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Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion
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We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross
diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also
known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses
that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The
effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that
both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts
exist in the standard bistable system without cross diffusion.
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I. INTRODUCTION

Waves appear in reaction-diffusion systems as a result of
the interaction between the nonlinear kinetic terms and the
diffusive transport terms [1]. Most studies of reaction-diffusion
equations assume that the diffusion matrix is diagonal. In
other words, the diffusive flux of any given species is driven
only by its own concentration gradient. There are, however,
situations where the effect of the concentration gradients of
other species in the system cannot be neglected. The diffusion
matrix then has a nondiagonal form, and the system is referred
to as cross-diffusive. In chemical systems, cross diffusion is
encountered, for instance, in strong electrolytes, micelles, and
microemulsions [2–4]. Chemotaxis, where cells, bacteria, and
other organisms move in response to certain chemicals in their
environment, represents another important example of cross
diffusion [5–7].

Cross-diffusion reflects the fact that the spatial motion
of one species is influenced by the concentration gradient
of another species. This mechanism fits naturally into the
context of population dynamics and ecological problems [8–
11]. Cross-diffusion has frequently been incorporated into
predator-prey models, since prey tends to avoid high concen-
trations of predators, while predators tend to seek out high
concentrations of prey [12–17]. Cross-diffusive effects have
also been studied in the context of plasma physics [14,18].
Further, excitable media with elastic coupling can be described
by a two-variable reaction-diffusion system with a pure cross-
diffusion term [19,20].

In chemical systems, thermodynamics requires that the
cross-diffusion coefficients for a given species must go to
zero as the concentration of that species approaches zero, i.e.,
the cross-diffusion terms are nonlinear [2,21,22]. This is, of
course, not required for systems to which thermodynamics
does not apply, and systems with linear cross diffusion,
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i.e., the cross-diffusion coefficients are constant, have been
studied in a variety of contexts [11–13,16,19,20,23–26]. Cross-
diffusion coefficients can be positive or negative. Models
where the cross-diffusion terms have opposite signs have been
extensively investigated in Refs. [16,25,27–29] and correspond
to pursuit-evasion in a predator-prey context. It turns out
for such situations that the cross-diffusion effects are more
pronounced in systems with pure cross diffusion, i.e., the
self-diffusion coefficients vanish [16,28,30,31].

The minimal reaction-diffusion system that can display
cross diffusion is of course a two-species system. One of
the simplest two-variable models is the FitzHugh-Nagumo
(FHN) equations [32,33], also known as the Bonhoeffer-van
der Pol model [34–36]. It was originally introduced as a
simplification of the Hodgkin-Huxley model [37], which
describes the propagation of an action potential along nerve
fibers. The FHN model has been widely studied to understand
wave propagation in excitable (active) media with diffusive
coupling. The simplest waves in this model are traveling fronts,
a heteroclinic trajectory in the phase plane, connecting two
steady states (fixed points) of the system. Such systems are
referred to as bistable systems [38]. Other traveling waves,
namely solitary pulses (homoclinic solutions) and sequences
of pulses or wave trains (periodic solutions) occur in the
FHN-system with one fixed point, i.e., the system is excitable
or oscillatory [39]. In the spatially one-dimensional case, the
wave profiles typically correspond to a curve with monotonic
tails. However, the wave profile can also display oscillatory
tails [40–44]. The oscillatory fronts have been described in the
standard FHN-type model [41] and in the model with cross
diffusion [45,46]. Here we study the other possible types of
traveling waves with oscillatory tails, namely solitary pulses
and periodic wave trains.

The paper is organized as follows. We introduce the FHN
model with cross diffusion in Sec. II. In Sec. III we construct
the solitary pulses and periodic wave trains with oscillatory
tails, and we discuss the origin of the oscillatory tails in Sec. IV.
We summarize our results in Sec. V. The mathematical details
of the general solutions and fronts with oscillatory tails are
collected in the Appendix.
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II. THE FITZHUGH-NAGUMO MODEL

The FHN model with cross diffusion [16,25,27,28] is
described by the reaction-diffusion equations,

∂u

∂t
= u(1 − u)(u − a) − v + Du

∂2u

∂x2
+ hv

∂2v

∂x2
, (2.1a)

