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Self-similar asymptotic optical beams in semiconductor waveguides doped with quantum dots
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The self-similar propagation of asymptotic optical beams in semiconductor waveguides doped with quantum
dots is reported. The possibility of controlling the shape of output asymptotic optical beams is demonstrated. The
analytical results are confirmed by numerical simulations. We give a possible experimental protocol to generate
the obtained asymptotic parabolic beams in realistic waveguides. As a generalization to the present work, the
self-similar propagation of asymptotic optical beams is proposed in a power-law nonlinear medium.
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I. INTRODUCTION

In nonlinear optics, the exact analytical and asymptotic
similaritons in gain amplifier systems have been studied
extensively due to their potential applications in nonlinearity
and dispersion management systems [1-3]. These optical
similaritons possess many attractive features that make them
potentially useful for various applications in fiber-optic
telecommunications and photonics, since they can maintain
their overall shapes but allow their amplitudes and widths to
change with the modulation of the system’s parameters such
as dispersion, nonlinearity, gain, and inhomogeneity [4,5]. Itis
common knowledge that the so-called self-similar solution was
used in early studies as a qualitative test for the self-focusing
theory and ultrashort pulse generation [6-9]. In recent years,
there has been an increasing interest in the study of asymptoti-
cally exact parabolic similaritons since their first experimental
realization in normally dispersive fiber amplifiers [10]. These
asymptotic parabolic similaritons exist under a wide range
of system parameters and exhibit some interesting properties.
For instance, they can be easily generated from arbitrary input
waves and their stability is guaranteed even at a high power
level [11].

On the other hand, semiconductor structures with quantum
dots (QDs) have been the objects of particular attention in
the past several years [12]. The structures are of consider-
able interest from a fundamental standpoint and from the
standpoint of their potential for application in new advanced
optoelectronic devices. Sometimes, QDs can even change the
nonlinear properties of the semiconductor media. Recently, a
generic model for the quintic nonlinearity has been realized
in a centrosymmetric nonlinear medium doped with resonant
impurities in the limit of a large light carrier frequency
detuning from the impurity resonance [13]. The resonant
impurities could be rare-earth-element atoms or QDs, erbium-
doped glasses, or semiconductors doped with QDs. This
result provides a promising method for the investigation of
self-similar optical beams in semiconductor waveguides doped
with QDs.
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The recent studies have paid much attention to the power-
law nonlinearity in optics [14]. This type of nonlinearity can
be viewed as the simplest generalization of the ubiquitous Kerr
law and can model a material whose refractive index depends
on the optical field amplitude raised to a power other than
2. Various semiconductors can possess power-law behavior in
their refractive index, such as InSb [15], GaAs/GaAlAs [16],
CdS,Sej_, [17], and liquid crystals [14]. Solitary waves in
power-law nonlinearity have been investigated theoretically
in the context of interface surface modes [18], elementary
excitations in thin films [19], and slab (planar) waveguides
[20-22]. Very recently, asymptotic compact self-similar solu-
tions have been found in an inhomogeneous quintic nonlinear
medium [23]. A most interesting issue, which is relevant to
the present work, is the construction of a more general form
of self-similar asymptotic solutions in power-law nonlinear
media, which would have important applications in nonlinear
waveguide amplifiers. Power-law nonlinearity also exists in
other fields of physics such as Bose-Einstein condensates [24].

In this work we investigate the generation and propagation
of self-similar asymptotic optical beams in a semiconductor
waveguide doped with QDs. In Sec. I1, we propose a theoretical
model to describe the beam propagation in a semiconductor-
QD waveguide. In Sec. III, the generation and propagation
of self-similar asymptotic optical beams are investigated both
analytically and numerically. As an application, in Sec. IV
we give a possible experimental protocol to generate the
obtained asymptotic optical beams inside realistic waveguides.
In Sec. V, as the generalizations to the present work, we
study the self-similar asymptotic optical beams in the power-
law nonlinear media. The analytical general forms of the
asymptotic optical beams are found. Finally, conclusions are
presented in Sec. VI.

