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The effect of derivative nonlinearity and parity-time-symmetric (PT -symmetric) potentials on the wave
propagation dynamics is explored in the derivative nonlinear Schrödinger equation, where the physically
interesting Scarf-II and harmonic-Hermite-Gaussian potentials are chosen. We study numerically the regions
of unbroken and broken linear PT -symmetric phases and find some stable bright solitons of this model in a
wide range of potential parameters even though the corresponding linear PT -symmetric phases are broken. The
semielastic interactions between particular bright solitons and exotic incident waves are illustrated such that we
find that particular nonlinear modes almost keep their shapes after interactions even if the exotic incident waves
have evidently been changed. Moreover, we exert the adiabatic switching on PT -symmetric potential parameters
such that a stable nonlinear mode with the unbroken linear PT -symmetric phase can be excited to another stable
nonlinear mode belonging to the broken linear PT -symmetric phase.
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I. INTRODUCTION

The famous derivative nonlinear Schrödinger (DNLS)
equation possesses the following normalized form [1]

iψt + ψxx + ig(|ψ |2ψ)x = 0, g > 0, (1)

where the subscripts denote the partial derivatives with respect
to the variables, g represents the relative magnitude (the space-
reflection transformation x → −x can make g < 0) of the
derivative nonlinearity term, which is also called the nonlinear
dispersion term [1]. In fact, Eq. (1) has a close relation with
the modified nonlinear Schrödinger (MNLS) equation [2,3]

iqξ + αqττ + λ|q|2q + iγ (|q|2q)τ = 0, (2)

where α denotes the group velocity dispersion coefficient,
the Kerr nonlinear coefficient λ and derivative nonlinear
coefficient γ both depend on nonlinear refractive index n2.
Equation (2) can be transformed into Eq. (1) by using the
similarity (or gauge) transformation [4]

q(τ,ξ ) = ψ(x,t)ei(kx+k2t)

with x = γ

αg
τ − 2λ

g
ξ , t = γ 2

αg2 ξ , and k = αgλ

γ 2 .
Equation (1) [or the similarity Eq. (2)] can be used to

describe many nonlinear wave phenomena in some physical
applications such as the propagations of small-amplitude
nonlinear Alfvén waves in a low-β plasma [5], large-amplitude
magnetohydrodynamic waves propagating in an arbitrary
direction with respect to the magnetic field in a high-β
plasma [6], the filamentation of lower-hybrid waves [7], and
the subpicosecond or femtosecond pulses in single-mode
optical fiber [2,3]. Equation (1) can be solved using the inverse
scattering method [8]. Moreover, some modified models [e.g.,
Eq. (2)] had been studied in detail such as the Chen-Li-Liu
equation [9] and the modified NLS equation [4,9–11]. Par-
ticularly, the localized solutions and dynamics in the Raman-
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extended DNLS equation were also studied analytically and
numerically [12,13].

The NLS equation describing light propagation in op-
tics [14] with real external potentials and/or gain-and-loss
distributions has been investigated [15–31] since the refractive
index of the optical waveguide can be complex [32,33]. It
is surprising to find that if the complex refractive index
satisfies the property of the parity-time (PT ) symmetry [34]:
P : x → −x; T : i → −i, that is, if the real and imaginary
parts of the refractive index are the even and odd functions of
spatial position, respectively, then the propagation constant of
the light can still be in all-real spectrum range, hence admitting
stationary beam transmission [35–38]. Moreover, the complex
PT -symmetric potentials can also support continuous families
of stable solitons [20–31] even if the solitons appear in the
range of the broken linear PT -symmetric phases (see, e.g.,
Ref. [21]). More recently, the stable nonlinear modes were
found in the third-order NLS equation with PT -symmetric
potentials [39]. Other interesting PT -symmetric phenomena
or properties can be found in the relevant theoretical and
experimental studies [36,37,40–42].

It is still a significant subject to explore whether stable
nonlinear modes exist in other nonlinear physical models with
PT -symmetric potentials. To the best of our knowledge, soli-
ton dynamics of the DNLS equation (1) in the PT -symmetric
potentials was not studied before, which can be regarded as an
extension of the NLS equation with PT -symmetric potentials
(see, e.g., Refs. [20–22]). Our main goal in this paper is to
find stable solitons and study their exciting behaviors of the
DNLS equation (1) in two kinds of physically interesting
PT -symmetric potentials (i.e., PT -symmetric Scarf-II and
harmonic-Hermite-Gaussian potentials).

The rest of this paper is arranged as follows. We first present
the broken and unbroken regions of the linear spectral problem
with some physically interesting PT -symmetric potentials.
Then we analyze the effect of the PT -symmetric potentials
and derivative nonlinearity on the stability, wave propagations,
interactions, transverse power-flow density of solitons in
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detail. Finally, based on the adiabatic change technique we
also perform some types of stable excitations belonging to the
broken linear PT -symmetric phases from nonlinear modes.

II. NONLINEAR PHYSICAL MODEL WITH
PT -SYMMETRIC POTENTIALS

A. Nonlinear wave equation

We begin our investigation by considering the propagation
of optical waves in the derivative nonlinearity and PT -
symmetric potential. The light evolution can be modeled by the
following normalized derivative nonlinear Schrödinger-like
equation with PT -symmetric potential

iψt + ψxx − [V (x) + iW (x)]ψ + ig(|ψ |2ψ)x = 0, (3)

where ψ = ψ(x,t) is a complex wave function of x,t , which
is proportional to the electric field envelope, t denotes
the scaled propagation time or distance, x represents the
normalized transverse coordinate, and g is a positive nonlinear
coefficient (without loss of generality we can choose g = 1).
The PT -symmetric potential V (x) + iW (x) requires that
its real and imaginary components satisfy V (−x) = V (x)
and W (−x) = −W (x) describing the real-valued external
potential and gain-and-loss distribution, respectively. Similar
to the NLS equation with PT -symmetric potentials [20], the
PT -symmetric potential in Eq. (3) can be achieved by a
judicious inclusion of gain or loss regions in guided wave
geometries [44,45]. Recently, the effect of the shock-induced
PT -symmetric potentials was studied by considering the
coupled derivative NLS equations [42], which are relevant to
Eq. (3). When we make the transformation t → z (propagation
distance) and x → t (propagation time), Eq. (3) may be
used to describe the evolution of pulses inside a single-mode
fiber [1,43].