∂v

∂t
= ε(u − v) + Dv

∂2v

∂x2
+ hu

∂2u

∂x2
. (2.1b)

The positive parameters a and ε are the excitation threshold
and the ratio of time scales. The constants Du,v and hu,v are
self- and cross-diffusion coefficients, respectively. Thermody-
namic considerations do not apply to the system Eq. (2.1).
As explained in Ref. [46], the variables u and v do not
correspond to densities of reacting and diffusing particles,
and consequently they do not have to be nonnegative. The
variable u represents the “activator” or potential variable. It
corresponds to the potential across the membrane of the nerve
fiber in the original application to the Hodgkin-Huxley model.
The variable v represents the “inhibitor” or recovery variable.
Further, the cross-diffusion coefficients for u and v do not have
to vanish as u and v, respectively, go to zero.

To obtain analytical solutions, we employ a piecewise
linear approximation for the nonlinear reaction term in the
first equation [38,39,47] and consider the case with equal
self-diffusion constants, namely Du = Dv ≡ D and cross-
diffusion constants of opposite sign, hv ≡ h = −hu. We have

∂u

∂t
= −u − v + H (u − a) + D

∂2u

∂x2
+ h

∂2v

∂x2
, (2.2a)

∂v

∂t
= ε(u − v) + D

∂2v

∂x2
− h

∂2u

∂x2
, (2.2b)

where H (u − a) is the Heaviside function. The excitation
threshold a must be 0 < a < 1/2 for the system to be bistable
and a > 1/2 for the system to be excitable.

III. CONSTRUCTION OF TRAVELING WAVES IN A
PIECEWISE LINEAR MODEL

We look for solutions u = u(ξ ) and v = v(ξ ) of Eq. (2.2)
with the traveling wave coordinate ξ = x − ct and wave speed
c. Traveling waves are solutions of the reaction-diffusion
equations that propagate in space without change of the wave
shape and with constant speed. Traveling solitary pulses and
periodic wave trains are built from parts that are obtained by
solving the corresponding ordinary differential equations for
each part in the piecewise linear approximation of the nonlinear
reaction function.

A. Solitary pulses

The pulse solutions in the piecewise linear model consist
of three parts, u1,2,3 and v1,2,3, for the activator and inhibitor
variable, respectively. The solutions form a homoclinic tra-
jectory in the phase plane (u,v). The trajectory sets out from
a fixed point, or steady state, and returns to that point. The
middle pieces, u2 and v2, correspond to the peaks of the waves,
whereas the edge pieces, or tails, u1,v1 and u3,v3, represent
the growing and decaying parts, respectively. As ξ → ±∞,

the pulse approaches a constant value, (u∗,v∗), namely a fixed
point of the system. The bistable system has two fixed points,
and the pulse can start and end at the first fixed point, (0,0), or
the second one, (1/2,1/2), as ξ → ±∞. In the first case, the
boundary conditions for the pulse solutions are as follows:

u1(ξ → −∞) = 0, u3(ξ → +∞) = 0, (3.1a)

v1(ξ → −∞) = 0, v3(ξ → +∞) = 0. (3.1b)

Therefore, the pulse solutions read

u1(ξ ) = ek+ξ [A11 cos(l−ξ ) + A13 sin(l−ξ )], (3.2a)

u2(ξ ) = ek+ξ [A21 cos(l−ξ ) + A23 sin(l−ξ )]

+ ek−ξ [A22 cos(l+ξ ) + A24 sin(l+ξ )] + 1/2,

(3.2b)

u3(ξ ) = ek−ξ [A32 cos(l+ξ ) + A34 sin(l+ξ )], (3.2c)

for the activator variable, and

v1(ξ ) = ek+ξ [B11 cos(l−ξ ) + B13 sin(l−ξ )], (3.3a)

v2(ξ ) = ek+ξ [B21 cos(l−ξ ) + B23 sin(l−ξ )]

+ ek−ξ [B22 cos(l+ξ ) + B24 sin(l+ξ )] + 1/2,

(3.3b)

v3(ξ ) = ek−ξ [B32 cos(l+ξ ) + B34 sin(l+ξ )], (3.3c)

for the inhibitor variable. The quantities k± and l± are defined
in the Appendix.

