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Entropy production and irreversibility of dissipative trajectories in electric circuits
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We experimentally examine the equivalence between the entropy production evaluated from irreversibility
of trajectories and the physical dissipation in dissipative processes via electric resistor-capacitor (RC) circuits.
The examinations are performed for two nonequilibrium steady states that are driven by an injected current and
temperature difference, respectively. Such an equivalence demonstrates a parameter-free method to evaluate the
entropy production of a system. The effects of configurational and temporal resolutions are also studied.
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I. INTRODUCTION

The message “entropy reads the arrow of time,” as stated by
the second law of thermodynamics, points out the macroscopic
irreversibility in dissipative processes. While the statement
applies to the average behavior of macroscopic systems,
occurrences of reverse configurational trajectories can still be
allowed in dissipative processes and have been observed over
short time intervals in systems with few degrees of freedom
[1,2]. The reverse trajectories, along with their negative
entropy production, can be well described under the scope
of the fluctuation theorem (FT) [3–6], which has been verified
experimentally in many small systems via trajectory analysis
[1,7–10].

The irreversibility of a trajectory x(t) is itself a measure
of dissipation. In thermal equilibrium and nonequilibrium
steady states (NESS), stochastic thermodynamics predicts the
equivalence between the irreversibility of a trajectory and
the dissipation absorbed by the reservoir(s) [11–13], i.e.,
�Straj ≡ kB ln PF [x(t)|x0]

PR[x̃(t)|x̃0] = Q

T
≡ �SQ, where PF [x(t)|x0] and

PR[x̃(t)|x̃0] are the conditional transition probabilities of the
path x(t) and its reverse path x̃(t), respectively, kB is the
Boltzmann constant, and Q represents the net heat dissipating
into the surrounding heat bath of temperature T along x(t).
Therefore, one can in principle evaluate the corresponding
dissipation from the irreversibility of a particular trajectory.
In practice, however, the evaluation is only possible via some
coarse-graining procedure. In the pioneer works by Andrieux
et al. [14,15], the relation was first verified experimentally
in two NESS systems containing a Brownian particle and an
electric RC circuit, respectively. The evaluation of dissipation
due to irreversibility is performed according to a numerical
algorithm where discrete time steps are considered and
trajectories are identified within some path resolution; i.e.,
an observed trajectory can be identified with the preselected
reference trajectory if the distance is less than a certain value.

In this work, we experimentally reexamine the equivalence
between �Straj and �SQ in single trajectory level using
the template of electric resistor-capacitor (RC) circuits. The
resistors in RC circuits are subject to thermal (Johnson-
Nyquist) noises and their overdamped behaviors result from
the same microscopic origins [16]. Thus the voltage signals can
be described via stochastic thermodynamics. The systems are
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closely analogous to microscale particles experiencing Brown-
ian motions [17], and have been explored in the determination
of entropy production with incomplete information [18,19].
To study entropy production in dissipative processes, we
particularly focus on the NESS cases. Two types of NESS are
examined: The NESS is achieved either by a constant driving
current [9] or by the coupling of two heat baths at different
temperatures [20], as shown in Fig. 1. The equivalence between
�Straj and �SQ is reported in Sec. III through the comparison
of their time series and their correlation coefficient, and in
Sec. V through the examination of validity in FT.

In our current work the derivation of dissipation relies on the
use of conditional entropy, as in NESS that often requires the
knowledge of the steady-state distribution. Alternatively, it has
been demonstrated in Ref. [21] that the entropy production can
be derived without such a requirement, if the initial condition
of the system is suitably chosen. Also note that concerning
the derivation of dissipation via irreversibility �Straj, we
do not need a pre-selected trajectory as in Refs. [14,15].
Instead, we choose a coarse-graining scheme such that the
measured voltage signals are sorted into bins. With this
simple method, we can check about the dissipation derived
from irreversibility for all observed trajectories except those
whose time-reversed partners cannot be found. Our result of
�Straj shows remarkable agreement compared to the physical
dissipation �SQ. Furthermore, in Sec. IV we also provide
studies on the effects of resolutions in configuration space and
time regarding the description of trajectories. Our experimental
finding on the effect of time resolution is also examined and
approved by a theoretical path-integral analysis.

