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Collective dynamics of time-delay-coupled phase oscillators in a frustrated geometry

Bhumika Thakur,1 Devendra Sharma,1 Abhijit Sen,1 and George L. Johnston2

1Institute for Plasma Research, HBNI, Bhat, Gandhinagar 382428, India
2EduTron Corporation, 5 Cox Road, Winchester, Massachusetts 01890, USA

(Received 14 July 2016; revised manuscript received 30 August 2016; published 6 January 2017)

We study the effect of time delay on the dynamics of a system of repulsively coupled nonlinear oscillators that
are configured as a geometrically frustrated network. In the absence of time delay, frustrated systems are known
to possess a high degree of multistability among a large number of coexisting collective states except for the
fully synchronized state that is normally obtained for attractively coupled systems. Time delay in the coupling
is found to remove this constraint and to lead to such a synchronized ground state over a range of parameter
values. A quantitative study of the variation of frustration in a system with the amount of time delay has been
made and a universal scaling behavior is found. The variation in frustration as a function of the product of time
delay and the collective frequency of the system is seen to lie on a characteristic curve that is common for all
natural frequencies of the identical oscillators and coupling strengths. Thus time delay can be used as a tuning
parameter to control the amount of frustration in a system and thereby influence its collective behavior. Our
results can be of potential use in a host of practical applications in physical and biological systems in which
frustrated configurations and time delay are known to coexist.
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I. INTRODUCTION

Geometrical frustration is a condition that occurs when
topological constraints prevent the simultaneous minimization
of the energy of all the interacting pairs of subunits of a system.
A well-known example is that of three Ising spins that are
antiferromagnetically coupled to each other and placed on the
corners of an equilateral triangle. It is impossible to arrive
at a configuration where each pair of spins is antiparallel,
and as a consequence the system continually flips between
different states in trying to find a minimum energy state and
thereby displays a multistable behavior. A large lattice model
consisting of such triangular units can therefore lead to high
ground-state degeneracy and multiple phase transitions with
increasing temperature [1]. In complex systems, frustration
can arise from a combination of geometry and the nature of
interaction among the subsystems, and it can give rise to a rich
variety of collective behavior. Frustration plays an important
role in the dynamics of many complex magnetic systems
such as spin liquids, spin glasses, and a host of magnetic
alloys [1–3]. More recently, geometrical frustration arising
in neuronal networks has also been recognized as a pivotal
factor influencing the cortical dynamics of the brain, and it is
believed to be responsible for introducing metastability and
variability in the brain’s collective states [4,5]. The existence
of metastability (or multiple operating regimes) is an essential
and crucial feature for biological systems since it provides
them with functional flexibility. Frustration and its dynamical
consequences are therefore receiving a great deal of theoretical
and experimental attention in a wide variety of physical [6–8]
and biological systems [9,10].

One of the important factors that can influence the collective
dynamics of a complex network is the presence of time delay in
the coupling between the network nodes or between individual
functional elements of the network. Time delay is ubiquitous
in most natural systems due to the finiteness of the speed of
propagation of electrical signals or reaction times in chemical
interactions or the finite conductance of neuronal connections.

It is well known from past studies [11–14] that time delay can
significantly impact synchronization and other collective be-
havior in nonfrustrated systems, and therefore it is of interest to
investigate its influence on the dynamics of frustrated systems.
Our present work is devoted to such a study and is motivated
by its potential utility in diverse practical applications.

Our model investigation is carried out on a system of
repulsively coupled phase oscillators that are configured in a
frustrated geometry. The intimate relation between frustration
and network topology has been well established through many
past studies. Some of the common topologies that lead to
frustrated networks are triangular lattices [15], hexagonal
lattices, and more exotic configurations such as the Kagome
lattice [16]. Systems of repulsively coupled oscillators were
studied earlier in the absence of time delay by Daido [17], who
was one of the earliest to discuss the concept of frustration in a
system of oscillators. More recently, Kaluza [18] showed that
frustration in an ensemble of repulsively coupled Kuramoto
phase oscillators can lead to a considerable increase in the
number of stationary states and to multistability. Our particular
focus is to examine in a quantitative manner the variations
induced in the amount of frustration in a given system as
a function of time delay in the coupling. For our study,
we have considered three geometrical configurations that are
representative of frustrated networks, namely a simple triangle,
a triangular lattice with six nodes, and a hexagonal 4 × 4
lattice. Each node in these configurations is populated by
a Kuramoto phase oscillator, and the links representing the
interaction between the oscillators are repulsive in nature with
an intrinsic time delay τ . Our principal findings are that time
delay can significantly influence the amount of frustration
in a system and thereby control the number and nature of
the equilibrium states of the system. For an amount of delay
beyond a critical value, the system can transit to an in-phase
collective state—an equilibrium condition that is normally not
possible for frustrated configurations. The transition to such
a synchronous state is found to occur with a characteristic
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FIG. 1. Frustrated systems of oscillators. Circles on the vertices represent phase oscillators, and the edges represent repulsive coupling
links between the oscillators.