If the pulse starts and ends at the second fixed point, the
boundary conditions read

u1(ξ → −∞) = 1/2, u3(ξ → +∞) = 1/2, (3.4a)

v1(ξ → −∞) = 1/2, v3(ξ → +∞) = 1/2, (3.4b)

and the shape of the pulse looks like a well, i.e., an inverted
pulse. The dynamics of the inverted pulse resembles the
behavior of the ordinary standard pulse and we will omit the
discussion of this wave.

The three parts of the pulse profile, (3.2) and (3.3), are fitted
together using a specific matching procedure. The matching
conditions for the pieces un(ξ ), vn(ξ ), n = 1,2,3, and their
derivatives dun(ξ )/dξ,dvn(ξ )/dξ at the two matching points,
ξ = ξ0 and ξ = ξ ∗

0 , are as follows [48]:

u1(ξ0) = u2(ξ0),
du1(ξ0)

dξ
= du2(ξ0)

dξ
, (3.5a)

u2(ξ ∗
0 ) = u3(ξ ∗

0 ),
du2(ξ ∗

0 )

dξ
= du3(ξ ∗

0 )

dξ
, (3.5b)

v1(ξ0) = v2(ξ0),
dv1(ξ0)

dξ
= dv2(ξ0)

dξ
, (3.5c)

v2(ξ ∗
0 ) = v3(ξ ∗

0 ),
dv2(ξ ∗

0 )

dξ
= dv3(ξ ∗

0 )

dξ
. (3.5d)

We know the value of u(ξ ) at the matching points and obtain
two additional equations,

u1(ξ0) = u3(ξ ∗
0 ) = a. (3.6)
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FIG. 1. Solitary pulse profiles for the activator u(ξ ) (a, d, g), for the inhibitor v(ξ ) (b, e, h), and in the u-v phase plane (bold lines) (c, f, i).

The values of the excitation threshold, the ratio of the time scales, and the self-diffusion coefficient are fixed at a = 1/4, ε = 1, and D = 1,
respectively. The middle parts, u2 and v2, of the pulses are indicated by the gray color. The null-clines f (u,v) = −u − v + H (u − a) = 0 and
g(u,v) = u − v = 0 are shown by thin lines in panels (c, f, i). Panels (a, b, c) correspond to the case where the self-diffusion and cross-diffusion
coefficients are nearly equal: h = 1.1. The calculated propagation speed is c ≈ 0.613. Panels (d, e, f) correspond to the strong cross-diffusion
case with h = 5, where the calculated speed is c ≈ 4.819, and panels (g, h, i) to the extra-strong cross-diffusion case with h = 50, where the
calculated speed is c ≈ 17.846.

In total, we have 10 equations for 10 unknown constants,
(A11, A13, A21, A22, A23, A24, A32, A34, ξ

∗
0 , c), which allows

us to determine the front speed c and the second matching
point ξ ∗

0 uniquely. The first matching point ξ0 is chosen to be
zero due to the translational invariance of the equations, the
same choice as in the case of the front solution [45].

The results of the matching procedure, i.e., the profiles
of the solitary pulses for the activator and inhibitor variables
and in the u-v phase plane are plotted in Fig. 1. The figure
shows examples of pulses for three different values of the
cross-diffusion constant h. If the value of h is close to the
value of the self-diffusion coefficient D, the pulse profile
corresponds to a standard ordinary pulse wave of peak-type,
the nonoscillatory curve shown in Figs. 1(a)–1(c). If the cross-
diffusion effect is strong enough, pronounced oscillations arise

in the pulse profile, see Figs. 1(d)–1(f) and Figs. 1(g)–1(i).
As shown in Fig. 2, the pulse propagates from left to right,
and these oscillations occur in front of the wave peak. This
characteristic property of the oscillations in cross-diffusive
systems was also found for the front solution [45]. We note
here that these oscillations can also occur behind the wave
peak, if cross-advection terms are added to the model with
cross diffusion [49].

The pulse speed can take both positive and negative values,
see Fig. 3, i.e., there exist two counterpropagating pulses for a
given value of the cross-diffusion constant h, if h is sufficiently
large with respect to D. As the value of h is reduced, the
absolute value of the speed decreases, so that at some critical
value h0 there is only a single pulse with c = 0. For weaker
cross diffusion, no pulse solutions at all exist in the bistable
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FIG. 2. Space-time plot showing the evolution of the solitary
pulse u(x,t) for parameter values from Fig. 1(g), i.e., a = 1/4, ε = 1,
D = 1, and h = 50, respectively.

system considered here. Indeed, if the cross-diffusion effect
vanishes, the system behaves like the standard FHN system,
i.e., pulses exist only in the excitable system, which has only
one fixed point.