II. EXPERIMENTAL SETUP

Figure 1 illustrates the experimental setups. First we con-
sider a current-driven single RC circuit as shown in Fig. 1(a).
The circuit parameter values R = 9.20 M� and C = 429 pF
are determined from the measured noise power spectrum of
voltage V . The constant current source provides I = 300 fA
such that 〈Q̇〉 = I 2R ∼= 200 kBT /s, where T = 296 K . Next
we study a coupled RC circuit as illustrated in Fig. 1(b), which
consists of two adjoining single RC circuits through a bridging
capacitor Cc. The two resistors R1 and R2 are immersed
in heat baths of temperatures T1 = 120 K and T2 = 296 K
respectively, with the cold heat bath maintained in a dewar
via liquid nitrogen vapor. The values of R1, C1, R2, and C2 are
also resolved from the measured noise power spectra of V1 and
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FIG. 1. Schematics of experimental setups. (a) A single RC
circuit driven by a constant current source [9], where I = 300 fA,
C = 429 pF, R = 9.20 M�. (b) A capacitively coupled RC circuit
with two resistors kept at different temperatures [20], where C1 =
488 pF, R1 = 9.01 M�, T1 = 120 K, C2 = 420 pF, R2 = 9.51 M�,
T2 = 296 K, and the coupling capacitor Cc = 1.0 nF .

V2 under the uncoupled condition. The low-noise amplifiers
A, A1, and A2 are set with a voltage gain of 104. The circuits
are shielded in a Faraday cage to avoid noise induced by
electromagnetic radiations. Throughout the experiments, we
record the voltage time series with a sampling rate of 2048 Hz,
which corresponds to a time resolution of �t = 4.88×10−4 s.
A total number of 106 data are recorded during each ex-
perimental run. The experimental setups and calibrations are
done similarly to those described in the pioneered works for
studying FT in NESS in overdamped RC circuits [9,20]. (See
also the Appendices for more information. The noise of the
amplifiers is shown to be negligible through our study.) In
the analysis of entropy production, for statistical purposes, the
measured voltages are sorted into bins of width Vbin.

III. TEST OF EQUIVALENCE BETWEEN HEAT
AND TRAJECTORY ENTROPY PRODUCTION

A. Single RC circuit

We first consider the NESS maintained by a constant current
source [see Fig. 1(a)], using the voltage V as the observable.
To facilitate the data analysis, we define a trajectory V (t)

n−→
V (t + τ ) occurring over duration τ as a discrete voltage time
series, where n stands for the number of time steps and the
arrow indicates the direction of time. Unless mentioned other-
wise, we choose τ = n�t . The corresponding dissipation, or
the dissipated work, is defined as the net heat flowing to the heat
bath through the resistor. Thus the entropy production from
heat can be computed as �S

(n)
Q = ∑t+τ

t V iR�t/T , where
iR = I − CV̇ is the current flowing through R [9]. In the mean-
time, one can obtain the joint probability P [V (t)

n−→ V (t + τ )]
by counting its occurrences from all measured trajectories,
and the conditional transition probability P [V (t)

n−→ V (t+τ )
|V (t)] = P (V (t)

n−→ V [t + τ )]/Pss[V (t)], where Pss(V ) is the
steady-state probability distribution.

To investigate the irreversibility of a process, we look for the
occurrences of its reverse trajectory V (t + τ )

n−→ V (t). Note
that the reverse trajectory has to be found in the scenario
where the NESS is maintained by a negated current source
I = −300 fA [12]. Alternatively, due to the symmetry of the
circuit, the same scenario can be achieved simply by negating
the measured voltage time series without current inversion.

FIG. 2. Equivalence between heat and trajectory entropy produc-
tion in current-driven NESS. (a) Snapshot of the time series of �S

(2)
Q

(red line) and �S
(2)
traj (black line). (b) Probability distribution of �S

(n)
Q

(solid lines) and �S
(n)
traj (symbols) for n = 1 and 2. (c) Joint probability

distribution log P (�S
(2)
Q ,�S

(2)
traj). The black dashed line of unit slope

is provided as a guide.