behavior akin to first-order phase transitions. We also find
that the variation of frustration as a function of the product
of time delay and the collective frequency of the system
follows a similar pattern for all three systems studied, which
is suggestive of a universal scaling behavior.

The paper is organized as follows. In Sec. II, we present our
model equations. Then we quantify frustration by introducing
a frustration parameter that is a function of the time-delayed
phase differences between the oscillators. In Sec. III, we
study the variation of this frustration parameter as a function
of coupling delay in a system of three coupled oscillators
repulsively linked to each other in a triangular configuration.
We next study, in Sec. IV, a system of six oscillators repulsively
linked in a configuration that encloses a triangle within a
triangle. The study is further extended to a triangular 4 × 4
lattice of oscillators in Sec. V. We discuss our findings and
conclude in Sec. VI.

II. THE MODEL

We consider a system of N delay coupled phase oscillators
with the dynamics of their phases φi governed by the equations

dφi

dt
= ωi + κ

νi

∑
j

Aij sin[φj (t − τ ) − φi(t)]. (1)

Here ωi is the natural frequency of the ith oscillator, κ is
the coupling strength, τ is the time delay in the interactions
between the oscillators, and νi denotes the number of neighbors
to which the ith unit is connected. Aij is the adjacency
matrix with Aii = 0, Aij = 1 if i �= j and units i and j are
connected, otherwise Aij = 0. We consider the oscillators to
be identical, therefore we set ωi = ω and the coupling between
the oscillators is nearest neighbor only. Since we are primarily
interested in the dynamics of repulsively coupled oscillators,
we take κ = −|κ| unless otherwise stated.

We further define the frustration in the above system by a
parameter F given as

F = 1 − 1∑
i νi

κ

|κ|
N∑

i,j=1

Aij cos[φj (t − τ ) − φi(t)], (2)

where we have added the quantity 1 on the right-hand side
so that F = 0 defines the no frustration state. From (2)
it is evident that 0 � F � 2, where F = 0 corresponds to
nonfrustrated systems and F = 2 corresponds to maximally
frustrated systems. In the absence of delay (τ = 0), the

definition of our frustration parameter reduces to the global
frustration defined in [19,20]. Next, we explore the dynamics
of some frustrated networks and investigate the role of time
delay in influencing that dynamics.

III. THREE OSCILLATORS

We first consider a system of three repulsively coupled
oscillators linked in a triangular configuration [Fig. 1(a)]. The
dynamical equations (1) then reduce to

φ̇i=1,2,3 = ω + κ

2

3∑
j=1,j �=i

sin[φj (t − τ ) − φi(t)]. (3)

A. Equilibrium states and their stability

In the absence of time delay, when the coupling between
the oscillators is attractive, i.e., κ > 0, the oscillators can
synchronize in-phase, whereas repulsively coupled (κ < 0)
oscillators try to maximize the phase difference between
them and synchronize to a state where there is a finite
phase difference between them. In the simplest case of two
repulsively coupled oscillators, they always synchronize in an
antiphase state with a phase difference of π between them. For
three repulsively coupled oscillators [Fig. 1(a)], all the pairs
of oscillators cannot simultaneously attain a phase difference
of π . The equilibrium state of this system is one in which
all the oscillators are frequency-synchronized with a phase
difference of �	 = 2π/3 along each link. The presence of
time delay in the coupling can significantly change this simple
picture. It can make the in-phase synchronous state as well as
the out-of-phase synchronous state stable for both attractively
coupled as well as repulsively coupled oscillators, depending
upon the choice of time delay and other parameters. A gener-
alized stability criterion for the in-phase synchronous state in
networks of identical phase oscillators with delayed sinusoidal
coupling has been derived by Earl and Strogatz [21] to be