It is easy to show that Eq. (3) is invariant under
the PT -symmetric transformation if the complex potential
[V (x) + iW (x)] is PT symmetric, where P and T op-
erators are defined by P : x → −x; T : i → −i, t → −t .
Equation (3) can be rewritten as the form ψt = − ∂

∂x
δH
δψ∗

with the Hamiltonian H = ∫ +∞
−∞ {−iψ∗ψx + ψ∗ ∫ x

0 [iV (x) −
W (x)]ψdx + g

2 |ψ |4}dx, where the asterisk stands for the
complex conjugate. The power and quasipower [20] of
Eq. (3) are given by P (t) = ∫ +∞

−∞ |ψ(x,t)|2dx and Q(t) =∫ +∞
−∞ ψ(x,t)ψ∗(−x,t)dx, respectively. One can immedi-

ately obtain that Pt = 2
∫ +∞
−∞ W (x)|ψ(x,t)|2dx and Qt =

− ∫ +∞
−∞ gψ(x,t)ψ∗(−x,t){(|ψ(x,t)|2)x − [|ψ(−x,t)|2]x +

ψ∗(x,t)ψx(x,t) − ψ(−x,t)ψ∗
x (−x,t)}dx.

B. General theory

The stationary solutions of Eq. (3) are considered in the
form ψ(x,t) = φ(x)eiμt , where μ is the real propagation con-
stant and the nonlinear localized eigenmode [lim|x|→∞ φ(x) =
0] satisfies

d2φ

dx2
− [V (x) + iW (x)]φ + ig

d(|φ|2φ)

dx
= μφ. (4)

For Eq. (4) with some functions V (x) and W (x), there exist
two cases for the study of solutions of Eq. (4):

(i) if φ(x) is a real-valued function, then we have the general
solution of Eq. (4)

φ2(x) = 2

3g
∂−1
x W (x), (5)

with the condition linking the potential and gain-and-loss
distribution being

W 2(x)−2Wx(x)∂−1
x W (x)+4[V (x)+μ]

[
∂−1
x W (x)

]2 =0, (6)

where ∂−1
x W (x) = ∫ x

0 W (s)ds.
(ii) if the function φ(x) is complex in the form

φ(x) = ρ(x) exp

[
i

∫ x

0
v(s)ds

]
, (7)

where ρ(x) is the real amplitude, and the real function v(x)
is the hydrodynamic velocity [46], then we substitute Eq. (7)
into Eq. (4) and separate the real and imaginary parts to yield
the relations linking the hydrodynamic velocity

v(x) = ρ−2(x)
∫ x

0
W (s)ρ2(s)ds − 3g

4
ρ2(x), (8)

and the amplitude satisfying the second-order ordinary differ-
ential equation with varying coefficients

d2ρ(x)

dx2
= [V (x) + v2(x) + μ]ρ(x) + gv(x)ρ3(x). (9)

To further study the linear stability of such nonlinear
localized modes ψ(x,t) = φ(x)eiμt , we consider the perturbed
solutions of Eq. (3) as follows:

ψ(x,t) = {φ(x) + ε[F (x)eiδt + G∗(x)e−iδ∗t ]}eiμt , (10)

where ε � 1,F (x) and G(x) are the perturbation eigenfunc-
tions of the linearized eigenvalue problem and δ measures
the growth rate of the perturbation instability. Substituting
Eq. (10) into Eq. (3) and linearizing with respect to ε, we obtain
the following linear eigenvalue problem for the perturbation
modes (

L̂1 L̂2

−L̂∗
2 −L̂∗

1

)(
F (x)
G(x)

)
= δ

(
F (x)
G(x)

)
, (11)

where

L̂1 = ∂2
x + 2ig[|φ|2∂x + (|φ|2)x] − [V (x) + iW (x)] − μ,

and

L̂2 = ig[φ2∂x + (φ2)x].

Obviously, the PT -symmetric nonlinear modes are linearly
stable if δ is purely real, otherwise they are linearly unstable.

In what follows we study Eqs. (3) and (4) analytically and
numerically in detail for two distinct physically interesting
PT -symmetric potentials.

III. NONLINEAR MODES IN THE PT -SYMMETRIC
SCARF-II POTENTIAL

The first potential to consider is the celebrated PT -
symmetric Scarf-II potential [20,21,38]

V (x) = V0sech2x, W (x) = W0sechx tanh x, (12)
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where the real parameters V0 < 0 and W0 modulate the
amplitudes of the reflectionless potential V (x) and gain-and-
loss distribution W (x), respectively. For the case W0 > 0,W (x)
represents the gain (loss) action in the domain of x � 0
(x � 0), respectively, whereas W0 < 0,W (x) represents the
gain (loss) action in the domain of x � 0 (x � 0), respectively.
Evidently, both V (x) and W (x) are bounded and vanish
as |x| → ∞. Moreover, the gain-and-loss distribution W (x)
always has a global balance in Eq. (3) since

∫ +∞
−∞ W (x)dx = 0.

