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Lévy flights in the presence of a point sink of finite strength
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In this paper, the absorption of a particle undergoing Lévy flight in the presence of a point sink of arbitrary
strength and position is studied. The motion of such a particle is given by a modified Fokker-Planck equation
whose exact solution in the Laplace domain can be described in terms of the Laplace transform of the unperturbed
(absence of the sink) Green’s function. This solution for the Green’s function is a well-studied, generic result
which applies to both fractional and usual Fokker-Planck equations alike. Using this result, the propagator and the
absorption-time distribution are obtained for free Lévy flight and Lévy flight in linear and harmonic potentials in
the presence of a delta function sink, and their dependence on the sink strength is analyzed. Analytical results are
presented for the long-time behavior of the absorption-time distribution in all three above-mentioned potentials.
Simulation results are found to corroborate closely with analytical results.
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I. INTRODUCTION

Diffusion in the presence of a point sink has always been
a problem of great interest, as it allows for the evaluation
of important quantities like the survival probability and the
first-passage time distribution. Herein, the diffusing particle
is absorbed (with a certain probability) when it arrives at the
sink. Brownian motion in the presence of a point sink is a very
well-studied, classic problem [1] and has often been used to
model chemical reactions in solution which are triggered by
a first-passage event, in particular, the problem of electronic
relaxation in solution [2–5]. The reaction-diffusion equation
for this problem is given by

∂P (x,t)

∂t
=

[
D

∂2

∂x2
+ ∂

∂x

V ′(x)

mγ
− k0δ(x − xs)

]
P (x,t),

(1)

where V (x) is the potential, k0 is the sink strength (with
dimensions LT −1), xs is the position of the sink, D is the
diffusion constant, γ is the friction constant, and m is the
mass of the particle. The above reaction-diffusion equation
is in the overdamped limit including the effect of a sink.
One should note that the solution of Eq. (1), P (x,t), is not
a normalized quantity, as the particle number is not conserved
due to absorption.

The probability of absorption of the particle on arrival at the
sink is determined by k0. When k0 → ∞, the diffusing particle
is completely annihilated when it reaches xs and its solution is
widely given using the method of images [1,6], which suggests
that

P (x,t) = G0(x,t |x0) − G0(x,t |x0 − 2xs), (2)

where G0(x,t |x0) is the propagator in the absence of a sink.
This solution (i) results in the density being exactly equal to 0
at xs and (ii) provides the correct P (x,t) for (x − xs)sgn(x0 −
xs) � 0, i.e., for all final positions on the same side of the
sink as the initial position. For (x − xs)sgn(x0 − xs) < 0, the
method of images does not hold and the correct solution in
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this regime, P (x,t) = 0 in the case of Brownian motion, is
obtained from physical reasoning.

For a sink of finite strength, k0, the solution from the method
of images can no longer be applied. This problem was studied
in detail in [2] and [5], and it was found that the Laplace
transform of the Green’s function corresponding to the motion
in the presence of a finite sink can be given in terms of the
Laplace transform of the Green’s function in the absence of a
sink as

G(x,s|x0) = G0(x,s|x0) − k0G0(x,s|xs)G0(xs,s|x0)

1 + k0G0(xs,s|xs)
. (3)

The derivation for the above expression, as given in [2] and [5],
is provided in Appendix A. This result is important because (i)
it is an exact result in the Laplace doamain, (ii) it provides a
generalized solution for diffusive motion in the presence of a
delta-function sink of arbitrary strength (k0) and position (xs),
and (iii) in the time domain, it gives the correct solution for
G(x,t |x0) for all values of x, unlike the method of images.
Though this result was derived in the context of Brownian
motion, it can be applied to any diffusive motion that is
Markovian.

The aim of this paper is to study Lévy flights in the presence
of a delta-function sink. Lévy flights is a class of anomalous
diffusion where the diffusing particle takes short steps at each
interval of time interspersed by occasional, very long flights.
These step lengths are taken from a Lévy distribution. A
symmetric Lévy distribution [7–9] is given by

Lα,0(x) = 1

2π

∫ ∞

−∞
dp e−|p|α eipx, (4)

where 0 < α < 2 is the Lévy index. When α = 2, the distribu-
tion reduces to a Gaussian which is the step-length distribution
for Brownian motion. Lévy distributions are characterized
by their fat tails and the asymptotic behavior of 1/|x|α+1,
resulting in a diverging second moment as opposed to a finite
variance for a Gaussian. Lévy motion can be described by a
generalization of the Fokker-Planck equation, referred to as
the fractional Fokker-Planck equation [7,8,10], which is

∂P (x,t)

∂t
=

{
−D

(
− ∂2

∂x2

)α/2

+ ∂

∂x

V ′(x)

mγ

}
P (x,t). (5)
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The fractional derivative operator accounts for long flights in
the particle trajectory.