κ cos(
inτ ) > 0, (4)

where the collective frequency 
in of the in-phase synchronous
state is given by


in = ω − κ sin(
inτ ). (5)

This stability condition holds for any network in which all
the oscillators have the same number of connections (i.e.,
νi = ν), independent of all other details of its topology. Using
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this criterion, we can deduce that when the coupling between
the oscillators is repulsive (i.e., κ = −|κ|), the in-phase state
is stable for (2n + 1

2 )π < 
inτ < (2n + 3
2 )π such that n =

0,1,2,3, . . . , and when the coupling between the oscillators is
attractive (i.e., κ = |κ|), the in-phase state is stable for 2nπ �

inτ < (2n + 1

2 )π and (2n + 3
2 )π < 
inτ � (n + 1)2π .

For a state with a finite phase difference between the
oscillators, a generalized stability analysis has been carried
out by D’Huys et al. [22], who considered the phase-locked
solutions of a ring of bidirectionally coupled oscillators. The
phase-locked state can be characterized as

φm(t) = 
t + m�	, (6)

where m = 1, . . . ,N and �	 = 2jπ/N, j � N/2. The col-
lective frequency 
 of this state is obtained from the expression


 = ω − κ sin(
τ ) cos(�	). (7)

To determine the stability of these phase-locked solutions,
D’Huys et al. [22] performed a linear stability analysis and
obtained the following equation for the eigenvalue λ:

λ = κ cos �	 cos 
τ

[
−1 + e−λτ

(
cos

2mπ

N

+ i tan 
τ tan �	 sin
2mπ

N

)]
. (8)

The above equation can be conveniently used to determine
the stability of the phase-locked states for the simple systems
of two coupled oscillators as well as our model of three
coupled oscillators. The antiphase synchronous state of two
coupled oscillators corresponds to �	 = π and will only be
stable when κ cos(
τ ) < 0, as discussed in [22]. For three
coupled oscillators, depending upon the choice of parameters
and initial conditions, the stable equilibrium state of the
system is either an in-phase synchronous state for which the
phase difference is �	 = 0 or an out-of phase state with
�	 = 2π/3. The collective frequency and the stability of
the in-phase synchronous state is given by Eqs. (5) and (4),
respectively. The collective frequency 
out of the out-of-phase
synchronous state is obtained by substituting �	 = 2π/3 in
Eq. (7), and it reads


out = ω + κ

2
sin(
outτ ) (9)

and is stable when none of the eigenvalues obtained from
Eq. (8) have a positive real part. Using these criteria, we have
plotted in Fig. 2 the variation of the stable in-phase collective
frequencies 
in (black solid lines) and stable out-of-phase
collective frequencies 
out (red dashed lines) as functions of
the delay parameter τ for a coupling strength κ = −2 and an
intrinsic frequency ω = 6. We note that for τ = 0 one can
only have an out-of-phase state, but beyond a certain value
of τ an in-phase state can also become stable. There is also
a small overlap region where both states are stable and the
initial conditions would dictate the choice of the equilibrium
state. The collective frequencies of both states decrease as
a function of τ—the well-known phenomenon of frequency
suppression that has been noted before for attractively coupled
oscillators [23,24].
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FIG. 2. Plot of the stable collective frequencies 
in and 
out of the
oscillators in the in-phase state (black solid line) and the out-of-phase
state (red dashed line) as functions of the delay parameter τ .

B. Frustration analysis

As discussed above, the equilibrium state in the absence
of time delay for the present case of three repulsively coupled
Kuramoto oscillators is one in which the phase difference along
each link is 2π/3. Setting τ = 0, N = 3, κ = −2, νi = 2, and
the phase differences to be 2π/3 in (2), the frustration value
for such a state is seen to be F = 0.5. In the presence of time
delay, (2) shows that frustration can vary with τ . This variation
of F with τ is plotted in Fig. 3(a) for various values of the
intrinsic frequencies ω of the individual oscillators and for a
fixed value of κ . In Fig. 3(b), we have plotted the variation of F

with τ for various values of κ and a fixed value of ω. We see that
in all cases F increases at first as a function of τ , but beyond a
certain value of delay, which changes for different values of ω