The trajectory entropy production of the path V (t)
n−→

V (t + τ ) is defined by

�S
(n)
traj ≡ kB ln

PF [V (t)
n−→ V (t + τ )|V (t)]

PR[V (t + τ )
n−→ V (t)|V (t + τ )]

, (1)

where PF [V (t)
n−→ V (t+τ )|V (t)] and PR[V (t+τ )

n−→ V (t)
|V (t + τ )] are the conditional forward and backward transition
probabilities provided that their initial states are V (t) and
V (t + τ ), respectively. Note that for those trajectories with
large positive entropy production, their corresponding reverse
trajectories have negative entropy production of the same
magnitude [see Eq. (1)]. As a consequence, the occurrences
of these reverse trajectories are pretty rare, and the reverse
events can sometimes be even missing due to the limitation of
finite observation time. For the trajectories where their reverse
partners cannot be found, �S

(n)
traj cannot numerically be defined

from the experiment (or it can be treated as positive infinity).
To directly compare �S

(n)
traj and �S

(n)
Q side by side for each

single event, the trajectories where no reverse partners can be
found are excluded from the original set of trajectories. The
distributions P (�S

(n)
traj) and P (�S

(n)
Q ) are derived from the new

set of trajectories, while the original heat entropy production
distribution P (�S

(n)
Q0) is derived from the original set. Note that

the exclusion of these events can result in systematic biases
toward P (�S

(n)
traj) and P (�S

(n)
Q ), since the entropy production

of these events is mostly large and positive. The extent of
such biases can be investigated by referring to P (�S

(n)
Q0), as is

discussed in Sec. IV.
Figure 2(a) shows a snapshot of our derived time series

�S
(2)
Q (red line) and �S

(2)
traj (black line) using Vbin = 1 μV. The

two results match remarkably well, while small deviations
can be observed from their probability distribution functions
(PDF) as shown in Fig. 2(b) [for both 1-step (n = 1) and 2-step
(n = 2) transitions]. The results of P (�S

(n)
traj) are slightly

012158-2



ENTROPY PRODUCTION AND IRREVERSIBILITY OF . . . PHYSICAL REVIEW E 95, 012158 (2017)

FIG. 3. Equivalence between heat and trajectory entropy produc-
tion in temperature-driven NESS. (a) Snapshot of the time series
of �S

(1)
Q (red line) and �S

(1)
traj (black line) using Vbin = 0.5 μV.

(b) Probability distribution of single-step entropy production �S
(1)
Q

(solid line) and �S
(1)
traj (symbol). (c) Joint probability distribution

log P (�S
(1)
Q ,�S

(1)
traj). The black dashed line of unit slope is provided

as a guide.

more scattered (which is more prominent in the case
n = 2) due to the statistical uncertainties of rare events.
Our results give the averages 〈�S

(1)
traj〉 = 9.57×10−2 kB ,

〈�S
(1)
Q 〉 = 9.79×10−2 kB , 〈�S

(2)
traj〉 = 1.96×10−1 kB , and

〈�S
(2)
Q 〉 = 1.96×10−1 kB . As a comparison, the analytically

predicted values are 〈�S(2)〉 = 2〈�S(1)〉 = 2IR2�t/T =
1.96×10−1 kB . In Fig. 2(c) we present the joint probability
log P (�S

(2)
Q ,�S

(2)
traj). The correlation coefficient between

�S
(n)
Q and �S

(n)
traj is 0.97 for both n = 1 and n = 2 cases. Our

experimental results provide firm evidence that the entropy
evaluated from path irreversibility indeed gives the authentic
entropy dissipation.

B. Temperature-driven coupled circuit

As a second example, we consider a capacitively cou-
pled RC circuit, of which the two resistors are subject to
different heat baths [see Fig. 1(b)]. Similar to the con-
struction in the single RC case, we use �V ≡ (V1,V2) as
our experimental state observables. And the net entropy
dissipation in a trajectory �V (t)

n−→ �V (t + τ ) is �S
(n)
Q =∑t+τ

t (V1iR1
T1

+ V2iR2
T2

)�t , where iR1 = −C1V̇1 − Cc(V̇1 − V̇2)

and iR2 = −C2V̇2 − Cc(V̇2 − V̇1) are the currents through
R1 and R2, respectively [20]. Meanwhile, for the same

process, one has �S
(n)
traj = kB ln PF [ �V (t)

n−→ �V (t+τ )| �V (t)]