II. THE MODEL

We consider the situation in which the higher-order non-
linear effect is taken into account [25] when optical beams
propagate in a graded-index waveguide amplifier; i.e., the
refractive index is [26] n(z,x) = ng + n1 F(2)x? + nal(z,x) +
nal(z,x)%, where z is the propagation distance, x is the spatial
coordinate, and / is the beam intensity. Here the first two
terms describe the linear part of the refractive index and the
last two terms represent the nonlinearity with n, being the
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cubic coefficient (positive n, for self-focusing nonlinearity
and negative n, for self-defocusing nonlinearity) and n4 being
the quintic coefficient that may assume positive or negative
values. The term n; is usually assumed to be positive, and
the dimensionless tapering function F(z) can be negative
or positive, corresponding to the graded-index waveguide
acting as a focusing or defocusing lens. In experiments, the
cubic-quintic nonlinearities can be obtained by doping a fiber
with two appropriate semiconductor materials [27,28]. Under
the paraxial and the slowly varying envelope approximations,
the nonlinear wave equation governing beam propagation in a
semiconductor waveguide doped with QDs can be written as
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where u(z,x) is the complex envelope of the electrical
field, with z and x being the propagation distance and the
spatial coordinate, respectively; ko = 2mwng/A with A being
the wavelength of the optical source; and g(z) is the gain
(loss) coefficient. Here the third term on the left-hand side
describes the nonlinear polarization due to the QDs, where N
is the dopant density, d,, is a dipole matrix element between
the excited and ground states, and o, is a steady-state value
of the atomic dipole moment.

According to the theory of [13], in the cw limit and
assuming the light carrier frequency lies sufficiently far off
resonance with the QDs, the steady-state dipole moment may
be expressed as
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where v (y)) is the transverse (longitudinal) decay rate of the
atomic dipole moment (inversion), and A is the detuning of the
incident light from QD resonance satisfying A > y, . For a

judicious choice of the frequency detuning A = 7 %m,
the QD-generated and the third-order nonlinearities in Eq. (1)

cancel each other, resulting in an effective renormalized quintic
nonlinearity with the coefficient
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which is negative since n, should be self-defocusing in the
semiconductor waveguides (here, 74 may be assumed to have
positive or negative values because it can be neglected in such
a medium [13]).

Introducing the normalized variables U=
(kolnaete| Lp/no)"/*u,G(Z) = g(z)Lp,X = x/w and
Z =z/Lp, where wy= (2k3n;/ng)~"/* and Lp = kow]
represent the characteristic transverse scale and the diffraction
length, respectively, then Eq. (1) can be rewritten in a
dimensionless form:
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It is obvious that Eq. (4) describes self-defocusing quintic
nonlinearity of the waveguide, where F(Z) and G(Z) are the
functions of the normalized distance Z.

III. SELF-SIMILAR ASYMPTOTIC OPTICAL BEAMS

Our aim is to give the self-similar asymptotic parabolic
solutions of Eq. (4) when the relative strength of the diffraction
term is much less than that of the quintic nonlinearity. For
the evolution of the optical beam to be self-similar, the
functional form of the beam’s intensity profile must remain
unchanged at different propagation distances. Hence, one
can express the beam’s intensity as |U(Z,X)|> = EA(£)?/,
where E = exp[ fOZ G(Z')dZ'] describes the evolution of the
peak amplitude of the beam, A(&) determines the evolution
of the spatial profile of the beam with & = X /¢ being the
self-similarity variable, and the variable ¢ is a positive function
of the propagation distance Z that characterizes the change in
the beam’s width. As the beam width changes, its phase should
contain a quadratic term £;X?/(2¢), where £; = d¢/dZ and
the chirp parameter is defined as the coefficient of X2. Note
that the quadratic form of the phase is a natural choice instead
of an assumption [29]. Based on the above analysis, we rewrite
the optical field in the following self-similar form:

E Lz, . [PEXNZ) .
U(Z,X)= ?A(g)exp lﬂX —l,bL/O Ez(z,)dz ,

)

where u is a positive constant. Substituting Eq. (5) into Eq. (4)
and neglecting the diffraction term (the coefficient in front
of the diffraction term is E 2 /2, vanishing at Z — 00), we
obtain

A*—u—Kg* =0, (6)

at|&| < /—u/K, and A(§) = 0 otherwise, where the follow-
ing relations are satisfied:

1 &

< I, K= W(FE —4{z2), )
with K being a negative constant. Note that the above
reduction is essentially the same as that produced by the
Thomas-Fermi approximation for the ground-state solution
of the one-dimensional Gross-Pitaevskii equation with the
harmonic potential [30].