A. Linear spectral problem

In the absence of the derivative nonlinearity (g = 0), Eq. (4)
becomes the following linear eigenvalue problem with the
PT -symmetric Scarf-II potential (12)

L�(x) = λ�(x), L = −∂2
x + V (x) + iW (x), (13)

with λ and �(x) being the eigenvalue and localized eigen-
function, respectively. By virtue of the spectral method,
we numerically find its symmetry-breaking line in (V0,W0)
space, which coincides well with the theoretical result that
Eq. (13) with Eq. (12) enjoys entirely real spectra provided
that |W0| � −V0 + 1/4 [38] [see Fig. 1(a)]. Therefore, for a
fixed W0 satisfying |W0| > 1/4, there always exists a threshold
of the potential amplitude V0, beyond which a phase transition
occurs and the corresponding spectra become complex in the
meantime [see Figs. 1(b), 1(c)].

However, more interestingly, even though the phase transi-
tion occurs in the linear spectral problem [i.e., Eq. (13) has
the complex spectra], nonlinear modes can still exist with
entirely real eigenvalues, since the beam itself can have a
strong influence on the amplitude of the potential through the
derivative nonlinearity. Thus, for the same parameter W0, the
new effective potential with stronger derivative nonlinearity
may alter the linear PT -symmetric threshold with the result
that nonlinear eigenmodes can be found with real eigenvalues.
But the broken PT symmetry cannot be nonlinearly restored
at the lower power levels subject to the weaker derivative
nonlinearity. Thus, in what follows we turn to investigate
nonlinear modes of Eq. (3) with PT -symmetric Scarf-II
potential (12) analytically and numerically.

B. Stability and dynamics of nonlinear modes

Without loss of generality, we consider g = 1 in Eq. (4).
The particular (bright) soliton solutions (similarly hereafter)
of Eq. (4) with the Scarff-II potential (12) can be found in the
form

φ(x) =
√

2
3φ0 sechx exp[iϕ(x)], (14)

where φ0 = W0 ±
√

4W 2
0 + 12V0 + 9 > 0 with 4W 2

0 +
12V0 + 9 � 0 [cf. Eq. (7); “+” denotes Scarf-II-Case-1 and
“−” Scarf-II-Case-2, hereafter], the propagation constant is
μ = 0.25, and the nontrivial phase is

ϕ(x) = − (W0 + φ0)

2
tan−1(sinh x).

It is easy to know that the above-mentioned condition, φ0 =
W0 ±

√
4W 2

0 + 12V0 + 9 > 0 with 4W 2
0 + 12V0 + 9 � 0,

yields the existence conditions for the bright solitons (14)

V0 > − 1
4

(
W 2

0 + 3
)

for W0 < 0, (15a)

or

V0 > −
(

W 2
0

3
+ 3

4

)
for W0 > 0, (15b)

for the Scarf-II-Case-1 and

−
(

W 2
0

3
+ 3

4

)
� V0 < −1

4

(
W 2

0 + 3
)

for W0 > 0 (16)

for the Scarf-II-Case-2. Apparently, the nonlinear localized
modes (14) are also PT symmetric. It is easy to see that for
the same PT -symmetric potential, the solutions (14) of the
DNLS equation and ones of NLS equation (see Refs. [20,21])
have the distinct properties.

It is easy to see from Fig. 1(a) that except for the only
one tangent point (V0,W0) = (−0.75,0), the dashed parabola
V0 = −(W 2

0 /3 + 0.75) is completely contained in the solid
parabola V0 = −0.25(W 2

0 + 3), which is tangent with the two
linear PT -symmetric breaking lines ±W0 = 0.25 − V0 with
two tangent points being (V0,W0) = (−1.75, ± 2). Thus, the
existence region of bright solitons (14) for Scarf-II-Case-1

FIG. 1. (a) The unbroken (broken) PT -symmetric phase is in the domain inside (outside) two phase breaking lines (the theoretically
dash-dotted green and the numerically dotted red coincide by and large) for the linear operator L in Eq. (13) with PT -symmetric Scarf-II
potentials (12), where the dashed blue parabola is W 2

0 + 4V0 + 3 = 0 (similarly hereinafter), whose tangent points with the two phase-breaking
lines above are (V0,W0) = (−1.75, ± 2), and the solid parabola is 4W 2

0 + 12V0 + 9 = 0 (similarly hereinafter), which is tangent with the
dashed parabola at (V0,W0) = (−0.75,0). (b) Real and (c) imaginary parts of the first two eigenvalues λ of the linear problem (13) with
PT -symmetric potential (12) as a function of V0 at W0 = 2. The phase transition threshold is approximately V0 = −1.75, which well coincides
with the theoretic result |W0| = 0.25 − V0.
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FIG. 2. (a) Stable (darker areas with smaller color values) and
unstable (brighter areas with larger color values) regions of nonlinear
modes (14) [determined by the maximal absolute value of imaginary
parts of the linearized eigenvalue δ in Eq. (11) in the (V0,W0)
space (common logarithmic scale), similarly hereinafter]. (b) The
existence region (the shaded red and green areas) for Scarf-II-Case-1.
Profile and evolution of nonlinear modes for (c), (d) V0 = −1,W0 =
−1.1 (unbroken linear PT symmetry), (e), (f) V0 = −1,W0 = −1.4
(broken linear PT symmetry), (g), (h) V0 = −1,W0 = −1.5 (broken
linear PT symmetry).

contains both entire region of broken PT -symmetric phase
and partial region of unbroken PT -symmetric phase [see
Fig. 2(b)], whereas the existence region of bright solitons (14)
for Scarf-II-Case-2 is only located between the two parabolas
in the upper half plane, utterly located in the region of unbroken
linear PT -symmetric phase [see Fig. 3(b)]. Moreover, we
find that the strength V0 and W0 of the potential (12) can
modulate not only amplitudes of bright solitons (14) but also
the corresponding power

P =
∫ +∞

−∞
|ψ(x,t)|2dx = 2

3
πφ0,

which is conserved in time.