PR [ �V (t+τ )
n−→ �V (t)| �V (t+τ )]

. A snap-

shot of the time traces and the PDF distributions for
both entropies are presented in Figs. 3(a) and 3(b), re-
spectively, for single-step transitions. Our experimental data
lead to the averages 〈�S

(1)
traj〉 = 1.95×10−2 kB and 〈�S

(1)
Q 〉 =

1.55×10−2 kB . As a reference, the analytical prediction gives
〈�S(1)〉 = 〈Q̇〉�t( 1

T1
− 1

T2
) = 1.46×10−2 kB , where 〈Q̇〉 =

C2
c kB (T2−T1)

(C1Cc+C2Cc+C1C2)[(C1+Cc)R1+(C2+Cc)R2] is the average heat flow
from the heat reservoir T2 to T1 [20]. Note that the seemingly
large fraction of deviation in 〈�S

(1)
traj〉 can be comprehended

by knowing that the average values of �S
(1)
traj and �S

(1)
Q

are much smaller than their standard deviations, the latter
ranging in the order of kB . Figure 3(c) exhibits the joint
probability log P (�S

(1)
Q ,�S

(1)
traj). The remarkable correlation

(with a correlation coefficient 0.92) suggests the equivalence
of �S

(n)
Q and �S

(n)
traj in temperature-driven NESS.

IV. EFFECTS OF COARSE GRAINING IN
CONFIGURATION SPACE AND TIME RESOLUTION

A. Coarse graining in configuration space

First we inspect the effects of coarse graining in configu-
ration space. Naı̈vely speaking, a finer choice of Vbin should
give better results, as stochastic trajectories can be described
with more detail. On the other hand, in the derivation of �S

(n)
traj,

occurrences of reverse trajectories are required. In particular,
for trajectories with large positive entropy production, their
reverse partners can be quite rare. Reducing Vbin differentiates
similar trajectories into different trajectory types, and each
trajectory category gets few events for finite sample size. As
a result large fluctuations in �S

(n)
traj may occur due to poor

statistics. The problem gets even more severe when the system
is driven far from equilibrium, where most trajectories have
positive entropy production.

In this work the coarse-graining effect is explored using
the current-driven single RC circuit for the case of n = 4.
We first list the probability distributions P (�S

(4)
traj), P (�S

(4)
Q ),

and P (�S
(4)
Q0) in Fig. 4(a) using Vbin = 1 μV. The three

distributions are quantitatively very much alike in the section
of small entropy production. Furthermore, in most part of
large positive entropy production, P (�S

(4)
traj) stays closer with

P (�S
(4)
Q ), as both distributions are lower than the primitive

distribution P (�S
(4)
Q0). The deviations are attributed to that

P (�S
(4)
traj) and P (�S

(4)
Q ) are derived from the set of trajectories

in which the trajectories whose reverse counterparts cannot be
found are discarded.

Figure 4(b) shows the number of discarded events (out
of 106 total events in the original set of trajectories) and
cross-correlation coefficient between �S

(4)
traj and �S

(4)
Q . The

result indicates that as Vbin increases, the number of discarded
events diminishes, and �S

(4)
traj and �S

(4)
Q coincide. The average

entropy production is presented in Fig. 4(c). Note that 〈�S
(4)
Q0〉

is rather independent of Vbin and can represent the authentic
entropy production. The strong correlation between �S

(4)
Q and

�S
(4)
traj is again demonstrated in their averages, while deviations

from 〈�S
(4)
Q0〉 emerge at finer values of Vbin. Note that as Vbin

further increases and approaches the standard deviation of
Pss(V ), most trajectories are classified into very few categories,
resulting in poor differentiation. Therefore, a proper choice of
Vbin should satisfy a lower bound criterion to prevent poor
statistics for finite sample size, and an upper bound criterion
to ensure the capability of resolving state differences within
the intrinsic fluctuations of the system.
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FIG. 4. Comparison of evaluation of entropy production using
various configurational and temporal resolutions in current-driven
NESS. (a) Probability distributions of �S

(4)
traj (black circle), �S

(4)
Q

(solid red line), and �S
(4)
Q0 (dashed red line) using Vbin = 1 μV.