The effect of a point sink on Lévy flights can be captured
using a modified fractional Fokker-Planck equation as done
for Brownian motion, and is given by

∂P (x,t)

∂t
=

{
− D

(
− ∂2

∂x2

)α/2

+ ∂

∂x

V ′(x)

mγ
− k0δ(x − xs)

}
P (x,t). (6)

Due to the nonlocal jumps [11], a Lévy particle can leap over
the sink without actually visiting it. This is fundamentally
different from a Brownian particle, which, due to its finite
variance, necessarily visits the sink before crossing it. The
point sink can therefore play two distinct roles in Lévy motion:

Case 1. The sink serves as a perfectly absorptive wall and
the particle does not cross xs . This is the problem of Lévy
flights on a semi-infinite line [11,12], for which the long-time
behavior of the first-passage time distribution (FPTD) is
given by the Sparre Andersen theorem [1,13,14]. According
to the theorem, the asymptotic behavior of the FPTD for
any Markov process where the step sizes are chosen from
an arbitrary, continuous, symmetric distribution behaves as
∼t−3/2 which is similar to that for Brownian motion. This
theorem suggests that the FPTD shows a universal long-time
behavior, completely independent of the Lévy index; its
coefficient however, depends on α [11].

Case 2. The point sink absorbs the particle only when it
arrives exactly at xs , allowing for leaps over the sink. As a
result of the nonlocal jumps, passage across the sink does
not imply arrival at the sink. In this situation, one has to be
concerned about the first-arrival time distribution (FATD) and
not the FPTD. (It must be noted that the FPTD and FATD are
identical for Brownian motion.) The Green’s function for this
problem is 0 only at the sink and nonzero on either side even
if the sink strength is infinite. A naive approach to finding
the propagator for this problem would be to use the method
of images. However, as discussed for Brownian motion, this
would give incorrect results for (x − xs)sgn(x0 − xs) < 0. The
long-time behavior of the FATD for free Lévy flight with a
perfectly absorbing sink was found to be [15]

pfree
fa (t) ∼ C(α)

|x0|α−1

D1− 1
α t2− 1

α

, (7)

where

C(α) = α�(2 − α)�
(
2 − 1

α

)
sin

(
πα
2

)
sin2

(
π
α

)
π2(α − 1)

. (8)

Further, it was found that the solution obtained from the
method of images has an ∼t−1− 1

α which is consistent nei-
ther with the above FATD nor with the Sparre-Anderson
theorem.

In this paper, the effect of a point sink on Lévy flights,
as described in Case 2, is studied. This work goes beyond
the finding in Eq. (7) to include delta-function sinks of
finite strength (k0) at arbitrary locations (xs �= 0). For this
purpose, the prescription for the Green’s function given in

Eq. (3) is used. In the presence of a sink of finite strength,
the probability of absorption of the particle upon its first
arrival at the sink is less than unity [see Eq. (48)], and
therefore, the quantity of interest will be the absorption-
time distribution and not the FATD. For a sink of infinite
strength, the absorption-time distribution will reduce to the
FATD.

Several situations of physical interest can be studied using
fractional diffusion in the presence of a finite sink. One
such example is polymer surface diffusion. Single-molecule
fluorescence experiments suggest that if the surface contains
only a limited number of adsorption sites, the polymers are
not completely adsorbed at all times and the diffusion does
not occur by polymer-crawling on the surface. The diffusion
proceeds via a repeated adsorption-desorption mechanism
mediated by diffusion into the bulk [16,17]. Due to this
mechanism, the trajectories of polymer segments on the
surface show long jumps which are modeled using a truncated
Lévy flight with α ≈ 1.5 for the case studied in [18]. It was
also found that the adsorption sites are not identical; some sites
allow for desorption more readily than the others [19] and these
“weakly” adsorbing sites may be modeled using finite sinks.
Though the problem dealt with in this paper has only one finite
point sink, it can be easily extended to an array of finite sinks
(like it is in the polymer surface diffusion problem).

Protein diffusion on DNA offers yet another interesting
application. DNA, being a polymer, has its loop-size distribu-
tion given by a fat-tailed Lévy distribution [20]. An enzyme
such as DNA polymerase diffuses on the DNA in search of a
particular codon and binds to this site, triggering the unzipping
process. Due to the presence of loops, the protein could diffuse
across to the neck of the loop, referred to as the intersegmental
transfer, and the diffusion, when viewed from the topology of
the DNA, appears to be a Lévy flight [21]. The binding to the
target site can be modeled by the delta-function sink and the
error induced in biological processes due to improper binding
can be given by a finite k0.

It is well known that encounters in biology such as foraging,
predator-prey dynamics, and pollination have significant ad-
vantages by adopting Lévy strategies for their search [22–24],
and they can be studied using a fractional reaction-diffusion
equation [15]. With a finite sink as given in Eq. (6), one
can include “nonreactive” encounters, i.e., those encounters
which do not halt the diffusive search. Several other examples,
such as the dynamics of infection transfer [25], motion of the
eye microsaccade which is essential for visual fixation [23],
foraging activity by the human brain and memory retrieval
[26], and activity in stock markets resulting after the stocks
hit a threshold value for the first time [1,15], are potential
applications of the problem discussed in this paper.

