prevailing reorganization process at high temperature.
We have monitored the configuration energy during either a
coalescence and a collapse process and shown that the collapse
is a thermally activated process since an energy barrier has to
be overcome just before the collapse.

The key ingredients of our model are a short-ranged
interaction and cyclic boundary conditions in the longitudinal
direction, which implies an annular shape of experimental
setup. The phenomenology described in this paper is thus
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expected to be equally relevant for various systems, such
as plasma dusts in electrostatic traps [12–16] (Yukawa in-
teraction), vortices in supraconductors [17–19] or electrostat-
ically interacting macroscopic beads [20–23] (in which the
short-ranged potential is a modified Bessel interaction, see
Refs. [19,31]), and optically confined paramagnetic colloidal
particles [8–11] (dipolar magnetic interactions).

APPENDIX A: NUMERICS

In this paper we simulate the dynamics of N identical
point particles of mass m moving on a plane, with a screened
electrostatic interaction U (r) = U0K0(r/λ0) of energy scale
U0 and of characteristic range λ0 between the particles, and
with a transverse confinement in a quasi-one-dimensional
geometry described by a harmonic potential of stiffness β.
The simulation cell has a longitudinal extent of length L

with periodic boundary conditions. The system is connected
to a thermal bath accounted for by a damping constant γ

and by random forces applied on each particle, with the
statistical properties of uncorrelated white Gaussian noise. The
simulation process involves the numerical resolution of the set
of N coupled Langevin equations [36].

The constant U0 determines the energy scales and is such
that U0/kB ∼ 1011 K (kB is Boltzmann constant). In all
simulations, we take λ0 = 0.48 mm and d ≡ L/N = 1.875
mm. Therefore, the coefficient α in Eq. (4) is such that α > 2,
which ensures the subcriticality of the zigzag bifurcation and,
hence, the existence of solitary waves envelope (bubbles) in
the system [23,24]. The temperature ranges from T = 0 up to
a temperature such that the thermal energy is comparable with
the characteristic cohesive energies of the system.

Careful attention has been paid to the preparation of
the initial bubbles pair configurations. When a bubbles pair
emerges in a simulation, we do a fast quenching by reducing
the temperature without changing the transverse confinement.
To this aim, we simulate the dynamics of the bubbles pair at
zero temperature but with a finite dissipation for the system
to dissipates its kinetic energy. Eventually, we thus obtained
a frozen bubbles pair configuration which can be used as an
initial state of the simulations described throughout the paper.
We have prepared in such a way several configurations, with
various distances between the two bubbles and for the two
kinds of bubble pair systems (frustrated and nonfrustated).

APPENDIX B: RIGOROUS DERIVATION OF THE
INTERACTIONS BETWEEN LOCALIZED PATTERNS

In this section, we calculate pertubatively the interaction
between two bubbles, using a very general method developed
by Elphick, Meron, and Spiegel [6] (EMS). A solitary exci-
tation of a nonlinear partial differential equation in one space
variable and one time variable is the solution of an analogous
dynamical system. The solitary excitation corresponds to a
solution of infinite period of the dynamical system and, hence,
to a homoclinic orbit [6,37] that connects a fixed point to itself.
Therefore, generically, a solitary wave decays exponentially
fast away from its maximum amplitude. The link between
the explicit bubble solution (5) and a dynamical system was

exhibited in Ref. [23], and Eq. (6) indeed exhibits such
asymptotic behavior.

A pair of solitary excitations is not an exact solution,
and one has to take into account the complicated nonlinear
interaction between the two excitations. However, if they are
separated by a large distance D0 (D0 
 1/

√−βZZε), when
the amplitude of a bubble is maximum the amplitude of the
other one is exponentially small. Therefore, EMS [6] suggest
a perturbative calculation, taking η ≡ exp(−√−βZZε D0) as
a small parameter. Adapting the EMS method to our problem,
we seek solutions as

h = H

[
x + D0

2
− ψL(τ )

]
± H

[
x − D0

2
− ψR(τ )

]
+ ηRh(x,τ ) ≡ HL ± HR + ηRh,

φ = 


[
x + D0

2
− ψL(τ )

]
+ 


[
x − D0

2
− ψR(τ )

]
+ ηRφ(x,τ ) ≡ 
L + 
R + ηRφ. (B1)

Here {Hi(x),
i(x)}, where the index i ∈ {L,R} (left or right)
is a stationary solution (5) of Eqs. (2) and (3), such that

L
(

Hi


i

)
+

(
Nh(Hi,
i)
Nφ(Hi,
i)

)
=

(
0
0

)
, (B2)

with obvious definitions for the linear differential operator L
and for the nonlinear parts Nh(Hi,
i) and Nφ(Hi,
i). As in
Sec. II D, we describe a NF system by the + sign and a F
system by the − sign.