(b) Number of discarded events (blue triangle) and cross correlation
between �S

(4)
traj and �S

(4)
Q (black star) against Vbin. The total number

of events is 106 (indicated by the dashed line). (c) Average entropy
production of �S

(4)
traj (black solid circle), �S

(4)
Q (red diamond), and

�S
(4)
Q0 (blue square) for various chosen Vbin. Panels (d) and (e): Similar

analysis for sampling temporal resolutions �t , 2�t , and 4�t , for
trajectories of overall duration τ = 4�t [the same symbols as panels
(b) and (c); Vbin = 1 μV is used]. (f) Average entropy production of
single-time-step trajectories, 〈�S(1)〉, for various sampling temporal
resolutions. Experimental results of �S

(1)
traj (black circle) and �S

(1)
Q

(red line), and theoretical prediction of �S
(1)
traj (blue dashed line) are

shown for comparison. The gray vertical dot-dashed line indicates
the RC time constant of the circuit.

B. Effects of temporal resolution—fixed trajectory duration

As to the study of temporal resolution, we analyze
trajectories of overall duration τ = 4�t = 1.95 ms using
three different numbers of time steps: n = 1, 2, and 4. Thus
the corresponding temporal resolutions are 4�t , 2�t , and
�t , respectively. A rougher temporal resolution means more
skipped information. However, from our observation it does
not seem to affect much on the determination of entropy
production, as is shown in Figs. 4(d) and 4(e). Similar to
the effects of coarse graining in configuration space, we find
that with the use of a finer temporal resolution, the number of
discarded events increases, and the average entropy production
drops down slightly. This is again due to many large-�S events
whose reverse counterparts can hardly be found are discarded.

The above observation indicates that a rougher temporal
resolution does not affect the entropy production. However,
this statement will fail if the temporal resolution is larger than
the circuit relaxation time RC, the latter being approximately
4 ms in our setup. In such a regime, only the state changes over
the time scale of autocorrelation of the system will be recorded
in the calculation of trajectory entropy production. This will
be further explained in the following subsection with the aid
of theoretical analysis.

C. Effects of temporal resolution—single-time-step transition

In this subsection we study the effect of temporal resolution
for the driven single RC circuit from a theoretical perspective.
For simplicity, we focus on single-time-step trajectories only.
The infinitesimal forward transition probability can be written
down as [19]

PF [V (dt)|V (0)] ∼ exp

[−(MV̇ ′ + V ′)2dt

2�

]
,

where M ≡ RC, V ′ ≡ V − IR, and � ≡ 2RkBT , and the
symbol ∼ denotes equivalence up to a constant that remains in-
variant over time inversion. The finite-time forward transition
probability can be evaluated via the path integral

PF [V (τ )|V (0)] ∼
∫
DV (t) exp

[− ∫
(MV̇ ′ + V ′)2dt

2�

]

∼ exp

[− ∫
(MV̇ ′

op + V ′
op)2dt

2�

]
. (2)

The optimal path V ′
op(t) can be derived via the variational

method: Defining the Lagrangian L ≡ (MV̇ ′ + V ′)2, the
optimal path suffices the condition δ

∫
Ldt = 0, and hence

d
dt

( ∂L

∂V̇ ′ ) − ∂L
∂V ′ = 0. It leads to the equation MV̈ ′

op = V ′
op. By

straightforward evaluation one then gets

PF [V (τ )|V (0)] ∼ exp

{
−M[V ′(τ )eM−1τ − V ′(0)]2

�(e2M−1τ − 1)

}
. (3)

The backward transition probability is simply derived by
inverting the roles of V (0) and V (τ ) and replacing V ′ with
V ′′ ≡ V + IR. Thus we have

�S
(1)
traj

kB

= ln
PF

PR

= −M

�
[V 2(τ ) − V 2(0)]

+ 2MIR[V (0) + V (τ )]

�

eM−1τ − 1

eM−1τ + 1
. (4)