In Sec. II of this paper, the effect of an absorbing sink
on the propagator and absorption-time distribution is studied
for (i) the free particle, (ii) the particle subjected to a linear
potential, and (iii) the particle in a harmonic potential. The
absorption-time distribution is given by the negative derivative
of the survival probability as

pabs(t) = − d

dt

∫ ∞

−∞
dx P (x,t). (9)
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Starting from the propagator given in Eq. (3), one can express
the absorption-time distribution in the Laplace domain as

p̃abs(s) = k0G0(xs,s|x0)

1 + k0G0(xs,s|xs)

= G0(xs,s|x0)

G0(xs,s|xs)

1(
1 + 1

k0G0(xs ,s|xs )

) . (10)

Given that free Lévy flight and Lévy flight in linear and
harmonic potentials are exactly solvable problems in the
time domain, we use the knowledge to obtain their Laplace
transforms and use them in Eq. (3) and Eq. (10) to evaluate
the corresponding quantities. In Sec. III, Langevin dynamics
simulations are employed for Lévy flights in different poten-
tials and different sink strengths to obtain the corresponding
absorption-time distributions. The simulation results are found
to be in close agreement with the results obtained from (the
inverse Laplace transform of) Eq. (10).

II. EFFECT OF AN ABSORBING SINK ON LÉVY FLIGHTS
IN DIFFERENT POTENTIALS

A. Free Lévy flight

The propagator for free Lévy flight, i.e., V (x) = 0, can be
obtained by solving the fractional Fokker-Planck equation in
Eq. (5) [27] or using path integrals [8] to obtain

Gfree
0 (x,t |x0) = 1

2π

∫ ∞

−∞
dp e−Dt |p|α eip(x−x0)

= 1

(Dt)1/α
Lα,0

(
x − x0

(Dt)1/α

)
. (11)

Alternately, the above Lévy distribution can be written in terms
of a Fox H function [27] as

Gfree
0 (x,t |x0) = 1

α|x − x0|H
1,1
2,2

[
|x − x0|
(Dt)1/α

∣∣∣∣∣
(
1, 1

α

) (
1, 1

2

)
(1,1)

(
1, 1

2

)
]
.

(12)

The advantage of using the H function representation is that
its Laplace transform can be represented in terms of yet
another H function [28] (see Appendix B). Using the formula
prescribed in Eq. (B1), the Laplace transform of the free
particle propagator can be easily obtained as

Gfree
0 (x,s|x0) = L

{
Gfree

0 (x,t |x0); s
} = s−1

α|x − x0|H
1,2
3,2

×
[

D1/αs−1/α

|x − x0|

∣∣∣∣∣
(
0, 1

α

)
,(0,1),

(
0, 1

2

)
(
0, 1

α

)
,
(
0, 1

2

)
]
.

(13)

Further, the Laplace transform of the loop propagator with
x = x0 is

Gfree
0 (x,s|x) = 1

2π

∫ ∞

−∞
dp

∫ ∞

0
dt e−st e−Dt |p|α

= 1

π

∫ ∞

0
dp

1

Dpα + s
(14)

= csc(π/α)

αD
1
α s1− 1

α

. (15)

FIG. 1. Green’s function for free Lévy flight (α = 5
3 ) evaluated

with the sink at xs = 0, x0 = 1 and time t = 2 for varying sink
strengths. The propagator is 0 at the sink for infinite sink strength
and nonzero for k0 = 5.

The Laplace integral for the loop propagator is convergent
only for 1 < α � 2 as can be seen from Eq. (14). Gfree

0 (x,s|x0),
however, is convergent for all values of α, viz., 0 < α � 2.

Employing Eq. (13) and Eq. (15) in Eq. (3), one can
find the Laplace transform of the propagator for free Lévy
flight in the presence of a point sink. Its inverse Laplace
transform has to be obtained to get the desired propagator in
the time domain. The inversion, however, cannot be performed
analytically. Therefore, the inversion is done numerically using
the Gaver-Stehfast method [29] and the propagator is plotted
in Fig. 1. As one would expect, the function goes to 0 at the
sink of infinite strength, and for a sink of finite strength, it has
a nonzero density at the sink. The propagator is nonzero for
(x − xs)sgn(x0 − xs) < 0 (even for the infinite-sink case) due
to the nonlocal jumps which are allowed in Lévy flights.

The absorption-time distribution for free Lévy flight in the
Laplace domain can be obtained using Eq. (10), which is

p̃free
abs (s) = D1/α s−1/α sin(π/α)

|xs − x0|
(

1 + αD
1
α s1− 1

α

k0 csc(π/α)

)

×H
1,2
3,2

[
D1/αs−1/α

|xs − x0|

∣∣∣∣∣
(
0, 1

α

)
,(0,1),

(
0, 1

2

)
(
0, 1

α

)
,
(
0, 1

2

)
]
. (16)

Though the above Laplace transform cannot be inverted
analytically, one can obtain the long-time behavior of
the absorption-time distribution from its small-s limit [see
Eq. (C1) for details], which is given by

p̃free
abs (s) = 1 +

(
Afree

1 + Afree
2

k0

)
s1− 1

α + . . . , (17)

where

Afree
1 = α�(1 − α) sin

(
π
α

)
�

(
1 − α

2

)
�

(
α
2

) |xs − x0|α−1

D1− 1
α

,

Afree
2 = −αD

1
α sin

(π

α

)
. (18)
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The Laplace inverse of the above equation [see Eq. (C2)],
which gives the long-time behavior of pfree

abs (t), turns out to be

pfree
abs (t) ∼

(
Cfree

1 + Cfree
2

k0

)
1

t2−1/α
, (19)

where

Cfree
1 = α�(2 − α)�

(
2 − 1

α

)
sin

(
πα
2

)
sin2

(
π
α

)
π2(α − 1)

|xs − x0|α−1

D1− 1
α

(20)