The origin is taken at the middle of the two bubbles,
which are initially separated from the distance D0, and since
the superposition of the two bubbles cannot be an exact
solution, we allow a slow motion of the two bubbles through
the functions ψi(τ ). We also include two remainder terms,
ηRh and ηRφ . The slow time scale is chosen as τ = η1/2t .
EMS [6] made a different choice because their underlying
model is overdamped, which is not the case for systems
(2) and (3).

Then the ansatz (B1) is injected into systems (2) and (3).
The expansion of the time derivatives gives

η2 ∂2Rh

∂τ 2
+ η

(
H ′′

Lψ̇2
L − H ′

Lψ̈L ± H ′′
Rψ̇2

R ∓ H ′
Rψ̈R

)
(B3)

and

η2 ∂2Rφ

∂τ 2
+ η

(

′′

Lψ̇2
L − 
′

Lψ̈L + 
′′
Rψ̇2

R − 
′
Rψ̈R

)
. (B4)

Since Hi and 
i are functions of only one argument, for
the sake of simplicity we write their derivatives with primes.
Since ψi is a function of τ only, we write its derivatives with
dots.

The next step is to expand the nonlinear terms in power
of η. To this end, following EMS [6], we use what they
call the superposed pulse approximation. The key point is
to notice that at x = −D0/2 (respectively, x = +D0/2) the
value of HR (respectively, HL) is O(η). Then we notice
that the functions Nh and Nφ are sums of monomials in
h and φ and their derivatives. To carry the expansion in a
consistent way, one has to consider that, for i �= j and a
given exponent a, Ha

i Ha
j = O(ηa) and Ha

i 
′
j
a/2 = O(ηa)
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because 
′
j = −αH 2

j . Therefore, taking into account that {Hi(x),
i(x)} is a solution of Eq. (5), we get at the leading order

H
(

Rh

Rφ

)
= −

(
H ′′

Lψ̇2
L − H ′

Lψ̈L ± H ′′
Rψ̇2

R ∓ H ′
Rψ̈R


′′
Lψ̇2

L − 
′
Lψ̈L + 
′′

Rψ̇2
R − 
′

Rψ̈R

)

+ 1

η

(
a3

[
6
( ± H 2

LHR + H 2
RHL

) + HL
′
R ± HR
′

L

] − 5a5
( ± H 4

LHR + H 4
RHL

)
±a3(HLH ′

R + HRH ′
L)

)
+ O(η), (B5)

where the linear operator H is

H = −L +
(

6a3
(
H 2

L + H 2
R

) + a3(
′
L + 
′

R) + 5a5
(
H 4

L + H 4
R

)
a3(HL ± HR) ∂

∂x

−a3
[
H ′

L ± H ′
R + (HL ± HR) ∂

∂x

]
0

)
. (B6)

For consistency, the correction terms η(Rh,Rφ) in (B1) must
be small, so the fields Ri must be finite everywhere. This gives
the solvability condition for the perturbative method: By the
Fredholm theorem [38], the right-hand member in Eq. (B5)
must be orthogonal to the kernel of the adjoint operator H†,
which is defined with the help of the usual inner product for
vector functions with bounded support, through the relation

∫ ∞

−∞
P · (HR)dx =

∫ ∞

−∞
(H†P) · Rdx. (B7)

Moreover, the perturbation expansion only requires orthogo-
nality up to O(η). We may therefore consider the simpler linear
operator

HL = −L +
[

6a3H
2
L + a3


′
L + 5a5H

4
L a3HL

∂
∂x

−a3
(
H ′

L + HL
∂
∂x

)
0

]
,

(B8)

HR = −L +
[

6a3H
2
R + a3


′
R + 5a5H

4
R ±a3HR

∂
∂x

∓a3
(
H ′

R + HR
∂
∂x

)
0

]
.