The results of numerical simulations for pulse propagation
are presented in the Supplemental Material [50].

B. Periodic wave trains

The wave train solutions in the piecewise linear model
consist of two parts, u1,2 and v1,2, for the activator and
the inhibitor variable, respectively. Since these solutions are
periodic, they form a closed smooth trajectory in the phase
plane (u,v). This implies that we have again two matching
points for the functions and their derivatives. The trajectory
sets out from the point u = a at ξ = ξ 0

0 , passes through this
point again at ξ = ξ0, and finally returns to this point at
ξ = ξ ∗

0 . Consequently, the period of the wave train is given by
L = ξ ∗

0 − ξ 0
0 . The matching conditions at the first matching

point are the same as for solitary pulses, whereas at the second
matching point we need to match two pieces of the solution
with different ξ values, namely (u1(ξ ),v1(ξ )) at ξ = ξ 0

0 with
(u2(ξ ),v2(ξ )) at ξ = ξ ∗

0 . Since the solutions are periodic, there
exist no boundary conditions, and the wave train solutions read

u1(ξ ) = ek+ξ [A11 cos(l−ξ ) + A13 sin(l−ξ )]

+ ek−ξ [A12 cos(l+ξ ) + A14 sin(l+ξ )], (3.7a)

–10

–5

0

5

10

c

5 10 15
h

FIG. 3. Speed of the solitary pulse as a function of the cross-
diffusion coefficient, c = c(h). The values of the excitation threshold,
the ratio of the time scales, and the self-diffusion coefficient are fixed
at a = 1/4, ε = 1, and D = 1, respectively.

u2(ξ ) = ek+ξ [A21 cos(l−ξ ) + A23 sin(l−ξ )]

+ ek−ξ [A22 cos(l+ξ ) + A24 sin(l+ξ )] + 1/2,

(3.7b)

for the activator variable, and

v1(ξ ) = ek+ξ [B11 cos(l−ξ ) + B13 sin(l−ξ )]

+ ek−ξ [B12 cos(l+ξ ) + B14 sin(l+ξ )], (3.8a)

v2(ξ ) = ek+ξ [B21 cos(l−ξ ) + B23 sin(l−ξ )]

+ ek−ξ [B22 cos(l+ξ ) + B24 sin(l+ξ )] + 1/2,

(3.8b)

for the inhibitor variable. The matching conditions are [48]

u1(ξ0) = u2(ξ0),
du1(ξ0)

dξ
= du2(ξ0)

dξ
, (3.9a)

u2(ξ ∗
0 ) = u1

(
ξ 0

0

)
,

du2(ξ ∗
0 )

dξ
= du1

(
ξ 0

0

)
dξ

, (3.9b)

v1(ξ0) = v2(ξ0),
dv1(ξ0)

dξ
= dv2(ξ0)

dξ
, (3.9c)

v2(ξ ∗
0 ) = v1

(
ξ 0

0

)
,

dv2(ξ ∗
0 )

dξ
= dv1

(
ξ 0

0

)
dξ

. (3.9d)

As discussed above, the value of u at ξ0 and ξ ∗
0 is a:

u1(ξ0) = u2(ξ ∗
0 ) = a. (3.10)

Again, we have a total of 10 equations for 10 unknown con-
stants, (A11, A12, A13, A14, A21, A22, A23, A24, ξ0, c), which
allows us to determine the front speed c and the first matching
point ξ0 uniquely. The starting point ξ 0

0 is chosen to be zero
due to translational invariance of the equations as above. The
period of the wave train, L = ξ ∗

0 − ξ 0
0 , is now an additional

parameter of the solution. The dependence of the speed of the
wave train c on the period of the wave train L is known as
the dispersion relation. For wave trains with a standard profile,
the dispersion relation curves are monotonic [51]. For wave
trains that display oscillations in their profile, the dispersion
relations are anomalous. This is the situation in our study.