= (α − 1)|xs − x0|α−1

D1− 1
α

×
(

π �(3 − α)

2α �
(
2 − 1

α

)
�

(
2 − α

2

)
�2

(
1
α

)
�

(
α
2

)
)

, (21)

Cfree
2 = (α − 1)2

(
πD

1
α

α�
(
2 − 1

α

)
�2

(
1
α

)
)

. (22)

This is a general result for any sink strength, k0, and any
sink position, xs . The first term of this result is the asymptotic
behavior of pfree

abs (t) in the presence of a sink of infinite strength
and reduces to the result in Eq. (7) when xs = 0. The second
term is a correction to the long-time behavior in the presence
of a sink of finite strength. For 1 < α � 2, this term is always
positive and suggests that the smaller the sink strength, the
larger is the value of pfree

abs (t) at long times. Figure 2 illustrates
this finding. The plot contains the absorption-time distribution
for k0 = 5 and k0 → ∞ evaluated numerically by inverting
Eq. (16) using the Gaver-Stehfast method. The pfree

abs (t) curve
for k0 → ∞ (dotted line) lies below the curve for k0 = 5 (solid
line) at long times, in agreement with our expectation. One
must note that at long times the absorption-time distribution
shows ∼t−2+1/α behavior. The power-law decay depends
solely on the α value irrespective of the sink strength. For
0 < α � 1, pfree

abs (s) goes to zero for all α as the denominator,
Gfree

0 (x,s|x), diverges. It must be interpreted as the following:
a free particle undergoing Lévy flight with 0 < α � 1 will

FIG. 2. Absorption-time distribution for free Lévy flight (α = 5
3 )

with xs = 0 and x0 = 1. The tail of k0 → ∞ resides below that
for k0 = 5. The simulation results are in close agreement with the
numerically evaluated pfree

abs (t) using Eq. (10).

never find a point target and its motion will be oblivious to the
presence of a point sink [30].

B. Lévy flight in a linear potential

The fractional Fokker-Planck equation (or the path integral)
for Lévy flight in a linear potential, V (x) = −Fx, can be
exactly solved to obtain the propagator [8,27] as

Glin
0 (x,t |x0,0) = 1

2π

∫ ∞

−∞
dp e−Dt |p|α eip(x−x0−F t/γ )

= 1

(Dt)1/α
Lα,0

(
x − x0 − F t/γ

(Dt)1/α

)
. (23)

(The mass of the particle is taken to be unity.) Unlike the
free Lévy flight problem, the Laplace transform of the above
propagator [G lin

0 (x,s|x0)] cannot be written as a closed-form
Fox H fuction for arbitrary values of x and x0, although it can
be evaluated numerically. The Laplace transform of the loop
propagator with x = x0 can be expressed as a Fox H function
and evaluated up to arbitrary precision:

G lin
0 (x,s|x) = L

{
Glin

0 (x,s|x); s
}

=
∫ ∞

0
dt e−st γ t−1

α|F | H
1,1
2,2

×
[

|F |t
γ (Dt)1/α

∣∣∣∣∣
(
1, 1

α

) (
1, 1

2

)
(1,1)

(
1, 1

2

)
]

= γ

α|F |H
1,2
3,2

×
[

|F |
γ

s−1+1/α

D1/α

∣∣∣∣∣
(
1,1 − 1

α

)
,
(
1, 1

α

)
,
(
1, 1

2

)
(1,1),

(
1, 1

2

)
]
.

(24)

On employing the appropriate expressions of Laplace trans-
forms in Eq. (3) and inverting it numerically, the propagator is
obtained in the time domain and plotted in Fig. 3. As observed
with free Lévy flight, the probability density goes to 0 at the

FIG. 3. Propagator for Lévy flight (α = 5
3 ) in a linear potential

with F = 1.0 evaluated with the sink at xs = 0, x0 = 1 and time t = 1
for varying sink strengths. The propagator is 0 at the sink for infinite
sink strength and nonzero for k0 = 5.
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sink when the strength is ∞ and is nonzero for a sink of finite
strength.

The absorption-time distribution is formally given by

plin
abs(t) = L−1

{
k0 G lin

0 (xs,s|x0)

1 + k0 G lin
0 (xs,s|xs)

; t

}
. (25)

Though G lin
0 (xs,s|x0) does not have a closed-form expression,

the small-s behavior of p̃lin
abs(s) can be evaluated analytically for

small values of the force such that F � 1 (or F 2 ≈ 0 which
can be neglected) (see Appendix D for the derivation). The
expansion of p̃lin

abs(s) valid for small s is

p̃lin
abs(s) = 1 +

(
Alin

1 + Alin
2

k0
+ F

γ
(xs − x0)Alin

3

)
s1− 1

α

+ F

γ
(xs − x0)Alin

4 s−1+ 2
α + . . . , (26)

where

Alin
1 = α�(1 − α) sin

(
π
α

)
�

(
1 − α

2

)
�

(
α
2

) |xs − x0|α−1

D1− 1
α

,

Alin
2 = −αD

1
α sin

(π

α

)
,

Alin
3 = α�(2 − 2α) sin

(
π
α

)
sin(πα)