(B9)

Integrating by part, and using the boundary conditions
Hi(±∞) = 0 and 
′

i(±∞) = 0, it may be checked that these
operators are indeed self-adjoint. Their usefulness comes from
the fact that, because of the translational invariance of the
underlying equations (2) and (3), we know that the kernel of
Hi is spanned by the vector function (H ′

i ,

′
i), which may be

verified by taking the x derivative of Eq. (B2). Then when H†

is applied to the kernel of HL and HR , it is easy to see that the
result is O(η).

Therefore, the consistency of the ansatz (B1) is ensured if
we choose the functions ψL and ψR in such a way that the
inner products of the right-hand member of Eq. (B5) with
the kernels of HL and HR are both O(η). To be specific,
let us consider the inner product with the kernel (H ′

L,
′
L) of

HL. The terms that involve ψR are at least O(η) and may
thus be discarded. Then the terms H ′

LH ′′
H and 
′

L
′′
L are

exact derivatives, therefore because of the boundary condi-
tions the relevant integrals vanish. Using the relation 
′

L =
−αH 2

L, and integrating by part, we may write the resulting

equation as[∫ ∞

−∞

(
H ′

L

2 + 
′
L

2)
dx

]
ψ̈L

= MBψ̈L = ±a3(α−2)

η

∫ ∞

−∞
H 3

LH ′
Rdx

∓a5

η

∫ ∞

−∞
H 5

LH ′
Rdx, (B10)

where we have identified the mass of the bubble with the help
of Eqs. (4) and (7).

To calculate the remaining integrals, following EMS [6],
we notice that for the left bubble HL takes significant values
for x ≈ −D0/2, so we may replace H ′

R by its asymptotic
value for x � D0/2. Therefore, including the arguments of
the functions, we get

1

η

∫ ∞

−∞
Hn

LH ′
Rdx

= 1

η

∫ ∞

−∞
H

(
x + D0

2
− ψL

)n

× H̃
√

−βZZεe
√−βZZε(x−D0/2−ψR )dx+O(η)

= H̃ e
√−βZZε(ψL−ψR)

∫ ∞

−∞
H (w)newdw, (B11)

where we have set w ≡ √−βZZε(x + D0/2 − ψL) and where
we have simplified the last result by η = e−D0

√−βZZε . From
the known expression (5) of H (w), we get MBψ̈L =
±F0e

−√−βZZε(ψR−ψL), where F0 is defined in Eq. (14).
The inner products of the right-hand member of Eq. (B5)
with the kernel of HR gives a similar equation, MBψ̈R =
∓F0e

−√−βZZε(ψR−ψL).
From these two results, we deduce the time variation

of the distance D between the two pulses, which is D =
D0 + ψR − ψL. The physical time t is such that d2D/dt2 =
ηD̈, with η = exp(−√−βZZεD0), so

MB

d2D

dt2
= ∓2F0e

−√−βZZεD. (B12)

This equation evidences an attractive interaction between the
bubbles for NF systems and a repulsive interaction for F
systems. As of now, we have recovered in a formal but rigorous
way, as the solvability condition of our perturbation expansion,
the result (14) already given in the text.

012206-13



TOMMY DESSUP, CHRISTOPHE COSTE, AND MICHEL SAINT JEAN PHYSICAL REVIEW E 95, 012206 (2017)

[1] M. C. Cross and P. C. Hohenberg, Pattern formation outside of
equilibrium, Rev. Mod. Phys. 65, 851 (1993).

[2] P. G. Drazin and R. S. Johnson, Solitons: An introduction
(Cambridge University Press, Cambridge, 1989).

[3] M. Oikawa and N. Yajima, Interactions of solitary waves - A
perturbation approach to nonlinear systems, J. Phys. Soc. Jpn.
34, 1093 (1973).

[4] K. Kawazaki and T. Ohta, Kink dynamics in one-dimensional
nonlinear systems, Physica A 116, 573 (1982).

[5] C. Elphick, E. Meron, and E. A. Spiegel, Spatiotemporal
Complexity in Traveling Patterns, Phys. Rev. Lett. 61, 496
(1988).

[6] C. Elphick, E. Meron, and E. A. Spiegel, Patterns of propagating
pulses, SIAM J. Appl. Math. 50, 490 (1990).