and κ , there is a sudden drop in the value of F and thereafter it
starts to decrease and eventually goes to zero such that the three
oscillators become synchronized in-phase. The precipitous
decrease in F beyond a critical value of τ is suggestive of a
first-order phase-transition phenomenon marking the evolution
of the system from a finite phase-locked state to an in-phase
synchronized state. Before the critical delay, the oscillators
are in a phase-locked state with �	 = 2π/3, and beyond the
critical delay the oscillators are synchronized in-phase. This
abrupt change in the relative phase between the oscillators at
a critical delay is known as a phase-flip bifurcation [25] and is
a general feature of time-delay coupled systems. This generic
behavior is seen for all the values of ω plotted in Fig. 3(a),
with the curves shifted from one another as a function of ω

at a constant κ . Likewise in Fig. 3(b), the curves are shifted
from one another as a function of κ at a fixed ω. However,
the data of the shifted curves can be made to lie on a single
universal curve if we plot F as a function of 
τ instead of τ

as shown in Fig. 3(c). Note that data points representing the
value of F for a particular set of ω and κ values that disappear
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FIG. 3. Plots showing the variation of the frustration parameter F as a function of the delay parameter. F is calculated using Eq. (2) from
numerical solutions of Eq. (1) for the same set of initial phases for (a) three values of intrinsic frequency ω at fixed κ = −2, and (b) three values
of coupling strength κ at fixed ω = 1.2. (c) In this figure, F is plotted against the product of collective frequency 
 and delay parameter τ for
various values of ω and κ and a given set of initial phases. Frustration values for different intrinsic frequencies as well as coupling strengths
are seen to lie on a common curve given by F1 and F2, which are obtained from Eqs. (10) and (11), respectively.

beyond a value of 
τ on the left side of the curve continue their
progress on the lower half of the right side curve, reflecting
the trends seen in Figs. 3(a) and 3(b). This consolidated curve,
which is common for all ω and κ values, provides a universal
scaling behavior for the variation of the frustration parameter
in a time delay coupled system of three Kuramoto oscillators
configured in a frustrated triangular configuration. As we will
shortly show, this scaling behavior continues to hold for even
larger systems and different geometrical configurations and is
thus of a universal nature. The physical nature of this curve
can be easily understood for the three-oscillator case from
the expression for F given by (2). In the presence of time
delay, the phase differences between the oscillators have two
contributing factors: one is the phase shift of 2π/3 because of
the repulsive coupling, and other is the phase shift equivalent
to 
τ . It is the interplay between these two factors that governs
the amount of frustration in the system and also determines the
critical transition point. Analytic expressions for the universal
curve can be easily obtained from the general expression
for F given in (2) for the variation of frustration with 
τ .
As mentioned before, at τ = 0, the oscillators have a phase
difference of [φj (t) − φi(t) = ±2π/3] between them and
hence F = 0.5. When we introduce delay, the time-delayed
phase differences between the oscillators have another con-
tributing factor of 
τ , i.e., [φj (t − τ ) − φi(t) = −
τ ±
2π/3]. Substituting these time-delayed phase differences in
the expression of frustration [Eq. (2)] gives one branch of
the analytical curve that corresponds to the out-of-phase state
[shown by the solid black line in Fig. 3(c)],

F1 = 1 + 1

2

[
cos

(
2π

3
− 
τ

)
+ cos

(−2π

3
− 
τ

)]

= 1 − 1

2
cos(
τ ). (10)

At 
τ = π/2, the frustration value reaches a maximum value
of unity. Beyond 
τ = π/2, the stability condition for the

in-phase synchronous state, namely cos(
τ ) < 0, is satisfied
and all the oscillators are now synchronized in-phase. The
phase shift introduced by the repulsive coupling vanishes and
F1 is no longer a valid expression for determining the frustra-
tion values. Since the in-phase synchronous state corresponds
to φj = 
t , phase differences [φj (t − τ ) − φi(t) = −
τ ] and
we get the second half of the curve corresponding to the
in-phase state [shown by the dashed blue line in Fig. 3(c)],

F2 = 1 + cos (
τ ). (11)

F2 decreases with an increase in 
τ and frustration becomes
0 at 
τ = π . Therefore, the system is most frustrated at

τ = π/2 with F = 1 and is least frustrated at 
τ = π with
F = 0. Beyond 
τ = π , F increases monotonically until

τ = 3π/2, beyond which it starts decreasing until 
τ = 2π .
At 
τ = 3π/2, the system transits from an in-phase state to
an out-of-phase state. In other words, the behavior of F in
the region π < 
τ < 2π is a mirror image of its behavior in
the range 0 < 
τ < π . The behavior of frustration parameter
F is 2π -periodic with respect to the product 
τ . This is
also apparent from the analytic expressions for the frustration
parameter and the stability conditions for the in-phase and
out-of-phase states, where 
τ always comes in the argument
of sine or cosine, which are 2π -periodic.