The profiles of periodic wave trains for the activator and
inhibitor variables and in the u-v phase plane for fixed values
of the cross-diffusion constant h and three values of the
period L are shown in Figs. 4 and 5. There exist three types
of wave trains, one with a symmetric profile and two with
asymmetric profiles. The wave train with a symmetric profile
has the matching point ξ0 at the center of the period. The
wave trains with asymmetric profiles have either ξ0 < L/2 or
ξ0 > L/2. The asymmetric wave train is localized near one
fixed point in the u-v phase plane, whereas the symmetric
one visits the vicinity of both fixed points. The speed values
of the two asymmetric wave trains coincide and are larger
than the speed of the symmetric wave train. Figures 4 and 5
show the asymmetric (fast wave) and symmetric (slow wave)
wave trains, respectively. The waves are displayed for one
period and for positive values of the speed. If the value of
L is small, the waves show standard ordinary behavior, see
Figs. 4(a)–4(c) and 5(a)–5(c). If the period is large, then

012203-4



OSCILLATORY PULSES AND WAVE TRAINS IN A . . . PHYSICAL REVIEW E 95, 012203 (2017)

(a)u

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20
ξ

(b)v

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20
ξ

(c)

–0.2

0

0.2

0.4

0.6

0.8

v

0 0.2 0.4 0.6u
(d)u

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50
ξ

(e)v

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50
ξ

(f)

–0.2

0

0.2

0.4

0.6

0.8

v

0 0.2 0.4 0.6u
(g)u

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100
ξ

(h)v

0.4

0.5

0.6

0.7

0 20 40 60 80 100
ξ

(i)

–0.2

0

0.2

0.4

0.6

0.8

v

0 0.2 0.4 0.6u

FIG. 4. Periodic wave train (fast wave) profiles for the activator u(ξ ) (a, d, g), for the inhibitor v(ξ ) (b, e, h), and in the u-v phase plane
(bold lines) (c, f, i). The values of the excitation threshold, the ratio of the time scales, and the self- and cross-diffusion coefficients are fixed at
a = 1/4, ε = 1, D = 1, and h = 50, respectively. The first parts, u1 and v1, of the wave trains are indicated by the gray color. The null-clines
f (u,v) = −u − v + H (u − a) = 0 and g(u,v) = u − v = 0 are shown by thin lines in panels (c, f, i). Panels (a, b, c) correspond to the period
L = 20, where the calculated speed is c ≈ 19.013, panels (d, e, f) to L = 50, where the calculated speed is c ≈ 17.328, and panels (g, h, i) to
L = 100, where the calculated speed is c ≈ 17.851.

pronounced oscillations appear in the profile, see Figs. 4(g)–
4(i) and 5(g)–5(i).

The diagrams for the wave train speed c versus the wave
period L, the dispersion relations, are shown in Fig. 6. The
results are given for three values of the cross-diffusion constant
and for positive values of the speed. For negative values
of the speed, the figures are inverted with respect to the
0 − L (horizontal) axis. The c = c(L) dependence has the
typical property of an anomalous dispersion relation, namely
oscillatory behavior, if the value of h is large, see Fig. 6(c).

The results of numerical simulations for dispersion relations
are presented in Supplemental Material [50].

IV. DISCUSSION

To understand the origin of the oscillatory waves, it is
instructive to compare the interplay of self- and cross-diffusion
terms in the model equations. First we consider a two-variable

pure diffusion system, where the cross-diffusion terms have
the same sign,

∂u

∂t
= D

∂2u

∂x2
+ h

∂2v

∂x2
, (4.1a)

∂v

∂t
= D

∂2v

∂x2
+ h

∂2u

∂x2
. (4.1b)

Then we have the following matrix equation, see the
Appendix for details,(

Dλ2 + cλ hλ2

hλ2 Dλ2 + cλ

)(
A

B

)
= 0, (4.2)

and the corresponding characteristic equation is

[(Dλ + c)2 − h2λ2]λ2 = 0. (4.3)