FIG. 3. (a) Stable and unstable regions of nonlinear modes (14).
(b) The existence region (the shaded red area) for Scarf-II-Case-2.
Profile and evolution of nonlinear modes with unbroken linear
PT symmetry for (c), (d) V0 = −0.9,W0 = 0.74; (e), (f) V0 =
−0.9,W0 = 0.78; (g), (h) V0 = −0.91,W0 = 0.78.

Stability. In the following we investigate numerically the
linear stability of bright solitons (14) for the Scarf-II-Case-1
and Scarf-II-Case-2 through the direct wave propagation of ini-
tially stationary modes (14) with some 2% noise perturbation.
In practice, we numerically simulate the beam propagation
with the initial input ψ(x,t = 0) = φ(x)(1 + ε), where φ(x) is
a nonlinear mode [e.g., Eq. (14)] of Eq. (4), and ε is a complex
broadband random perturbation. In the MATLAB program, the
2% white noise ε can be realized by utilizing a random
matrix such as ε = 0.02

√
2[rand(N,1) − 0.5](1 + i), where

rand(N,1) returns a N -by-1 array of pseudorandom uniform
values on the open interval (0,1) (similarly hereinafter).
Figure 2(a) for Scarf-II-Case-1 and Fig. 3(a) for Scarf-II-Case-
2 exhibit the stable (darker) and unstable (brighter) regions
of nonlinear localized modes (14), respectively, which are
determined by the maximum absolute value of imaginary parts
of the linearized eigenvalue δ in Eq. (11) in (V0,W0) space.

For Scarf-II-Case-1 with V0 = −1,W0 = −1.1, belonging
to the region of unbroken linear PT -symmetric phase [see
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Fig. 1(a)], the corresponding nonlinear localized mode is stable
[see Fig. 2(d)]. If we fix V0 = −1 and change W0 = −1.4 (it
in fact holds for W0 ∈ (−1.25, − 1.4]), in spite of belonging
to the region of broken linear PT -symmetric phase, the
corresponding nonlinear localized mode can still keep stable
[see Fig. 2(g)], that is, the derivative nonlinearity can excite the
broken linear PT -symmetric phase to the unbroken nonlinear
PT -symmetric phase. If we further increase W0 a little bit to
W0 = −1.5 (brokenPT -symmetric phase), the corresponding
nonlinear mode begins to grow to become unstable [see
Fig. 2(h)].

For the Scarf-II-Case-2, the bright solitons (14) only exist
in the extremely narrow region between those two parabolas
contained in the domain of unbroken PT -symmetric phase
[Fig. 3(b)]. We find the stable nonlinear mode for V0 =
−0.9,W0 = −0.74 [Fig. 3(d)]. When we fix V0 = −0.9 and
increase W0 to W0 = 0.78, in which the Eq. (14) becomes

φin(x) = ia
√

sechx exp[−ibtan−1(sinh x)] (17)

with a = 0.103 247 113 6,b = 0.382 005 025 2. It is easy to
verify that the stationary function φin(x) does not solve
Eq. (4) analytically any more and its real (imaginary) part
is an odd (even) function differing from the former cases,
but we surprisedly find it can be stable through the direct
evolution using φin(x) as an initial condition with some 2%
noise perturbation [see Fig. 3(f)]. When we fix W0 = 0.78
and decrease V0 a little bit to V0 = −0.91, in which the
solution satisfies Eq. (3) and the linear PT -symmetric phase
is unbroken, a stable nonlinear localized mode is found again
[see Fig. 3(h)].

Interactions of solitons. We now investigate the interaction
between two solitary waves in the PT -symmetric Scarf-II
potential. For the Scarf-II-Case-1 and V0 = −1,W0 = −1.1,
we consider the initial condition

ψ(x,0) = φ(x) +
√

2

3
φ0sech(x + 20)e4ix

with φ(x) determined by Eq. (14), as a result, the semielastic
interaction is generated in which the particular nonlinear mode
does not change its shape whereas the exotic incident wave
becomes damped before and after interaction [see Fig. 4(a)].
When W0 decreases a little bit to W0 = −1.4, we consider the
initial condition

ψ(x,0) = φ(x) +
√

2

3
φ0sech(x + 40)e10ix

with φ(x) determined by Eq. (14), then a novel phenomenon
occurs in collision that there exists a reflected wave when
exotic incident wave interacts with the particular soliton (14)
[see Fig. 4(d)]. Through repeated numerical tests, we find
the reflected wave is probably related to the simultaneously
increasing amplitude of the particular soliton and exotic
incident wave. As W0 decreases from −1.1 to −1.4, it is easy
to verify that the amplitude (determined by φ0) of the particular
soliton or exotic incident wave increases and in the meantime
the reflected wave begins to occur and then becomes larger
and larger [see Figs. 4(a)–4(d)]. However, the nonlinear mode
still does not change its shape before and after interaction.
Similarly, for the Scarf-II-Case-2, we successively consider

FIG. 4. Interactions of two solitary waves in Eq. (3) with
the Scarf-II potential (12). (a) The solution (14) for Scarf-II-