π

|xs − x0|2α−3

D2−1/α
,

Alin
4 = �

(
2 − 3

α

)
�

(
3
α

)
sin

(
π
α

)
πD

2
α

. (27)

The above expression can be easily inverted to obtain the
long-time behavior of plin

abs(t), which is

plin
fa (t) ∼

(
Clin

1 +Clin
2

k0

)
1

t2−1/α
+F

γ
(xs − x0)

( C lin
3

t2−1/α
− Blin

t
2
α

)
,

(28)

where

Clin
1 = (α − 1)|xs − x0|α−1

D1− 1
α

×
(

π �(3 − α)

2α �
(
2 − 1

α

)
�

(
2 − α

2

)
�2

(
1
α

)
�

(
α
2

)
)

, (29)

Clin
2 = (α − 1)2 D

1
α

(
π

α�
(
2 − 1

α

)
�2

(
1
α

)
)

, (30)

Clin
3 = (α − 1)2|xs − x0|2α−3

(2α − 3)D2− 1
α

×
(

π�(5 − 2α)

4α �(α)�(3 − α)�
(
2 − 1

α

)
�2

(
1
α

)
)

, (31)

Blin = (2 − α)(α − 1)

(2α − 3)D
2
α

(
2 �

(
4 − 3

α

)
�

(
3
α

)
3α �

(
3 − 2

α

)
�

(
2 − 1

α

)
�

(
1
α

)
)

.

(32)

The coefficients C lin
1 = Cfree

1 and C lin
2 = Cfree

2 , and the asymp-
totic power-law decay of the force-independent terms are
identical to those of the free Lévy flight problem in the presence
of a point sink.

For small values of F , the presence of the ramp appears
as a correction to free Lévy flight. The correction has two
contributions, one which decays as ∼t−2+ 1

α and the other as
∼t−

2
α . In order to analyze the consequences of these terms, the

absorption-time distribution is written as

plin
fa (t) ∼

(
Clin

1 + C lin
2

k0

)
1

t2−1/α

+ F

γ
(xs − x0)

C lin
3

t2−1/α

(
1 − Blin

C lin
3

t2− 3
α

)
. (33)

(1) For 3
2 < α � 2: In this range of α, the exponent

2/α is smaller than 2 − 1/α, implying that the former will
be dominant in the long-time decay. However, the ratio
Blint2− 3

α /Clin
3 � 1 in the vicinity of α = 2, unless t is ex-

tremely large, and vanishes exactly for α = 2 [see Eq. (32)].
This implies that the origin of Blin is due to the nonlocal jumps
in a Lévy flight. For α close to 2, the decay follows ∼Clin

3 t−2+ 1
α

until very large t before ∼Blint−
2
α can take over. When

α = 2, the power-law decay of the F-dependent term goes
as ∼t−3/2, in agreement with the standard results of Brownian
motion [31].

(2) For α = 3
2 : The quantity Clin

3 (1 − Blin

Clin
3

t2− 3
α ) is well

defined in the limit α → 3/2 and the decay follows ∼t−4/3

for large t .
(3) For 1 < α < 3

2 : In this regime, the decay of t2− 1
α will

be slower than that of t−
2
α . However, in the vicinity of α = 1,

C lin
3 goes to 0 quadratically [see Eq. (31)] while Blin goes to 0

linearly [see Eq. (32)]. Therefore, the decay will initially obey
∼Blint−

2
α power-law and further ∼Clin

3 t−2+ 1
α will take over at

long times.
(4) For 0 < α � 1: In the limit of small F , the Laplace

transform of the loop propagator is divergent in this range of
α [see Eq. (D3)]. This implies that plin

abs(t) = 0 for all values
of t when 0 < α � 1.

Consequences on Lévy-based target search

The asymptotic behavior in Eq. (33) can have very inter-
esting effects on Lévy flight inspired target search methods at
long times. The goal is to find an optimal value of α that can
add density to the tail of plin

abs, making the target search better at
long times. Both Clin

3 andBlin are strictly +ve when 3
2 < α � 2

and strictly −ve when 1 < α < 3
2 . For a downstream target,

xs − x0 > 0, Eq. (33) suggests that there are two ways in
which one can obtain an additive contribution to the tail of
plin

abs(t) from the F-dependent terms: (i) employ α close to 2
such that Clin

3 is positive and Blint2− 3
α /Clin

3 � 1, or (ii) employ
α ≈ 1 such that Clin

3 is negative and Blint2− 3
α /Clin

3 	 1. In the
latter, the contribution to the tail, however +ve, will approach 0
linearly close to α = 1 and is, therefore, insignificant. Hence, it
is beneficial to use the former—α = 2, a Brownian search—for
a downstream target such that Blint2− 3

α /Clin
3 = 0, removing

any negative contribution to the tail of the absorption-time
distribution. For an upstream target, it is apparent from Eq. (33)
that a purely Brownian search will only lead to a negative
contribution to the tail from the terms which are F dependent.
A search with α = 1 will also lead to a vanishingly small
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FIG. 4. Absorption-time distribution for Lévy flight (α = 5
3 ) in a

linear potential with F = 1.0 evaluated with xs = 0 and x0 = 1. The
tail of k0 → ∞ resides below that for k0 = 5. The simulation results
are in close agreement with the numerically evaluated plin

abs(t) using
Eq. (10).

plin
abs(t). An optimal value of α for such a search will depend on

the distance of separation (xs − x0), F , D, and t . A detailed
discussion of the optimal value of α for a target search on a
ramp is provided in [30]. The results were interpreted in terms
of a search efficiency parameter given by

E = 〈t−1〉 =
∫ ∞

0
ds plin

abs(s), (34)

and the findings in this paper from plin
abs(t) regarding upstream

and downstream targets are consistent with those in [30]. (The
notion of upstream or downstream is presented keeping F > 0.
If F < 0, this notion has to be reversed.)