All eigenvalues λ1,2 = 0 and λ3,4 = −c/(D ± h) are real, and
the solutions have the usual exponential terms, i.e., there are
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FIG. 5. Periodic wave train (slow wave) profiles for the activator u(ξ ) (a, d, g), the inhibitor v(ξ ) (b, e, h), and in the u-v phase plane (bold
lines) (c, f, i). The values of the excitation threshold, the ratio of the time scales, and the self- and cross-diffusion coefficients are fixed at
a = 1/4, ε = 1, D = 1, and h = 50, respectively. The first parts, u1 and v1, of the wave trains are indicated by the gray color. The null-clines
f (u,v) = −u − v + H (u − a) = 0 and g(u,v) = u − v = 0 are shown by thin lines in panels (c, f, i). Panels (a, b, c) correspond to the period
L = 20, where the calculated speed is c ≈ 18.595, panels (d, e, f) to L = 50, where the calculated speed is c ≈ 12.551, and panels (g, h, i) to
L = 100, where the calculated speed is c ≈ 13.780.
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FIG. 6. Speed of the periodic wave train as a function of the period (dispersion relation), c = c(L), for (a) h = 5, (b) h = 10, and (c)

h = 50. Wave trains with asymmetric and symmetric profiles are marked by circles and squares, respectively. The values of the excitation
threshold, the ratio of the time scales, and the self-diffusion coefficient are fixed at a = 1/4, ε = 1, and D = 1, respectively.
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no oscillations in the wave profiles. However, if the cross-
diffusion terms have the opposite sign,

∂u

∂t
= D

∂2u

∂x2
+ h

∂2v

∂x2
, (4.4a)

∂v

∂t
= D

∂2v

∂x2
− h

∂2u

∂x2
, (4.4b)

the characteristic equation,

[(Dλ + c)2 + h2λ2]λ2 = 0, (4.5)

yields two complex eigenvalues, λ3,4 = −c/(D ± ih), and the
solutions have cosine and sine terms, i.e., oscillations appear
in the wave profiles.

Next we include a piecewise linear reaction term in the pure
cross-diffusive system,

∂u

∂t
= −v + H (u − a) + h

∂2v

∂x2
, (4.6a)

∂v

∂t
= u ± h

∂2u

∂x2
. (4.6b)

If the cross-diffusion terms are of same signs, the plus sign
in Eq. (4.6b), the characteristic equation reads

h2λ4 − c2λ2 − 1 = 0. (4.7)

Two eigenvalues,

λ2 = 1

2h2
(c2 +

√
c4 + 4h2), (4.8)

are real, and two other,

λ2 = 1

2h2
(c2 −

√
c4 + 4h2), (4.9)

are imaginary. If the model equations have cross-diffusion
terms with opposite signs, the minus sign in Eq. (4.6b), the
characteristic equation,

(hλ2 − 1)2 + c2λ2 = 0, (4.10)

produces all complex eigenvalues as above.
Thus, cross-diffusive terms with opposite signs are crucial

for the existence of the traveling waves with oscillatory
tails.

V. SUMMARY

We wish to emphasize the main result of this work, namely
that solitary pulses and periodic wave trains exist in the bistable
reaction-diffusion FHN system with cross diffusion, whereas
fronts are the ordinary solutions in FHN-type bistable systems
without cross diffusion [38]. This result was also obtained for
a particular case [31], namely a FHN-type system with pure
cross diffusion, D = 0. In conclusion, fronts, pulses, and wave
trains can occur simultaneously in the FHN system with the
same set of values for the model parameters, i.e., a, ε, D, and
h. We have also shown that sufficiently strong cross-diffusion
leads to oscillations in the profile of the pulse and wave
train solutions. We have found further that the dispersion
relation for the wave trains displays anomalous behavior,
i.e., it is nonmonotonic, if the cross-diffusion coefficients are
large compared to the self-diffusion coefficients. Our results

show that cross diffusion can have nontrivial effects and
change qualitatively the spatiotemporal dynamics of reaction-
diffusion systems.

ACKNOWLEDGMENTS

The authors thank Vadim N. Biktashev for useful discus-
sion.