Case-1 with the wave
√

2
3 φ0sech(x + 20)e4ix and V0 = −1,W0 =

−1.1. For V0 = −1, the solution (14) for Scarf-II-Case-1 with the

wave
√

2
3 φ0sech(x + 40)e10ix and (b) W0 = −1.2, (c) W0 = −1.3,

(d) W0 = −1.4. (e) The solution (14) for Scarf-II-Case-2 with the

wave
√

3
2 φ0sech(x + 40)e4ix and V0 = −0.9,W0 = 0.74. (f) The so-

lution (14) for Scarf-II-Case-2 with the wave
√

3
2 φ0sech(x + 40)e4ix

and V0 = −0.9,W0 = 0.78.

the initial condition

ψ(x,0) = φ(x) +
√

3

2
φ0sech(x + 40)e4ix

for V0 = −0.9,W0 = 0.74 and V0 = −0.9,W0 = 0.78 with
φ(x) determined by Eq. (14), the similar semielastic inter-
actions to Fig. 4(a) are generated [see Figs. 4(e), 4(f)].

To better understand the properties of nonlinear localized
modes (14), we study their corresponding transverse power
flow (Poynting vector)

S(x) = i

2
(ψψ∗

x − ψ∗ψx) = −1

3
φ0(W0 + φ0)sech2x

with φ0 > 0. Signs and directions of the transverse power flow
S(x) are discussed in Fig. 5.

C. Excitations of nonlinear modes

Finally, we discuss the excitation of nonlinear localized
modes by means of changing the potential amplitudes as the
functions of time, V0 → V0(t) or W0 → W0(t) (cf. Ref. [21]).
It means that we focus on the simultaneous adiabatic switching
on the Scarf-II potential, governed by

iψt + ψxx − [V (x,t) + iW (x,t)]ψ + ig(|ψ |2ψ)x = 0, (18)

where V (x,t),W (x,t) are given by Eq. (12) with V0 → V0(t)
and W0 → W0(t), and V0(t),W0(t) are both chosen as the
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FIG. 5. Signs and directions of the transverse power flow S(x)
with regard to nonlinear modes (14). The dashed parabola W 2

0 +
4V0 + 3 = 0, solid parabola 4W 2

0 + 12V0 + 9 = 0, horizontal line
W0 = 0 and vertical line V0 = −3/4 divide the existent region of
particular soliton solutions (14) into six small domains (I, II, III, IV,
V1,2 for Scarf-II-Case-1, and only V1,2 for Scarf-II-Case-2, where +
(−) denotes the positive (negative) sign of S(x), and the rightward
(leftward) arrow denotes the direction of power flow is from loss
(gain) to gain (loss).

following form

ε(t) =
{

(ε2 − ε1) sin(πt/2000) + ε1, 0 � t < 103

ε2, t � 103 , (19)

where ε1,2 are real constants. It is easy to verify that nonlinear
localized modes (14) with V0 → V0(t) or W0 → W0(t) do not
satisfy Eq. (18) any more, whereas the modes (14) do satisfy
Eq. (18) for both the initial state t = 0 and excited states
t � 103.

For the Scarf-II-Case-1, Fig. 6(a) exhibits the wave prop-
agation of the nonlinear modes ψ(x,t) of Eq. (18) via the
initial condition given by Eq. (14) with W0 → W0(t) given by
Eq. (19), which excites an initially stable nonlinear localized
mode given by Eq. (14) for (V0,W01) = (−1, − 1.1) with
the unbroken linear PT -symmetric phase to another stable
nonlinear localized mode given by Eq. (14) for (V0,W02) =
(−1, − 1.4) belonging to broken linear PT -symmetric phase.
It also indicates fully that bright solitons (14) have extremely
strong capacity of resisting disturbance.

For the Scarf-II-Case-2, we successively perform three
types of excitations by changing potential amplitudes V0 →
V0(t) or W0 → W0(t) singly or simultaneously. Similarly,
Fig. 6(b) displays the wave propagation of nonlinear modes
ψ(x,t) of Eq. (18) using the initial condition given by Eq. (14)
with W0 → W0(t) given by Eq. (19), which excites a stable
nonlinear localized mode given by Eq. (14) for (V0,W01) =
(−0.9,0.78) to another stable nonlinear localized mode given
by Eq. (14) for (V0,W02) = (−0.9,0.74), both of which
belong to unbroken linearPT -symmetric phases. The property
is fairly significant to find numerically or experimentally
the stable nonlinear mode from a nonlinear mode due to
the stability of excitation. Of course, we can also achieve the
same purpose only by turning V0 appropriately. Figure 6(c)
displays the wave propagation of nonlinear mode ψ(x,t) of
Eq. (18) via the initial condition given by Eq. (14) with

FIG. 6. Excitation of stable nonlinear localized states [cf.
Eq. (18)]. (a) V0 = −1,W01 = −1.1,W02 = −1.4, from stable non-
linear state belonging to unbroken linear PT symmetry to stable
nonlinear state belonging to broken linear PT symmetry for
Scarf-II-Case-1; (b) V0 = −0.9,W01 = 0.78,W02 = 0.74, (c) V01 =
−0.9,V02 = −0.91,W0 = 0.78, (d) V01 = −0.9,V02 = −0.91,W01 =
0.78,W02 = 0.74, from stable nonlinear state to stable nonlinear state
with unbroken linear PT symmetry for Scarf-II-Case-2.

V0 → V0(t) given by Eq. (19), which excites a stable nonlinear
localized mode given by Eq. (14) for (V01,W0) = (−0.9,0.78)
to another stable nonlinear localized mode given by Eq. (14) for
(V02,W0) = (−0.91,0.78), both of which belong to unbroken
linear PT -symmetric phases. Figure 6(d) shows the wave
propagation of nonlinear mode ψ(x,t) of Eq. (18) via the initial
condition given by Eq. (14) with V0 → V0(t),W0 → W0(t)
given by Eq. (19), which excites a stable nonlinear localized
mode given by Eq. (14) for (V01,W01) = (−0.9,0.78) to
another stable nonlinear localized mode given by Eq. (14)
for (V02,W02) = (−0.91,0.74), both of which also belong to
unbroken linear PT -symmetric phases.