To return to the analogy of a phase transition occurring at a
critical value of τ = τc where the precipitous drop in F is seen,
it is instructive to look at the time evolution of F for various
values of τ and for a fixed set of values of ω and κ . We find
that as τ increases, the frustration parameter takes a longer and
longer time to settle down to a constant value corresponding
to the final equilibrium state. We denote the time after which
the system settles down to an equilibrium state by tsat. As τ

approaches τc, this time increases in a resonant fashion and
a graphical depiction of the saturation time as a function of
τ is shown in Fig. 4. The functional behavior of tsat can be
closely represented by the following expression obtained from
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FIG. 4. Numerical data points and analytical fit of the variation
of the saturation time tsat are plotted with time delay τ for a system
of three repulsive oscillators for ω = 40 and κ = −2, for which the
critical time delay τc = 0.0389.

an analytical fit (solid line curve) to the numerical data points
(red circles):

tsat = tsat |τ=0 + τ

(τc − τ )α
. (12)

In Fig. 4 we have ω = 40, for which τc = 0.0389 and α in
the analytical fit curve is 1.188. The dashed line shows that
tsat → ∞ as τ → τc. As we will see, this algebraic behavior
of the saturation time close to the critical value of the delay
time is found in other frustrated configurations as well with a
“critical index” that is greater than unity.

IV. SIX OSCILLATORS

We next study the collective states of a network comprised
of six phase-repulsive oscillators configured as shown in
Fig. 1(b). Here oscillators are distinguishable in terms of the
number of their nearest neighbors. This configuration is one
among a host of repulsive networks that can exhibit multiple
final dynamical states characterized by different values of
frustration, as discussed in [19]. In the absence of time
delay, while the network of three oscillators studied in the
previous section shows only one equilibrium state, the present
configuration of six oscillators has two equilibrium states
characterized by different values of the frustration parameter.
In Ref. [19], the frustration values F for this network were
computed for 104 different initial phases in the absence of
time-delayed interactions. The author has reported that 42%
of the initial phases resulted in the equilibrium state with
F = 0.5, and the remaining 58% settled to an equilibrium
state with F = 0.5505. In an equilibrium state, the oscillators
are frequency-synchronized with phase-locked motion. The
oscillators sharing the same phases are considered to form
a cluster. The oscillators in different clusters have the same
frequency but different instantaneous values of phases. The
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FIG. 5. The phase patterns corresponding to the two equilibria
of the six-oscillator network shown in Fig. 1(b) in the absence of
time delay. In this figure, the phases of all six oscillators are plotted
together. Part (a) is obtained from an initial condition that settles
to the equilibrium state corresponding to F = 0.5. This equilibrium
state corresponds to a three-cluster pattern such that there are two
oscillators in each cluster, and the oscillators in the same cluster share
the same phase. Part (b) is obtained from an initial condition whose
equilibrium state corresponds to F = 0.5505. This equilibrium state
has a six-cluster pattern, i.e., the instantaneous values of individual
phases of all six oscillators are different. We have taken ω = 0.7 and
κ = −2 to get this figure.

equilibrium state with F = 0.5 corresponds to the three-cluster
pattern with two oscillators in each cluster. This is shown
in Fig. 5(a), where the time evolutions of the phases of
all six oscillators are plotted together. The equilibrium state
corresponding to F = 0.5505 exhibits the six-cluster pattern
where the instantaneous values of individual phases of all six
oscillators are different, and it is plotted in Fig. 5(b). The
existence of multiple equilibrium states makes this system an
interesting candidate to study how frustration evolves with
time delay for different initial conditions for such systems. We
find that this six-oscillator network shows a similar tendency
for the F versus τ and F versus 
τ variation as seen for
the simpler three-oscillator system. In Fig. 6(a), we have
plotted F against 
τ . For some values of 
τ , frustration
F has two values. The value of F switches between these
two values depending upon the choice of the initial phases.
In the left half of Fig. 6(a), the lower curve corresponds
to the three-cluster equilibrium state and the upper curve
corresponds to the six-cluster equilibrium state. The universal
scaling behavior where the variation in frustration with 
τ