[7] C. Elphick, G. R. Ierley, O. Regev, and E. A. Spiegel, Interacting
localized structures with Galilean invariance, Phys. Rev. A 44,
1110 (1991).

[8] G. Piacente, I. V. Schweigert, J. J. Betouras, and F. M. Peeters,
Generic properties of a quasi-one-dimensional classical Wigner
crystal, Phys. Rev. B 69, 045324 (2004).

[9] G. Piacente, G. Q. Hai, and F. M. Peeters, Continuous structural
transitions in quasi-one-dimensional classical Wigner crystals,
Phys. Rev. B 81, 024108 (2010).

[10] A. V. Straube, R. P. A. Dullens, L. Schimansky-Geier, and A. A.
Louis, Zigzag transitions and nonequilibrium pattern formation
in colloidal chains, J. Chem. Phys. 139, 134908 (2013).

[11] Christian Marschler, Jens Starke, Mads P. Sørensen, Yuri B.
Gaididei, and Peter L. Christiansen, Pattern formation in annular
systems of repulsive particles, Phys. Lett. A 380, 166 (2016).

[12] B. Liu and J. Goree, Phonons in a one-dimensional Yukawa
chain: Dusty plasma experiment and model, Phys. Rev. E 71,
046410 (2005).

[13] A. Melzer, Zigzag transition of finite dust clusters, Phys. Rev. E
73, 056404 (2006).

[14] T. E. Sheridan, Dusty plasma ring model, Phys. Scr. 80, 065502
(2009).

[15] T. E. Sheridan and K. D. Wells, Dimensional phase transition in
small Yukawa clusters, Phys. Rev. E 81, 016404 (2010).

[16] T. E. Sheridan and A. L. Magyar, Power law behavior for the
zigzag transition in a Yukawa cluster, Phys. Plasmas 17, 113703
(2010).

[17] A. J. Drew, M. W. Wisemayer, D. O. G. Heron, S. Lister, S. L.
Lee, A. Potenza, C. H. Marrows, R. M. Dalgliesh, T. R. Charlton,
and S. Langridge, Using spin-polarized neutron reflectivity to
probe mesoscopic vortex states in a pb thin-film superconductor,
Phys. Rev. B 80, 134510 (2009).

[18] R. B. G. Kramer, G. W. Ataklti, V. V. Moshchalkov, and
A. V. Silhanek, Direct visualization of the campbell regime in
superconducting stripes, Phys. Rev. B 81, 144508 (2010).

[19] Q. Le Thien, D. McDermott, C. J. Olson Reichhardt, and
C. Reichhardt, Orientational ordering, buckling, and dynamic
transitions for vortices interacting with a periodic quasi-one-
dimensional substrate, Phys. Rev. B 93, 014504 (2016).

[20] J.-B. Delfau, C. Coste, and M. Saint Jean, Transverse single-
file-diffusion near the zigzag transition, Phys. Rev. E 87, 032163
(2013).

[21] J.-B. Delfau, C. Coste, and M. Saint Jean, Noisy zigzag
transition, fluctuations, and thermal bifurcation threshold,
Phys. Rev. E 87, 062135 (2013).

[22] T. Dessup, T. Maimbourg, C. Coste, and M. Saint Jean, Linear
instability of a zigzag pattern, Phys. Rev. E 91, 022908 (2015).

[23] T. Dessup, C. Coste, and M. Saint Jean, Subcriticallity of the
zigzag transition: A nonlinear bifurcation analysis, Phys. Rev. E
91, 032917 (2015).

[24] T. Dessup, C. Coste, and M. Saint Jean, Hysteretic and
intermittent regimes in the subcritical bifurcation of a quasi-
one-dimensionnal system of interacting particles, Phys. Rev. E
93, 012105 (2016).

[25] T. Dessup, C. Coste, and M. Saint Jean, Thermal motion of a
nonlinear localized pattern in a quasi-one-dimensional system,
Phys. Rev. E 94, 012217 (2016).

[26] R. Jordan and C. Josserand, Self-organization in nonlinear wave
turbulence, Phys. Rev. E 61, 1527 (2000).

[27] B. Rumpf and A. C. Newell, Localization and coherence in
nonintegrable systems, Physica D 184, 162 (2003).

[28] B. Rumpf, Stable and metastable states and the formation and
destruction of breathers in the discrete nonlinear Schrödinger
equation, Physica D 238, 2067 (2009).