In the small-τ regime, the right-hand side of Eq. (4) approaches
τ [V (τ ) + V (0)][I − CV̇ ]/(2kBT ), and is thus equivalent to
�SQ/kB . However, the deviation from �SQ/kB grows up as
τ approaches the system autocorrelation time RC. In the case
τ 	 RC, the total entropy evaluated by this means approaches
the expression RCI [V (0) + V (τ )]/T , the average entropy
production over duration 2RC. Figure 4(f) shows single-
time-step entropy production average 〈�S(1)〉 for various
trajectory duration τ (in this case τ equals time resolution),
and 〈�S

(1)
traj〉 from experimental analysis (black circle) matches

the theoretical prediction of Eq. (4) (blue line) very well.
While 〈�S

(1)
traj〉 grows linearly with τ in the small-τ regime,

it saturates at 2I 2R2C/T ∼ 1.5kB and cannot properly stand
for the correct entropy production when τ 	 RC. On the
contrary, 〈�S

(1)
Q 〉 (red line) truly represents the average entropy

production of the system, as shown by its linear behavior over
all values of τ . Therefore, similar to the discussion for Vbin,
an appropriate choice of temporal resolution should lie within
some intermediate regime to prevent poor statistics and to
ensure the capability of resolving state changes within the
intrinsic autocorrelation time scale of the system.
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FIG. 5. Symmetry functions of total entropy production for n = 1
(red circle) and 2 (blue square) for the single RC circuit. Vbin = 1 μV
is applied in the data analysis. A dashed black line of unit slope is
provided as a guidance.

V. TEST OF FLUCTUATION THEOREM

In RC circuits, FT is often manifested through the consid-
eration of the total entropy production �Stot = �SSh + �SQ,
where �SSh = −kB ln Pss[V (t+τ )]

Pss[V (t)] is the change in Shannon
entropy, and �SQ represents the heat entropy dissipation
[22]. In this work, instead, we replace �SQ by the trajectory
entropy �Straj. FT is examined through the consideration of
a symmetry function [20,22] Sym(�Stot) ≡ kB ln P (�Stot)

P (−�Stot)
, in

which P (�Stot) is the probability distribution of �Stot. Figure 5
shows Sym(�S

(n)
tot ) for n = 1 and 2 for the case of current-

driven single RC circuit. The validity of FT is demonstrated
via the linear relation with unit slope. Note that, for this
demonstration, the evaluation of �Stot relies on probability
distributions only and requires no circuit parameter. Therefore,
a fully probabilistic description of entropy production can be
naturally envisioned.

VI. SUMMARY

In this work we experimentally demonstrate the equivalence
between �Straj and �SQ using two scenes of NESS, where
the electric circuits are driven out of thermal equilibrium by a
constant current source and temperature gradient, respectively.
Trajectories with negative entropy production can be observed
in these systems due to the broad distributions of entropy
production. For the derivation of �Straj from experimental
trajectories, one has to carefully choose the configuration and
temporal resolutions in order to properly describe trajectories,
while good statistics can still be achieved for determining
transition probabilities. This equivalence is reaffirmed in the
verification of FT with the trajectory entropy replacing its
corresponding heat dissipation. Note that our data analysis
is performed without the knowledge of circuit parameters,
and thus this work serves as an experimental example where
entropy production can be fully derived from a probabilistic
description.
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APPENDIX A: EXPERIMENTAL DETAILS

The experimental setups in our studies are similar to two
pioneer works [9,20]. The measured RC circuits in a metal
shielding box is placed in a Faraday cage on an optical table.
In the current-driven single RC circuit experiment, the constant
current is generated by a battery in series with a 10-G� resistor.
Its source resistance is therefore 10 G� and its thermal noise
is 1000 times weaker than the studied systems. As for the
coupled RC circuits connected to two different temperature
baths, the resistor R1 in a metal shielding box is cooled in a
semiclosed liquid nitrogen dewar by liquid nitrogen vapor.