IV. NONLINEAR MODES IN THE PT -SYMMETRIC
HARMONIC-HERMITE-GAUSSIAN POTENTIAL

Next we consider another physically significant potential,
that is, the harmonic potential and gain-and-loss distribution
of Hermite-Gaussian type

V (x) = ω2x2, (20)

Wn(x) = σHn(
√

ωx)[ωxHn(
√

ωx)

− 2n
√

ωHn−1(
√

ωx)]e−ωx2
, (21)

where the frequency ω > 0 and real constant σ > 0 can adjust
amplitudes of the harmonic potential V (x) and gain-and-
loss distribution Wn(x), and Hn(x) = (−1)nex2

(dne−x2
)/(dxn)

represents the Hermite polynomial with n being a non-negative
integer and Hn(x) ≡ 0 as n < 0. It is easy to verify that these
complex potentials V (x) + iWn(x) are all PT symmetric for
any non-negative integer n, which differ from other ones [21].
Without loss of generality, in what follows we mainly focus
on the PT -symmetric potentials (20) and (21) for n = 0,1,2.
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FIG. 7. (a) The unbroken (broken) PT -symmetric phases are in
the domain below (above) the phase-breaking curves [n = 0 (solid),
n = 1 (dashed), n = 2 (dotted)] for the linear operator L in Eq. (13)
with PT -symmetric harmonic potentials (20) and gain-and-loss
distributions (21). (b), (d), (f) Real and (c), (e), (g) imaginary parts of
the eigenvalues λ of the linear problem (13) with PT -symmetric
potential (20) and (21) as a function of ω, at (σ = 4, n = 0),
(σ = 2.59, n = 1), and (σ = 0.81, n = 2), respectively. The three
phase transition thresholds are all approximately ω = 1, in accord
with the phase-breaking curves in (a).

A. Linear spectral problem

Here we investigate the linear operator L in Eq. (13)
with PT -symmetric potentials composed of V (x) (20) and
W0,1,2(x) (21), which are explicitly given by (n = 0,1,2)

W0(x) = σωxe−ωx2
, (22a)

W1(x) = 4σωx(ωx2 − 1)e−ωx2
, (22b)

W2(x) = 4σωx(4ω2x4 − 12ωx2 + 5)e−ωx2
, (22c)

For n = 0,1,2, the regions of unbroken and broken linear
PT -symmetric phases on (ω,σ ) space are all numerically
exhibited in Fig. 7. It can be obviously observed that the
ranges of unbroken linear PT -symmetric phases gradually
shrink with n increasing, which is mainly because the higher

amplitude of gain-and-loss distribution Wn(x) can possibly
lead to the broken linear PT -symmetric phase as n increases.
For some fixed σ , we also illustrate numerically the collisions
of the first six lowest discrete energy levels as the frequency
ω decreases [see Figs. 7(b)–7(g)]. Notice that only the first
two lowest energy levels interact with each other for n = 0
whereas the situations become more and more intricate with n

growing.

B. Nonlinear modes and stability

For the above-mentioned PT -symmetric potential V (x) +
iWn(x) with Eqs. (20) and (21), we find a family of particular
multihump soliton solutions of Eq. (4)

φn(x) = √
σHn(

√
ωx)e−ωx2/2eiϕn(x), σ > 0, (23)

where the chemical potential in Eq. (4) is given by

μ = −ω(2n + 1),

and the phase function is

ϕn(x) = −σ

∫ x

0
H 2

n (
√

ωs)e−ωs2
ds.

For the cases n = 0,1,2, we first give the regions of linear
stability [cf. Eq. (11)] of nonlinear localized modes (23) in the
(ω,σ ) space [see Figs. 8(a1)–8(c1)]. It is more than evident
that the stable regions of linear stability have the similar
narrowing behaviors to the corresponding unbroken PT -
symmetric phase above on account of the rising strength of
the gain-and-loss distribution Wn(x) as n increases. Moreover,
the stable regions of linear stability are entirely included in the
regions of the corresponding unbrokenPT -symmetric phases,
which indicates the derivative nonlinear term makes a negative
influence on the corresponding linear PT -symmetric phase.

We now study numerically the dynamical stability of
bright solitons (23) for cases n = 0,1,2 through the direct
wave propagation of initially stationary mode (23) for several
specific amplitude parameters (ω,σ ) with some 2% noise
perturbation. For n = 0 and the fixed ω = 1, we modulate σ

from a very small positive number (e.g., σ = 0.001) to σ = 1.1
to perform the direct wave evolution of one-hump nonlinear
modes (23) such that we obtain the stable one-hump solitons
[see Figs. 8(a2), 8(a3)]. Whereas we further increase σ to
σ = 1.2, the one-hump nonlinear mode (23) begins to become
extremely unstable [see Fig. 8(a4)]. The main reason is that
the gain-and-loss distribution Wn(x) has a stronger effect on
the stability of modes as σ increases. For the fixed σ = 0.1, we
only change ω from 1 to 2 continuously such that we also find
a series of stable one-hump solitons, although there exist some
small periodic variation as ω approaches to 2 [see Fig. 8(a5)].