[29] B. Caroli, C. Caroli, and S. Fauve, On the phenomenology of
tilted domains in lamellar eutectic growth, J. Phys. I France 2,
281 (1992).

[30] For homogeneous fields, the density is a constant and the only
physically consistent solution of (2) is dφ/dx = 0, so the normal
form (3) remains supercritical.

[31] P. Galatola, G. Coupier, M. Saint Jean, J.-B. Fournier, and
C. Guthmann, Determination of the interactions in confined
macroscopic wigner islands: Theory and experiments, Eur. Phys.
J. B 50, 549 (2006).

[32] H. Goldstein, Classical Mechanics (Addison Wesley, Reading,
MA, 1980).

[33] In the rigorous calculation, the nonlinear interaction between the
two bubbles is taken into account perturbatively in a consistent
way, see Appendix B and Ref. [6].

[34] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.95.012206 for four movies of bubbles mo-
tions.

[35] J.-B. Delfau, C. Coste, and M. Saint Jean, Enhanced fluctuations
of interacting particles confined in a box, Phys. Rev. E 85,
041137 (2012).

[36] J.-B. Delfau, C. Coste, and M. Saint Jean, Single
file diffusion of particles with long-ranged interactions:
Damping and finite size effects, Phys. Rev. E 84, 011101 (2011).

[37] E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and
Chaos (Cambridge University Press, Cambridge, 1990).

[38] P. Manneville, Dissipative Structure and Weak Turbulence
(Academic Press, New York, 1990).