is seen to lie on a common curve for all ω and κ values
holds for this six-oscillator configuration also. Even though
the frustration for some values of 
τ depends on the choice
of initial phases, for a given initial condition the frustration
values for different intrinsic frequencies lie on the same curve.
Just like the case with three coupled oscillators, the system is
most frustrated at 
τ = π/2 with F = 1 and nonfrustrated at
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FIG. 6. In this figure, F is plotted against the product of collective frequency 
 and delay parameter τ for (a) the system of six oscillators
and (b) the 4 × 4 triangular lattice with free boundaries. These systems show the existence of multiple equilibrium states characterized by
different values of the frustration parameter for some values of delay, and therefore frustration F can have multiple values at some values of

τ . Depending on the choice of initial phases, the system can settle down to any of these equilibrium states. We have taken κ = −2 to obtain
all the curves.


τ = π . The functional behavior of tsat for the lower branch
of F variation with τ is similar to the three-oscillator system
with α = 1.325 and τc = 0.0384 in Eq. (12). In Fig. 7, we
have shown the variation in the sizes of the basins of different
equilibrium states of the six-oscillator system with time delay.
The results have been obtained by evolving the system for 104

different initial phases. We find that in the absence of delay
(τ = 0), similar to the results obtained in [19], about 42%
of the initial conditions settle to the equilibrium state with
F = 0.5, and the remaining 58% settle down to the final state
with F = 0.5505. These percentages change with an increase
in delay, and after a certain value of delay, for some initial
conditions the system settles down to the in-phase state instead.
The basin of attraction of the in-phase state increases with a
further increase in delay.

V. TRIANGULAR LATTICE

We now investigate an extended network consisting of a
triangular lattice formed by joining triangles along the edges
thereby forming a multiunit system whose basic unit cell is the
system of three oscillators which we have studied in detail in
Sec. III. We consider a 4 × 4 triangular lattice with a hexagonal
coupling configuration as shown in Fig. 1(c). Repulsive
coupling in combination with the hexagonal coupling pattern
turns all bonds into frustrated ones. Since frustration leads to
the growth of the number of coexisting attractors, this system
is highly multistable [15] even in the absence of time delay.
Boundary conditions also play an important role. When the
boundary conditions are periodic, then each oscillator has the
same number of nearest neighbors [νi = 6 in Eq. (1)]. When
the interactions between the oscillators are instantaneous
(τ = 0), the system exhibits a variety of cluster patterns [15]
but never goes to a single cluster state where all the oscillators
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FIG. 7. The blue dashed line with squares shows the percentage
of initial phases that lead to an equilibrium state with a lower value
of F denoted by Flower. The red dashed line with diamonds shows
the percentage of initial phases that lead to the equilibrium states
with a higher value of F denoted by Fupper. The black dashed line
with triangles shows the percentage of initial phases that lead to
the in-phase equilibrium state labeled by In-Phase, and the magenta
dashed line with circles shows the percentage of initial conditions
for which the system has not settled to any stable equilibrium state
even for a very large time span (tspan = 2000 in simulations), and it is
labeled as Unsteady.
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FIG. 8. The variation in the cluster pattern exhibited by the 4 × 4 lattice of repulsively coupled oscillators with a change in the time-delay
parameter τ for a given set of initial phases. At a certain value of delay, the system starts exhibiting the single cluster in-phase state. The
collective frequency of the in-phase state decreases with a further increase in delay. We have taken ω = 0.7 and κ = −2.

are synchronized in-phase. Upon introducing time delay in the
coupling between the oscillators, they are able to synchronize
in-phase when time delay exceeds a critical value. Starting
from the same set of initial phases if we keep on varying the
value of the delay parameter τ , the cluster pattern exhibited
by the system also varies as shown in Fig. 8. Beyond a certain
value of delay, all the oscillators are synchronized in-phase
into a single cluster. Since this system is highly multistable
even in the absence of delay, the system can go to different
cluster states at a given value of delay for different choices of
initial conditions. Hence the critical value of delay at which the
system first goes to the single cluster state can also be different
depending upon the choice of initial conditions. The collective
frequency of the in-phase state and its stability condition
obey the same expressions [Eqs. (5) and (4), respectively]
as the system of three coupled oscillators. The phase-locked
equilibrium states exhibiting different cluster patterns at a
given value of 
τ correspond to the same value of frustration
parameter F . In the absence of time delay, the value of
frustration for this system is F = 0.6667. The variation of
F with τ and 
τ is similar to the systems of three repulsively
coupled oscillators. The universal scaling behavior continues
to hold for the 16-oscillator triangular lattice, too.