For n = 1, we can also find a family of stable two-hump
solitons (23) for a fixed ω = 2 and σ = 0.1 → 0.8 [see
Figs. 8(b2), 8(b3)]. Whereas we further increase σ from 0.8
to 1, the two-hump nonlinear mode (23) begins to become
extremely unstable [see Fig. 8(b4)]. For a fixed σ = 0.1, we
change ω from 2 to 3 continuously such that we can also find
a series of stable two-hump solitons [Fig. 8(b5)]. For n = 2,
we also have the similar results for three-hump solitons [see
Figs. 8(c2)–8(c5)].
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FIG. 8. Linear stability of nonlinear modes (23) for (a1) n = 0, (b1) n = 1, and (c1) n = 2. Evolutions of nonlinear modes (23) for
one-hump (n = 0) with unbroken linear PT symmetry [(a2) ω = 1, σ = 0.1 (stable), (a3) ω = 1, σ = 1.1 (stable), (a4) ω = 1, σ = 1.2
(unstable), (a5) ω = 2, σ = 0.1 (periodically varying)], two-hump (n = 1) with unbroken linear PT symmetry [(b2) ω = 2, σ = 0.1 (stable),
(b3) ω = 2, σ = 0.8 (stable), (b4) ω = 2, σ = 1 (unstable), (b5) ω = 3, σ = 0.1 (stable)], three-hump (n = 2) with unbroken linear PT
symmetry [(c2) ω = 2, σ = 0.1 (stable), (c3) ω = 2, σ = 0.2 (stable), (c4) ω = 2, σ = 0.3 (unstable), (c5) ω = 3, σ = 0.1 (stable)].

Next we investigate the interactions of bright solitons (23)
in the PT -symmetric potential V (x) + iWn(x) with (20)
and (21). For n = 0 and ω = 1,σ = 0.1, we consider the initial
condition

ψ(x,0) = φ(x) + 0.8
√

σe−ω(x+10)2/2eiϕ(x)

with φ(x) determined by Eq. (23), as a result the elastic
interaction is generated in which neither the particular one-
hump nonlinear mode nor exotic periodic incident wave
change their shapes before and after interaction [see Fig. 9(a)].

When σ becomes large to σ = 1.1, we consider the initial
condition

ψ(x,0) = φ(x) + 0.5
√

σe−ω(x+10)2/2eiϕ(x)

with φ(x) determined by Eq. (23), then a novel phenomenon
occurs in collision that there exists a weak reflected wave
when the exotic incident wave interacts with the particular
one-hump soliton (23) [see Fig. 9(b)], which is probably
related to the increasing amplitude or strength of the particular
one-hump soliton (23). However, the particular one-hump

FIG. 9. Interactions of two solitary waves in Eq. (3) with the potential (20) and (21). (a) The solution (23) for n = 0 with the wave
0.8

√
σe−ω(x+10)2/2eiϕ(x) and ω = 1,σ = 0.1. (b) The solution (23) for n = 0 with the wave 0.5

√
σe−ω(x+10)2/2eiϕ(x) and ω = 1,σ = 1.1.

(c) The solution (23) for n = 1 with the wave
√

σω(x + 5)e−ω(x+5)2/2eiϕ(x) and ω = 2,σ = 0.1. (d) The solution (23) for n = 1 with the wave√
σω(x + 5)e−ω(x+5)2/2eiϕ(x) and ω = 2,σ = 0.8. (e) The solution (23) for n = 2 with the wave 0.5

√
σe−ω(x+5)2/2eiϕ(x) and ω = 2,σ = 0.1.

(f) The solution (23) for n = 2 with the wave
√

σω(x + 5)e−ω(x+5)2/2eiϕ(x) and ω = 2,σ = 0.2.
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FIG. 10. (a) The direction of the transverse power flow for n = 0
is from the gain to loss. (b) The direction of the transverse power flow
for n = 1 is first from the gain to loss, then from the loss to gain,
finally from the gain to loss again (from left to right). Here, W0(x)
only has one root x = 0 and W1(x) has three roots x = 0, ± 1. The
left arrows and its lengths denote respectively negative directions
and strengths of the transverse power flow S0,1(x) with regard to
nonlinear modes (23). G (L) denotes the gain (loss) distribution of
W0,1(x). Other parameters are ω = σ = 1.

nonlinear mode still doesn’t change its shape before and after
interaction. Similarly, for n = 1, we successively consider the
initial condition

ψ(x,0) = φ(x) + √
σω(x + 5)e−ω(x+5)2/2eiϕ(x)

for ω = 2,σ = 0.1 and ω = 2,σ = 0.8 with φ(x) determined
by Eq. (23), the similar elastic interactions between the partic-
ular two-hump nonlinear modes and exotic periodic incident
waves to Fig. 9(a) are generated [see Figs. 9(c), 9(d)]. For
n = 2, the similar elastic interactions between the particular
three-hump nonlinear modes and exotic periodic incident
waves are generated [see Figs. 9(e), 9(f)].

In order to further understand the properties of the sta-
tionary nonlinear localized mode (23), we also check the
corresponding transverse power flow (Poynting vector)

Sn(x) = −σ 2H 4
n (

√
ωx)e−2ωx2

with ω > 0 and σ > 0. Notice that the signs of the transverse
power flow Sn(x) always keep negative definite for any n. For
n = 0, the power always flows in one direction, i.e., from the
gain toward the loss domain [see Fig. 10(a)]. However, the
directions of the power flow for n = 1 are so complicated, that
is (from the negative infinite to positive infinite), first from the
gain to loss, then from the loss to gain, finally from the gain to
loss domain again [see Fig. 10(b), the total direction is from
the gain to loss]. Similar more complicated results hold for
n = 2 and specifically not repeat them.