We use two-stage voltage amplifiers with gain of 104 to
magnify the thermal voltages before sampling. The first stage
with voltage gain of 100 is provided by Stanford Research
Systems SIM910 or SR560 JFET amplifier. The second stage
with gain of 100 is provided by the preamplifier in Stanford
Research Systems SR780 spectrum analyzer. The amplified
signals are filtered by a 160-kHz antialiasing filter, digitized

FIG. 6. Noise characterizations of voltage amplifiers SR560 and
SIM910. (a) Amplifier noise model. Panels (b) and (c): Measured
noise spectral density v2

n vs f for different Rs (0, 0.997, 9.20,
and 100 M�, from bottom to top curves) for SR560 and SIM910,
respectively. Panels (d) and (e): v2

n (at 1 Hz) vs Rs of SR560 and
SIM910, respectively. The fitting result of e2

R against Rs is indicated
as a dashed line, while the contribution of e2

n is plotted as a dotted
line. The fitting parameters are listed in Table 1.
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TABLE I. Noise model fitting parameters of voltage amplifiers.

Amplifier i2
n [A2/Hz] 4kBT [J] e2

n [V2/Hz] (measured)

SR560 −1.51×10−29 1.68×10−20 1.15×10−15

SIM910 3.55×10−30 1.67×10−20 1.26×10−15

at 262.1 kHz, and averaged over 128 digitized points for a
sample to achieve sampling rate of 2048 Hz.

APPENDIX B: INPUT NOISE OF AMPLIFIERS

The input voltage noise en and input current noise in of
both first stage amplifiers are characterized by measuring
the noise spectral density v2

n against the source resistance
Rs . According to the noise model of the voltage amplifier
with a source resistance Rs at the input [see Fig. 6(a)]
[23], three uncorrelated noises contribute to the overall input
noise spectral density v2

n = e2
n + i2

nR
2
s + 4kBT Rs , where e2

R =
4kBT Rs is the spectral density of the Johnson noise of Rs (also
representing the studied noise signal), and e2

a = e2
n + i2

nR
2
s is

the added noise spectral density by the amplifier. Figures 6(b)
and 6(c) show the measured v2

n vs frequency f for different Rs

(0, 0.997, 9.20, and 100 M�, from bottom to top curves) for
SR560 and SIM910, respectively. The high-frequency roll-offs
for large Rs due to the amplifier input capacitance (about tens
of pF) are in evidence. The measured v2

n at low frequencies
increases with Rs for both amplifiers. Figures 6(d) and 6(e)
show v2

n (at 1 Hz) vs Rs of SR560 and SIM910, respectively.
The measured v2

n increases linearly with Rs : No sign of
quadratic dependence on Rs is observed. e2

n of the order of
10−15 V2/Hz is directly determined by v2

n at Rs = 0. The data
are fitted to the noise model to determine i2

n and T . The fitting
gives insignificant i2

n and T 
 300 K for both amplifiers (see
Table I). The fitting result of thermal noise power 4kBT Rs

is indicated as a dashed line, while the contributions of e2
n

are plotted as a dotted line. For Rs of around 10 M� in our
study, the contribution of e2

a (10−15 V2/Hz, mainly from en)
to v2

n (10−13 V2/Hz) is indeed negligible.

FIG. 7. The spectra of the measured thermal voltages of the
studied circuit (red and blue solid lines) are compared to the input
voltage noise spectra e2

n of SR560 and SIM910 (green and purple
solid lines). The fitting to FDT (black dashed lines) gives the circuit
parameters C1 = 488 pF, R1 = 9.01 M�, T1 = 120 K, C2 = 420 pF,
R2 = 9.51 M�, T2 = 296 K, and Cc = 100 pF.

APPENDIX C: THERMAL NOISE OF STUDIED CIRCUIT

The measured thermal noise powers of coupled RC circuit
[see Fig. 1(b) in the main text] with Cc = 100 pF are plotted
(red and blue solid lines) in Fig. 7. The input voltage noise
spectra e2

n of SR560 and SIM910 are shown (green and
purple solid lines) for comparison. The thermal noise of the
studied circuit overwhelms the added noise of the amplifiers by
orders of magnitude. The circuit parameters are determined by
fitting the measured noise powers to the fluctuation-dissipation
theorem (FDT) [9,20]. The noise powers evaluated by FDT and
the fitting parameters (black dashed lines in Fig. 7) match the
measured noise powers perfectly. The FDT determined values
are consistent with the nominal values of elements and the
temperatures read by thermometry.
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