Absorption-time distributions obtained from numerical
evaluation of Eq. (25) are plotted in Figs. 4 and 5. In Fig. 4,
the distributions are obtained for F = 1.0 and sink strengths
k0 = 5 and k0 → ∞. The tail of k0 → ∞ is below that of
k0 = 5, which is similar to the free Lévy flight problem and can
be explained by the same reasoning. In Fig. 5, the curves are
obtained for F = 1.0 and F = 0.1 with a point sink of infinite
strength. The sink is placed at the origin and the initial position
is x0 = 1, i.e., the sink is upstream of the initial position and

FIG. 5. Absorption-time distribution for Lévy flight (α = 5
3 ) in a

linear potential with different slopes evaluated with xs = 0, x0 = 1
and k0 → ∞. The tail of F = 1.0 resides below that of F = 0.1.
The simulation results are in close agreement with the numerically
evaluated plin

abs(t) using Eq. (10).

it is found that the tail of the F = 1.0 curve resides below that
of F = 0.1. One can interpret this observation in terms of Eq.
(28) as follows: Given that α = 5/3 in the plot, both Clin

3 and
Blin are +ve quantities. Further, (xs − x0) < 0 in the plot. For
the range of t plotted in Fig. 5, F (xs − x0)C lin

3 /(γ t2− 1
α ) is the

dominant term, which results in a larger subtractive correction
to the tail of plin

abs(t) for a larger F , causing the asymptote of
F = 1.0 to lie below that of F = 0.1.

C. Lévy flight in a harmonic potential

Lévy flight in a harmonic potential, V (x) = λx2/2, is again
a solvable problem for which the propagator is given by

Ghar
0 (x,t |x0) =

(
αλ

Dγ (1 − e−αλt )

)1/α

×Lα,0

(
x − x0e

−λt

(Dγ (1 − e−αλt )/(αλ))1/α

)
. (35)

(The mass is assumed to be unity.) It was identified in [32] that
this propagator can be written as a sum over the eigenvalues
and eigenfunctions as

Ghar
0 (x,t |x0) =

∞∑
n,m=0

(−x0/D
1
α

)n

�(n + 1)�(m + 1)
ψn,m(x)e−(n+mα) λt

γ ,

(36)

where

ψn,m(x) = 1

2π

∫ ∞

−∞
dp e−|p|αγ /(αλ) |p|mα(ip)neipx/D1/α

. (37)

It is interesting to note that this one-dimensional problem
has its eigenvalues denoted by two indices, n and m, and is
discussed in detail in [32].

Once the propagator is written in the form of Eq. (36), it is
trivial to obtain its Laplace transform as

Ghar
0 (x,s|x0) =

∞∑
n,m=0

(−x0/D
1
α

)n

�(n + 1)�(m + 1)
ψn,m(x)

× 1

s + (n + mα)λ/γ
. (38)

As for the loop propagator which is necessary for the
calculation, it reduces to an elegant closed-form expression
when the sink is placed at the origin, which is given by

Ghar
0 (0,s|0) =

(
αλ

Dγ

)1/α csc(π/α)

sα

�
(
1 + sγ

αλ

)
�

(
1 − 1

α
+ sγ

αλ

) . (39)

The above expression is valid only when 1 < α � 2. For 0 <

α � 1, the Laplace integral is divergent (see Appendix E). Due
to the ease of evaluatingGhar

0 (0,s|0), all the results presented in
this section have the sink at xs = 0. The propagator is evaluated
by inserting Eq. (38) and Eq. (39) into Eq. (3) and numerically
inverting the Laplace transform. The results are plotted in
Fig. 6, and as observed in the previous problems, the density
at the sink is 0 when k0 → ∞ and assumes a nonzero value
for a sink of finite strength.

The absorption-time distribution is evaluated using the
appropriate form of Eq. (10) and numerically evaluating the
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FIG. 6. Green’s function for Lévy flight (α = 5
3 ) in a harmonic

potential with λ = 1.0 evaluated with the sink at xs = 0, x0 = 1 and
time t = 1 for varying sink strengths. The propagator is 0 at the sink
for infinite sink strength and nonzero for k0 = 5.

inverse Laplace transform. The trend for phar
abs(t) in the presence

of finite and infinite sinks is plotted in Fig. 7 and is found to
be similar to the previous problems which can be explained by
similar arguments. The plot for phar

abs(t) in harmonic potentials
with different force constants is shown in Fig. 8. For the
potential with a larger force constant (λ = 1.0 in the plot),
the drift to the sink, which is placed at the origin, is larger and
therefore finds the sink at shorter times, reducing the density
at longer times compared to the potential with a smaller λ

(λ = 0.5 in the plot).
The observations from numerical results can be proven

analytically. The long-time behavior of the absorption-time
distribution is obtained by evaluating the dominant term for
large t from the contour integral representing the Laplace
inverse, which is given by

phar
abs(t) = 1

2πi

∫ c+i∞

c−i∞
ds est k0Ghar

0 (0,s|x0)

1 + k0Ghar
0 (0,s|0)

, (40)

FIG. 7. Absorption-time distribution for Lévy flight (α = 5
3 ) in a

harmonic potential with λ = 1.0 evaluated with xs = 0 and x0 = 1.
The tail of k0 → ∞ resides below that for k0 = 5. The simulation
results are in close agreement with the numerically evaluated phar

abs(t)
using Eq. (10).