Equation (6) yields a self-similar asymptotic solution

AT =/u+ K&, ®)

where constant p is determined by the input power:

00 NET S
Py = / U, X)*dX = / A%dE. ©
—00 —=n/K
To obtain the effective width of the parabolic solution, one
has to solve Eq. (7). For the present situation, we consider the
constants F and G. When F < G2 /4, this leads to

o= 8K Sz (10)
“Var—aP\27)

When substituting Egs. (8) and (10) into Eq. (5), one obtains
the self-similar asymptotic parabolic solution for Eq. (4).
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After a little algebra, we find that the effective width of the
parabolic beam increases exponentially as exp(GZ/2) while
the amplitude of the parabolic beam increases exponentially
as exp(GZ/4), and they all depend on the tapering function
F. When the gain and propagation distance are given, the
effective width at the asymptotic limit is increasing as F' varies
from negative to positive, which can be realized by the linear
focusing or defocusing lens of the graded-index nonlinear
waveguide. When F < 0, the larger the |F|, the smaller the
effective width is and the larger the beam’s amplitude; when
F > 0, the effective width becomes larger when F increases,
while the beam’s amplitude becomes smaller. It is interesting
that one may control the shape of the output parabolic beams
by choosing an appropriate tapering parameter, since £(0) can
vary from zero to infinity as F changes from —oo to G2 /4. This
implies that one can generate a high-power, ultrashort beam
inside the waveguide with a strong enough negative tapering
parameter. Note that the above parabolic solution exists when
the condition E2 > 1 is valid. Fortunately, this condition can
be easily satisfied after a short propagation distance due to the
exponential increasing of E.

To check the analytical predictions, we use the Gaussian
function as the input beam by resolving Eq. (4) numerically.
Results for the case F > 0 are shown in Fig. 1, where one
can see that after about four propagation distance units, the
results of numerical simulations and analytical predictions for
the beam’s intensity agree well with each other. Our numerical
simulations are also consistent with the analytical predictions
for the case F < 0. From Fig. 1(b) one finds that the general
forms of the width and amplitude of the beam are in good
agreement with the analytical results. Note that the chirp of the
asymptotic parabolic solution is G /4, which is also confirmed
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FIG. 1. (a) Characteristics of output parabolic beams in the
semiconductor waveguide, starting with the Gaussian input beam
U(0,X) = exp(—X2/2)/7'/*. From the top to bottom, the propaga-
tion distance is Z = 5, 4.8, 4.6, 4.4, 4.2, and 4, respectively. (b) The
beam’s width and amplitude as functions of distance Z. (c) The phase
(phase offset is ignored) of the beam at propagation distance Z = 5.
The solid lines and circles represent results of the direct numerical
simulations of Eq. (4) and the analytical predictions, respectively.
The parameters are G = —K = 1, F = G?/60, and u = 2/7.
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FIG. 2. The same as in Fig. 1 except that the input beam is
U(0,X) = sech(X)/2'/?, i.e., the hyperbolic secant input beam.

by numerical simulations [see Fig. 1(c)] using a fast phase
unwrapping algorithm [31].

We have considered additional simulations that in-
volve beams with the same input power but with dif-
ferent input profiles. We choose a hyperbolic secant
beam, U(0,X) = sech(X)/2!/?, and a super-Gaussian beam,
U(0,X) = exp(—X®/2)/{27/[3T(5/6)]}'/%, where T'(s) is a
gamma function. The results of numerical simulations and
analytical predictions for the general form of the beam agree
well with each other; see Figs. 2 and 3. However, we find
that this agreement is not as good as that in Fig. 1 after the
same units of propagation distance. For the super-Gaussian
input beam, Fig. 3, we notice a strong oscillatory structure
on the edges of the intensity profile, which originates from
the effect induced by the diffraction term in Eq. (4). This
difference between the numerical and the analytical intensity
profiles is connected by the existence of the diffraction term
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FIG. 3. The same as in Fig. 1 except that the input beam is
U(0,X) = exp(—X%/2)/{2m/[3T'(5/6)]}"/, i.e., the super-Gaussian
input beam.
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for the split-step Fourier method. Furthermore, one can see
that the analytical predictions of the phase agree well with the
numerical results only in the central region, while outside the
central region it is not matched so well as the corresponding
numerical profile. Therefore, we may infer that the amplifier
output corresponding to the Gaussian input beam is closer to
the analytical asymptotic parabolic solution than the output
obtained with hyperbolic secant and super-Gaussian beam
input.