C. Excitations of nonlinear modes

Finally, we investigate the excitation of stable nonlinear
modes by means of changing the potential amplitudes ω →
ω(t) or σ → σ (t), which means that we exert simultaneous
adiabatic switching on the harmonic potential (20) and
gain-and-loss distribution (21), modeled by Eq. (18), where
V (x,t),W (x,t) are given by Eq. (20) and Eq. (21) with
ω → ω(t) and σ → σ (t). We assume that ω(t),σ (t) are all
taken as the same form as Eq. (19) [i.e., ε(t) can be replaced
with ω(t) or σ (t)]

ω(t) =
{

(ω2 − ω1) sin(πt/2000) + ω1, 0 � t < 103

ω2, t � 103 (24)

FIG. 11. Excitation of stable nonlinear localized states [cf. Eq. (18)] for n = 0 [(a1) ω = 1,σ1 = 0.1,σ2 = 1.1, (a2) ω1 = 1,ω2 = 2,σ =
0.1, (a3) ω1 = 1,ω2 = 2,σ1 = 0.1,σ2 = 1.1]; n = 1 [(b1) ω = 2,σ1 = 0.1,σ2 = 0.8, (b2) ω1 = 2,ω2 = 3,σ = 0.1, (b3) ω1 = 2,ω2 = 3,σ1 =
0.1,σ2 = 0.8]; n = 2 [(c1) ω = 2,σ1 = 0.1,σ2 = 0.2, (c2) ω1 = 2,ω2 = 3,σ = 0.1, (c3) ω1 = 2,ω2 = 3,σ1 = 0.1,σ2 = 0.2].
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and

σ (t) =
{

(σ2 − σ1) sin(πt/2000) + σ1, 0 � t < 103

σ2, t � 103 , (25)

where ω1 (or σ1) and ω2 (or σ2) denote some initial (or final)
values of the excitation function ω(t) [or σ (t)], respectively.

We have the similar results that the nonlinear localized
modes (23) with ω → ω(t) or σ → σ (t) do not satisfy Eq. (18)
any more, whereas the nonlinear modes (23) indeed satisfy
Eq. (18) for the initial state t = 0 and excited states t � 103.

For n = 0,1,2, we numerically perform three distinct types
of excitations by changing the potential amplitudes ω →
ω(t),σ → σ (t), or both, respectively. For n = 0, Fig. 11(a1)
exhibits the wave evolution of nonlinear modes ψ(x,t) of
Eq. (18) via the initial condition given by Eq. (23) with σ →
σ (t) given by Eq. (25), which excites a stable one-hump non-
linear localized mode given by Eq. (23) for (ω,σ1) = (1,0.1)
to another stable one-hump nonlinear localized mode given by
Eq. (23) for (ω,σ2) = (1,1.1), which both belong to unbroken
linear PT -symmetric phase [all mentioned points (ω,σ ) enjoy
the same property of unbroken linear PT -symmetric phase
hereafter]. Figure 11(a2) displays the wave propagation of the
nonlinear modes ψ(x,t) of Eq. (18) via the initial condition
given by Eq. (23) with ω → ω(t) singly given by Eq. (24),
which excites a initially stable one-hump nonlinear localized
mode given by Eq. (23) for (ω1,σ ) = (1,0.1) to another stable
one-hump nonlinear localized mode given by Eq. (23) for
(ω2,σ ) = (2,0.1). Figure 11(a3) displays the wave propagation
of the nonlinear modes ψ(x,t) of Eq. (18) via the initial
condition given by Eq. (23) with ω → ω(t) and σ → σ (t)
simultaneously given by Eqs. (24) and (25), which excites a
stable one-hump nonlinear localized mode given by Eq. (23)
for (ω1,σ1) = (1,0.1) to another stable one-hump nonlinear
localized mode given by Eq. (23) for (ω2,σ2) = (2,1.1).

Similarly for n = 1, we excite a stable two-hump nonlinear
localized mode given by Eq. (23) for (ω,σ ) = (2,0.1) to
another stable two-hump nonlinear localized mode given by

Eq. (23) for (ω,σ ) = (2,0.8),(ω,σ ) = (3,0.1), and (ω,σ ) =
(3,0.8), respectively [see Figs. 11(b1)–11(b3)].

For n = 2, we also excite a stable three-hump nonlinear
localized mode given by Eq. (23) for (ω,σ ) = (2,0.1) to
another stable three-hump nonlinear localized mode given by
Eq. (23) for (ω,σ ) = (2,0.2),(ω,σ ) = (3,0.1), and (ω,σ ) =
(3,0.2), respectively [see Figs. 11(c1)–11(c3)]. These stable
excitations also shows that bright solitons (23) have extremely
strong capacity of resisting disturbance.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, some stable bright solitons have been found
in the derivative nonlinear Schrödinger equation with PT -
symmetric Scarf-II and harmonic-Hermite-Gaussian poten-
tials. First, the linear PT -symmetric breaking curves are
numerically exhibited. Second, in the presence of deriva-
tive nonlinearity, such PT -symmetric solitons are shown to
be stable through the linear stability analysis and direct wave
propagation with some noise perturbation. Moreover, the
semielastic interactions between particular bright solitons and
exotic incident waves are illustrated and the transverse power
flows are also checked in detail. Finally, the soliton excitations
are also studied including from a stable nonlinear mode
with unbroken linear PT -symmetric phase to another stable
nonlinear mode with broken linear PT -symmetric phase and
from a stable nonlinear mode to another stable nonlinear mode.
In fact, we may change the nonlinear coefficient g as the
function of space such that the stable solitons can also be
generated. The idea used in this paper can also be extended to
the coupled DNLS equations with PT -symmetric potentials.
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Lett. 110, 173901 (2013).
[41] A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G.
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