FIG. 8. Absorption-time distribution for Lévy flight (α = 5
3 ) in

a harmonic potential with different force constants evaluated with
xs = 0, x0 = 1, and k0 → ∞. The tail of λ = 1.0 resides below that
of λ = 0.5. The simulation results are in close agreement with the
numerically evaluated phar

abs(t) using Eq. (10).

where the path of integration is a straight line Re(s) = c, where
c is greater than the real part of all singularities of the integrand.
At long times, the behavior is (see Appendix E for details)

phar
abs(t) ∼

(
Char

1 + Char
2

k0

)
e−(α−1)λt/γ , (41)

where

Char
1 = α sin

(π

α

)(
Dγ

αλ

)1/α ∞∑
n,m=0

(−1)n
(
x0/D

1
α

)n
ψn,m(0)

γ�(n + 1)�(m + 1)�
(

1
α

)
× αλ(1 − α)

(n + 1) + (m − 1)α
,

Char
2 = α sin

(π

α

)(
Dγ

αλ

)1/α ∞∑
n,m=0

× (−1)n
(
x0/D

1
α

)n
ψn,m(0)

�(n + 1)�(m + 1)
w′(s)

∣∣
s=−(α−1)λ/γ

,

(42)

with

w(s) = α2λ

γ

(
Dγ

αλ

) 1
α s2 sin

(
π
α

)
s + (n + mα) λ

γ

�2
(
2 − 1

α
+ sγ

αλ

)
�2

(
1 + sγ

αλ

) .

(43)

The absorption-time distribution decays exponentially, with
(α − 1)λ/γ as the rate constant. It correctly predicts the trend
observed in Fig. 8: the larger the force constant, the faster the
decay. The effect of a finite sink is accounted for in this result
as an additive term. This correction for a finite sink is valid
only for fairly large sink strengths, i.e., when 1/k2

0 � 1, while
the correction for a finite sink in the previous problems was
valid for any sink strength at long times.

III. SIMULATION DETAILS

Extensive Langevin dynamics simulations are performed
for Lévy flights in the presence of a point sink. The underlying
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equation of motion which is propagated is

ẋ(t) = −V ′(x)

mγ
+ ηα(t), (44)

where V (x) is the potential, m is the mass of the particle,
γ is the friction constant, and ηα(t) is the white, symmetric
Lévy noise acting on the particle. Starting from the above
continuous-time equation, it is possible to write down its
discretized version [33] as

xn+1 − xn = −V ′(xn)

mγ
�t + ηα,0

(
n; (D�t)

1
α

)
, (45)

where �t is the time step and t = n�t with n =
0,1,2, . . . ,ηα,0(n; (D�t)

1
α ) is the Lévy noise acting on the

particle at the nth time step, which is drawn from an α-stable
distribution with zero mean and noise density σ = (D�t)1/α

whose characteristic function is given by

L̃α,0(k) = e−D|k|α�t . (46)

The aim of the simulations is to model the absorption at
the point sink and obtain the absorption-time distribution for
sinks of various strengths in all three potentials discussed in
the previous section. Mathematically, a point sink is modeled
using a delta-function as given in Eq. (6). When the particle
arrives exactly at xs , it will be absorbed by the sink with
a probability P (k0). However, in an actual simulation, the
probability of finding one point, xs , is 0. Therefore, instead of
a delta-function sink, the sink is provided with a certain width
w and modeled using a window function, and the resulting
Fokker-Planck equation is given by

∂P (x,t)

∂t
=

{
− D

(
− ∂2

∂x2

)α/2

+ ∂

∂x

V ′(x)

mγ

− k0

w

(



(
x − xs + w

2

)
− 


(
x − xs − w

2

))}
×P (x,t). (47)

If the particle arrives within the interval (xs − w
2 ,xs + w

2 ), the
particle is absorbed with the probability P (k0). (The window
function is divided by the width of the window, w, to maintain
the dimensional correctness.)

The probability of absorption, P (k0), which is a function
of the sink strength, can be evaluated by recognizing that the
absorption described in Eq. (47) is a first-order process with a
rate constant k0/w. In a simulation, the particle is propagated
in discrete time steps of size �t . Thus, once the particle reaches
the interval (xs − w

2 ,xs + w
2 ), its time of residence is �t . The

probability of absorption for a first-order process in a time
interval �t with a rate constant k0/w is

P (k0) = 1 − e− k0
w

�t . (48)

For a sink of infinite strength, P (k0 → ∞) = 1, and for k0 =
0, P (0) = 0, which just implies the absence of a sink.