It should be pointed out that we can obtain the ana-
lytical expression for the spectrum of the above asymp-
totic parabolic beam. Using the transformation U(Z,Q) =
[, U(Z,X)exp(i2X)dX/+/2m and the stationary phase
method [32], we have

U(Z,Q))° = 2E +K @ (11)
R ETA L o7

at|Q| < Q,,and |U(Z,Q)|? = 0 otherwise, where Q,, = G£/2

and 2 is the spatial frequency. Like the spatial distribution, the

spectrum of the asymptotic parabolic beam is also a parabolic

function [33,34].

IV. POSSIBLE EXPERIMENTAL PROTOCOL

We now give a suitable experimental protocol to gen-
erate the obtained asymptotic parabolic beams in realistic
waveguides. We consider a 1-pum-thick planar semiconductor
waveguide, such as ZnSe [35], doped with CdSe QDs for
N =~ 1x10" cm™3 that are grown by molecular beam epitaxy
using a thermal activation procedure [36]; we also consider
a typical value of the dipole matrix element to be |d,.| ~
1x10728 C m at a transition wavelength in the middle of
A 22 500 nm [37] and y; = 2.5y [13]. The refractive index in
Eq. (1) for ZnSe can be graded with ng ~ 2.7,n; ~ 0.1 cm™2,
and ny ~ —7x107!% cm?/W near 500 nm [38], which leads
t0 Mgerr &~ —1x10722 cm*/W? and A ~ 1x10" s~!. Note
that the exciton lifetime of a single CdSe QD is roughly
300 ps while it is about 100 fs in bulk semiconductors [39].
Furthermore, the typical lifetimes of QDs are of the order
of several tens of picoseconds [40,41]. In our situation, the
semiconductor waveguide is only 1 um thick and confines
the input beam in the y direction. Therefore, it is reasonable to
assume the exciton lifetime of CdSe QDs as 100 ps in our case.
This choice results in y; &~ 1x10'%s™!, such that the system is
well within the confines of a purely dispersive large-detuning
regime A > y,. In this situation, wg~ 33 um and the
diffraction length L, ~ 3.7 cm. The condition E? >> 1 can be
easily satisfied only after about one propagation distance unit
(G = 1), corresponding to a diffraction length. Furthermore,
one can obtain that the required peak intensity is about
850 MW /cm? (corresponding to the five propagation distance
units in Figs. 1-3, changing into z & 18.4 cm), translating
into input power levels of ~50 W. Such power levels can
be realized under quasi-cw conditions (such as Nd:YAG laser
[34]) for which our cw theory remains applicable. Therefore, to
generate asymptotic parabolic beams in realistic waveguides,
one may use the frequency doubled Nd: YAG laser to produce
input beams (such as Gaussian beams) which are then injected
into a 18.4-cm length of CdSe/ZnSe semiconductor waveguide
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with input power levels of ~50 W. Measurement of the output
beams of spatial and spectral profiles was then carried out
using a CCD camera and spectrometer (or optical spectrum
analyzer) [42,43].

V. GENERALIZATIONS

In this section we discuss some generalizations of Eq. (5) by
considering self-similar asymptotic optical beam propagation
in power-law nonlinear media. The power-law nonlinearity
is introduced through a refractive index distribution [21,22]
n(z,x) = ng + n F(2)x* + ng|u(z,x)|9, where n, is the non-
linear coefficient and the exponent may assume continuum
values [21]. In this paper we only consider the case of integer
values of g. The governing equation for the propagation of
optical beams inside such a medium is described by

U N 19°U N I
iy 2 L
3Z  209X* 2

where the beam
(kolng|Lp/no)~"1.
Employing the generalized transformation
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envelope U is normalized by
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we can reduce Eq. (12) to
Al —p— K& =0, (14)

for |€] < o/—n/K, and A(§) = 0 otherwise, when the follow-
ing relations are satisfied:

! %z%—2<<1 K—E ¢ %(FE 077) (15)
E E) _2 E ZZ’

with © > 0and K < 0.
By solving the algebraic Eq. (14), a physical solution for
A(&) is obtained:

A=Vpu+Ke, (16)

where the constant y is determined by the input power Py =
[ U0, X)1%dX = [ A%dE via the equation

r(1+§)ﬁ\/7 2

It is interesting that one can obtain the curvature of Py(u)
as

#py TOU+IVT [T .04 1
T EE R S (-3) o
2 q

From inspection of Eq. (18), it can be seen that the curvature is
positive when g < gcit, zero when g = gy = 4, and negative
when g > ¢ [see Fig. 4(a)]. The existence of such a behavior
(characterized by the change in the sign of d?Py/du?) may
suggest a proper power level when one produces beams from
lasers.
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FIG. 4. (a) Beam input power P, as a function of the pa-
rameter u given by Eq. (17). When ¢ < 4, the curvature is
positive, d*Py/du?® > 0. For ¢ = geric =4, Py vs  is a straight
line (d?*Py/du* =0). When g > gy, the curvature is negative,
d*Py/du* < 0. (b) Evolutions of beam width (top) and beam peak
amplitude (bottom) for ¢ = 6 with the Gaussian input beam, where
the gain and the tapering parameters are G = 1 and F = G*/10. The
circles and squares represent results of the corresponding numerical
simulations by resolving Eq. (12).

Next we consider that F' and G are constants. In this case,
by solving Eq. (15) we obtain the generalized effective width,
2

2K o

q

b=|——"—— exp (—GZ), (19)

25
F (qj—4) 2 4 +4

for F < (ﬁ)sz.

Asymptotic parabolic solutions to Eq. (12) can also be
obtained when one substitutes Egs. (16) and (19) into Eq. (13).
After some calculations, we find that the effective width of the
parabolic beam increases exponentially as exp (qqﬁGZ ) while
the amplitude of the parabolic beam increases exponentially as
exp (qﬁ G Z), and they all depend on the tapering function F.
As a consequence of the exponential increase in beam width, a
liner chirp is produced as ¢ /[2(g + 4)], which is independent
of the propagation distance. Similarly, the presence of a
tapering parameter enables us to control the shape of the output
parabolic beams, since ¢(0) can vary from zero to infinity
as F changes from —oo to (q”ﬂ)sz. The above parabolic
solution exists when the first condition in Eq. (15) is valid. We
find that this condition can be more easily satisfied when g
increases, for the same gain G. For example, when G = 1, the
diffraction term in Eq. (12) can be neglected after about 1.6
propagation distances for ¢ = 2 while it can be neglected after
about only one propagation distance for ¢ = 4. As ¢ increases,
this propagation distance becomes shorter and shorter. This
implies that the self-similar solutions in power-law nonlinear
media with higher exponent could more rapidly evolve into
the parabolic profiles than the lower one.

Figure 4(b) presents an example of the evolution of beam
width and beam peak amplitude in both numerical and
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FIG. 5. Characteristics of output parabolic beams for ¢ = 6 with
(a) Gaussian (left column), (b) hyperbolic secant (middle column),
and (c) super-Gaussian (right column) profiles, which are of the same
initial power Py = 1. The top and middle rows show the distributions
of intensity profiles on a linear scale and on a logarithmic scale,
respectively (the upper lines represent propagation distance at Z = 4
while the bottom lines represent propagation distance at Z = 3).
The bottom row shows the corresponding phase distributions of
the output beams at Z = 4. The solid lines and circles represent
results of the direct numerical simulations of Eq. (12) and the ana-
Iytical predictions, respectively. The parameters are G = —K =1,
F = G?/10, and u = 0.5356.

analytical profiles for ¢ = 6 with the Gaussian input beam,
where the direct numerical simulation of Eq. (12) agrees quite
well with the asymptotic analytical predictions. Figure 5 shows
the evolutions of input beams with different profiles and the
corresponding analytical predictions. Since they have the same
initial power, they all converge to the parabolic beam. One can
find that the general form of the envelope profile and the phase
agree well with the analytical predictions.

VI. CONCLUSIONS

In conclusion, we have studied the propagation properties of
asymptotic optical beams in semiconductor waveguides doped
with QDs. The possibility of controlling the shape of output
asymptotic optical beams was demonstrated. The analytical
results have been confirmed by numerical simulations. We also
gave a possible experimental protocol to generate the obtained
asymptotic parabolic beams in realistic waveguides. Finally,
as the generalization to the present work, we have investigated
the self-similar propagation of asymptotic optical beams in the
power-law nonlinear media.
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