However, if the boundaries of the triangular lattice are free,
then the oscillators are distinguishable in terms of the number
of their nearest neighbors, unlike the lattice with periodic
boundaries where each oscillator has six neighbors. Hence this
system exhibits distinct equilibrium states corresponding to
different values of frustration parameter F and cluster patterns.
In the absence of delay (τ = 0), the system exhibits five equi-
librium states—S1, S2, S3, S4, and S5—with corresponding
frustration values F (S1) = 0.4779, F (S2) = 0.5037, F (S3) =
0.5249, F (S4) = 0.5263, and F (S5) = 0.5502, respectively.
In the presence of time delay, similar to the six-oscillator

network presented in the previous section, this system also
exhibits multiple equilibrium states characterized by different
values of frustration at some values of τ or 
τ , as shown
in Fig. 6(b). The universal scaling behavior continues to hold.
The system can switch between these equilibria corresponding
to the different F values depending upon the choice of initial
phases. For each value of time delay, we have obtained the
values of frustration parameter by evolving the system for
500 different initial conditions. In addition to the equilibrium
states shown in Fig. 6(b), there might be other equilibrium
states also but with the basins of attraction so small that it
becomes extremely difficult to observe them numerically.

VI. SUMMARY AND DISCUSSION

To summarize, in this paper we have studied the effect of
time-delayed coupling on the collective dynamics of various
frustrated systems of repulsively coupled Kuramoto phase
oscillators. For our study, we have chosen three typical
frustrated configurations, namely (i) a set of three oscillators in
a triangular configuration that represents the simplest possible
two-dimensional frustrated geometry, (ii) a set of six oscillators
configured as a triangle within a triangle that presents a slightly
more complex geometry, and (iii) a set of 16 oscillators in a
hexagonal lattice geometry representing a generalization of the
basic triangular configuration of three oscillators. The three
configurations also have distinctly different characteristics in
the absence of time delay, e.g., (i) has a single equilibrium state
with a unique value of the frustration parameter, (ii) has two
equilibrium states (and hence two different frustration values)
that the system can go to depending upon the initial conditions,
and (iii) has multiple equilibrium states when open-boundary
conditions are applied to the lattice, and hence it displays
multistable behavior that is dependent on the initial conditions.
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We study the dynamical behavior of these prototypical systems
by a quantitative investigation of a suitably defined generalized
frustration parameter that is a function of the time delay.
Our numerical investigations reveal a generic behavior in all
the systems where we observe that the frustration parameter
initially increases with delay and then precipitously falls after
a critical value of delay to a much lower value and then decays
to zero, thereby transitioning to an in-phase synchronous state.
Thus the presence of a time delay in the coupling that is larger
than a critical value removes a basic constraint of frustrated
systems and permits them to attain a synchronous state. This
happens due to the interplay between the phase-difference
contributions arising from the geometry and the time delay.
We also find that this behavior can be characterized by a single
universal curve representing the variation of F with the product
of the collective frequency 
 of the synchronous state and the
time delay parameter τ . The curve is common for all values
of natural frequencies ω of the individual oscillators as well
as the coupling strength κ between the oscillators. An analytic

description of this curve is given for three coupled oscillators.
The nature of the transition is seen to have the characteristics of
a first-order phase transition whose behavior near the transition
point can be expressed in terms of an algebraic relation that
has a “critical exponent” that is larger than (but close to) unity.

The universal scaling behavior of F with 
τ that holds
for all three systems is the most significant finding of our in-
vestigation and underscores the important role that time delay
can play in the dynamics of frustrated systems. In particular,
it shows that time delay can serve as a tuning parameter to
steer the system towards different values of the frustration
parameter and hence to different collective multistable states.
This property can be exploited in physical systems in which
time delay can be varied by changing the media characteristics
to change the speed of signal propagation. In biological
systems, e.g., in neuronal networks where frustration and
time delay are coexistent, our results may prove useful in
gaining a better understanding of their underlying dynamical
behavior.
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