APPENDIX: ANALYTICAL SOLUTIONS FOR FRONTS
WITH OSCILLATORY TAILS [45]

We consider the case with ε = 1. Then the model equations
for traveling waves u = u(ξ ) and v = v(ξ ), where ξ = x − ct

is the traveling wave coordinate and c is the wave propagation
speed, are

D
d2u

dξ 2
+ h

d2v

dξ 2
+ c

du

dξ
− u − v + H (u − a) = 0, (A1a)

D
d2v

dξ 2
− h

d2u

dξ 2
+ c

dv

dξ
+ u − v = 0. (A1b)

The general solutions have the form

u(ξ ) =
4∑

n=1

Ane
λnξ + u∗, (A2a)

v(ξ ) =
4∑

n=1

Bne
λnξ + v∗, (A2b)

where An,Bn, u
∗, and v∗ are constants to be determined in

each of the regions u < a and u > a.
Substituting the general solutions Eq. (A2) into

the model Eq. (A1), we obtain the following matrix
equation:

(
Dλ2 + cλ − 1 hλ2 − 1

−hλ2 + 1 Dλ2 + cλ − 1

)(
A

B

)
= 0. (A3)

The characteristic equation reads

(Dλ2 + cλ − 1)2 − i2(hλ2 − 1)2 = 0, (A4)

with i2 = −1, and yields four eigenvalues,

λ1,2 = −p − iq ± √
b + id = −p − iq ± y ± iz, (A5a)

λ3,4 = −p + iq ± √
b − id = −p + iq ± y ∓ iz, (A5b)

where

p = cD

2(D2 + h2)
, q = ch

2(D2 + h2)
, (A6a)

b = p2 − q2 + p + q

c/2
, d = 2pq − p − q

c/2
, (A6b)

y =
√

(
√

b2 + d2 + b)/2, (A6c)

z =
√

(
√

b2 + d2 − b)/2. (A6d)
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Then the general solutions become

u(ξ ) = ek+ξ [A1 cos(l−ξ ) + A3 sin(l−ξ )]

+ ek−ξ [A2 cos(l+ξ ) + A4 sin(l+ξ )] + u∗, (A7a)

v(ξ ) = ek+ξ [B1 cos(l−ξ ) + B3 sin(l−ξ )]

+ ek−ξ [B2 cos(l+ξ ) + B4 sin(l+ξ )] + v∗, (A7b)

where k± = ±y − p and l± = z ± q, respectively.
The integration constants B are expressed as

B1,3 = − 1

γ 2
1 + δ2

1

[(α1γ1 + β1δ1)A1,3 ∓ (α1δ1 − β1γ1)A3,1],

(A8a)

B2,4 = − 1

γ 2
2 + δ2

2

[(α2γ2 + β2δ2)A2,4 ∓ (α2δ2 − β2γ2)A4,2],

(A8b)

with

α1 = D(k2
+ − l2

−) + ck+ − 1, β1 = l−(2Dk+ + c), (A9a)

γ1 = h(k2
+ − l2

−) − 1, δ1 = 2hk+l−, (A9b)

α2 = D(k2
− − l2

+) + ck− − 1, β2 = l+(2Dk− + c), (A9c)

γ2 = h(k2
− − l2

+) − 1, δ2 = 2hk−l+. (A9d)

Front solutions consist of two tails that approach the corre-
sponding fixed points as ξ → ±∞. The boundary conditions

for the front solutions are

u1(ξ → −∞) = 0, u2(ξ → +∞) = 1/2, (A10a)

v1(ξ → −∞) = 0, v2(ξ → +∞) = 1/2. (A10b)

Therefore, the front solutions read

u1(ξ ) = ek+ξ [A11 cos(l−ξ ) + A13 sin(l−ξ )], (A11a)

u2(ξ ) = ek−ξ [A22 cos(l+ξ ) + A24 sin(l+ξ )] + 1/2, (A11b)

v1(ξ ) = ek+ξ [B11 cos(l−ξ ) + B13 sin(l−ξ )], (A11c)

v2(ξ ) = ek−ξ [B22 cos(l+ξ ) + B24 sin(l+ξ )] + 1/2. (A11d)

In fact, the integration constants Amn and Bmn (m = 1,2
and n = 1,...,4) are the same as An and Bn; the subscript m

is introduced only to differentiate between the first and the
second tail of the front solution.

The matching conditions at the matching point ξ0 are

u1(ξ0) = u2(ξ0),
du1(ξ0)

dξ
= du2(ξ0)

dξ
, (A12a)

v1(ξ0) = v2(ξ0),
dv1(ξ0)

dξ
= dv2(ξ0)

dξ
. (A12b)

There is one additional equation, namely u1(ξ0) =
a. We have five equations for five unknown constants,
(A11, A13, A22, A24, c), and the front speed c may be deter-
mined uniquely.
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