012206-14

https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1143/JPSJ.34.1093
https://doi.org/10.1143/JPSJ.34.1093
https://doi.org/10.1143/JPSJ.34.1093
https://doi.org/10.1143/JPSJ.34.1093
https://doi.org/10.1016/0378-4371(82)90178-9
https://doi.org/10.1016/0378-4371(82)90178-9
https://doi.org/10.1016/0378-4371(82)90178-9
https://doi.org/10.1016/0378-4371(82)90178-9
https://doi.org/10.1103/PhysRevLett.61.496
https://doi.org/10.1103/PhysRevLett.61.496
https://doi.org/10.1103/PhysRevLett.61.496
https://doi.org/10.1103/PhysRevLett.61.496
https://doi.org/10.1137/0150029
https://doi.org/10.1137/0150029
https://doi.org/10.1137/0150029
https://doi.org/10.1137/0150029
https://doi.org/10.1103/PhysRevA.44.1110
https://doi.org/10.1103/PhysRevA.44.1110
https://doi.org/10.1103/PhysRevA.44.1110
https://doi.org/10.1103/PhysRevA.44.1110
https://doi.org/10.1103/PhysRevB.69.045324
https://doi.org/10.1103/PhysRevB.69.045324
https://doi.org/10.1103/PhysRevB.69.045324
https://doi.org/10.1103/PhysRevB.69.045324
https://doi.org/10.1103/PhysRevB.81.024108
https://doi.org/10.1103/PhysRevB.81.024108
https://doi.org/10.1103/PhysRevB.81.024108
https://doi.org/10.1103/PhysRevB.81.024108
https://doi.org/10.1063/1.4823501
https://doi.org/10.1063/1.4823501
https://doi.org/10.1063/1.4823501
https://doi.org/10.1063/1.4823501
https://doi.org/10.1016/j.physleta.2015.10.038
https://doi.org/10.1016/j.physleta.2015.10.038
https://doi.org/10.1016/j.physleta.2015.10.038
https://doi.org/10.1016/j.physleta.2015.10.038
https://doi.org/10.1103/PhysRevE.71.046410
https://doi.org/10.1103/PhysRevE.71.046410
https://doi.org/10.1103/PhysRevE.71.046410
https://doi.org/10.1103/PhysRevE.71.046410
https://doi.org/10.1103/PhysRevE.73.056404
https://doi.org/10.1103/PhysRevE.73.056404
https://doi.org/10.1103/PhysRevE.73.056404
https://doi.org/10.1103/PhysRevE.73.056404
https://doi.org/10.1088/0031-8949/80/06/065502
https://doi.org/10.1088/0031-8949/80/06/065502
https://doi.org/10.1088/0031-8949/80/06/065502
https://doi.org/10.1088/0031-8949/80/06/065502
https://doi.org/10.1103/PhysRevE.81.016404
https://doi.org/10.1103/PhysRevE.81.016404
https://doi.org/10.1103/PhysRevE.81.016404
https://doi.org/10.1103/PhysRevE.81.016404
https://doi.org/10.1063/1.3511442
https://doi.org/10.1063/1.3511442
https://doi.org/10.1063/1.3511442
https://doi.org/10.1063/1.3511442
https://doi.org/10.1103/PhysRevB.80.134510
https://doi.org/10.1103/PhysRevB.80.134510
https://doi.org/10.1103/PhysRevB.80.134510
https://doi.org/10.1103/PhysRevB.80.134510
https://doi.org/10.1103/PhysRevB.81.144508
https://doi.org/10.1103/PhysRevB.81.144508
https://doi.org/10.1103/PhysRevB.81.144508
https://doi.org/10.1103/PhysRevB.81.144508
https://doi.org/10.1103/PhysRevB.93.014504
https://doi.org/10.1103/PhysRevB.93.014504
https://doi.org/10.1103/PhysRevB.93.014504
https://doi.org/10.1103/PhysRevB.93.014504
https://doi.org/10.1103/PhysRevE.87.032163
https://doi.org/10.1103/PhysRevE.87.032163
https://doi.org/10.1103/PhysRevE.87.032163
https://doi.org/10.1103/PhysRevE.87.032163
https://doi.org/10.1103/PhysRevE.87.062135
https://doi.org/10.1103/PhysRevE.87.062135
https://doi.org/10.1103/PhysRevE.87.062135
https://doi.org/10.1103/PhysRevE.87.062135
https://doi.org/10.1103/PhysRevE.91.022908
https://doi.org/10.1103/PhysRevE.91.022908
https://doi.org/10.1103/PhysRevE.91.022908
https://doi.org/10.1103/PhysRevE.91.022908
https://doi.org/10.1103/PhysRevE.91.032917
https://doi.org/10.1103/PhysRevE.91.032917
https://doi.org/10.1103/PhysRevE.91.032917
https://doi.org/10.1103/PhysRevE.91.032917
https://doi.org/10.1103/PhysRevE.93.012105
https://doi.org/10.1103/PhysRevE.93.012105
https://doi.org/10.1103/PhysRevE.93.012105
https://doi.org/10.1103/PhysRevE.93.012105
https://doi.org/10.1103/PhysRevE.94.012217
https://doi.org/10.1103/PhysRevE.94.012217
https://doi.org/10.1103/PhysRevE.94.012217
https://doi.org/10.1103/PhysRevE.94.012217
https://doi.org/10.1103/PhysRevE.61.1527
https://doi.org/10.1103/PhysRevE.61.1527
https://doi.org/10.1103/PhysRevE.61.1527
https://doi.org/10.1103/PhysRevE.61.1527
https://doi.org/10.1016/S0167-2789(03)00220-3
https://doi.org/10.1016/S0167-2789(03)00220-3
https://doi.org/10.1016/S0167-2789(03)00220-3
https://doi.org/10.1016/S0167-2789(03)00220-3
https://doi.org/10.1016/j.physd.2009.08.006
https://doi.org/10.1016/j.physd.2009.08.006
https://doi.org/10.1016/j.physd.2009.08.006
https://doi.org/10.1016/j.physd.2009.08.006
https://doi.org/10.1051/jp1:1992143
https://doi.org/10.1051/jp1:1992143
https://doi.org/10.1051/jp1:1992143
https://doi.org/10.1051/jp1:1992143
https://doi.org/10.1140/epjb/e2006-00183-0
https://doi.org/10.1140/epjb/e2006-00183-0
https://doi.org/10.1140/epjb/e2006-00183-0
https://doi.org/10.1140/epjb/e2006-00183-0
http://link.aps.org/supplemental/10.1103/PhysRevE.95.012206
https://doi.org/10.1103/PhysRevE.85.041137
https://doi.org/10.1103/PhysRevE.85.041137
https://doi.org/10.1103/PhysRevE.85.041137
https://doi.org/10.1103/PhysRevE.85.041137
https://doi.org/10.1103/PhysRevE.84.011101
https://doi.org/10.1103/PhysRevE.84.011101
https://doi.org/10.1103/PhysRevE.84.011101
https://doi.org/10.1103/PhysRevE.84.011101