Using the appropriate forms of the potential in Eq. (45),
the absorption-time distribution is evaluated for k0 → ∞
and k0 = 5. The simulation parameters are the following:
�t = 10−3, m = 1, γ = 1, and D = 1. A total of 2 × 106

trajectories are propagated for each simulation. w = 0.01 and
w = 0.003 are used for k0 → ∞ and k0 = 5, respectively. The

choice of w is done such that ∼70% of the trajectories reach
the sink in the time of propagation. The effect of different
values of F and λ are simulated for the linear and harmonic
potentials, respectively. The results of the simulations are
plotted in figures giving the absorption-time distribution for
different potentials and are found to corroborate very closely
with the numerically calculated Laplace inverse of Eq. (10).

IV. CONCLUSIONS

In this paper, we consider the problem of Lévy flights
in the presence of a point sink of arbitrary strength in
three potentials, V (x) = 0, V (x) = −Fx, and V (x) = λx2/2,
and calculate their corresponding Green’s functions and the
absorption-time distribution. We employ the elegant formula
given in Eq. (3), where the Laplace transform of the Green’s
function in the presence of a sink is given in terms of the
Laplace transform of the Green’s function in the absence of a
sink.

The asymptotic behavior of the absorption-time distribu-
tions which are obtained analytically are the following:

(1) V (x) = 0:

pfree
abs (t) ∼

(
Cfree

1 + Cfree
2

k0

)
1

t2− 1
α

. (49)

This result is valid in the region 1 < α � 2 and at an arbitrary
position of the sink and shows ∼t−2+ 1

α power-law behavior at
long times, which is in agreement with ∼t−

3
2 behavior in the

case of Brownian motion (α = 2).
(2) V (x) = −Fx:

plin
abs(t) ∼

(
Cfree

1 + Cfree
2

k0

)
1

t2− 1
α

+ F

γ
(xs − x0)

( C lin
3

t2− 1
α

− Blin

t
2
α

)
,

(50)

which is valid for 1 < α � 2, F � 1, and an arbitrary sink
position. Blin vanishes exactly for α = 2, reproducing the
∼t−

3
2 decay of the F -dependent term for Brownian motion.

For 3
2 < α � 2, the power-law decay begins as ∼t−2+ 1

α and

∼t−
2
α becomes dominant at very long times. When 1 < α < 3

2 ,

the trend is reversed, where the asymptotic behavior is ∼t−
2
α

initially, followed by ∼t−2+ 1
α for very large t . The position

of the sink with respect to the initial position is crucial in
determining the effect of the potential on the long-time limit
of plin

abs(t).
(3) V (x) = λx2/2:

phar
abs(t) ∼

(
Char

1 + Char
2

k0

)
e
−(α−1) λt

γ , (51)

which is valid for 1 < α � 2, 1/k2
0 � 1 and a sink placed at

the origin (xs = 0) and conforms with the ∼e
− λt

γ decay for
Brownian motion. According to this result, a larger force con-
stant results in a faster decay of phar

abs(t) for a given value of α.
Explicit expressions for the coefficients of decay are

provided in the corresponding sections of the paper. The
absorption-time distributions in all three potentials for 0 <

α � 1 are 0 at all times, going to show that such a Lévy flight
will never find a point target [30]. As for the effect of a sink of
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finite strength, it can be concluded that the value of k0 does not
alter the nature of decay of the absorption-time distribution,
i.e., the exponent in a power-law or an exponential decay
depends solely on the value of α. All things being equal, a
finite sink strength will lead to a larger multiplicative constant
in the asymptotic behavior. The above results can be very
useful in evolving Lévy search strategies for targets located in
these potentials at long times.
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APPENDIX A: GREEN’S-FUNCTION SOLUTION FOR A
REACTION-DIFFUSION EQUATION WITH A FINITE

POINT SINK IN THE LAPLACE DOMAIN

The reaction-diffusion equation in the presence of a finite
delta-function sink is given by

∂P (x,t)

∂t
= {L − k0δ(x − xs)}P (x,t), (A1)

where L could be the Smoluchowski operator for fractional
or normal diffusion. In the Laplace domain, the above PDE is
given by

[s − L + k0δ(x − xs)]P̃ (x,s) = P0(x), (A2)

where P̃ (x,s) is the Laplace transform of P (x,t). The exact
solution for this equation can be obtained by writing it in terms
of its Green’s function [2,5], G(x,s|x0), as

[s − L + k0δ(x − xs)]G(x,s|x0) = δ(x − x0). (A3)

G(x,s|x0) is the propagator in the Laplace domain, which gives
P̃ (x,s) from the relation

P̃ (x,s) =
∫ ∞

−∞
dx0 G(x,s|x0)P0(x0). (A4)

The Green’s function can be written in terms of bra-ket notation
of quantum mechanics as

G(x,s|x0) = 〈x|[s − L + k0δ(x − xs)]|x0〉, (A5)

which implicitly assumes the existence of an expansion of
the propagator in terms of its eigenfunctions |x〉(|x0〉) and the
corresponding eigenvalues. Further, the operator identity

[s − L + k0δ(x − xs)]
−1

= [s − L]−1 − [s − L]−1(k0δ(x − xs))

× [s − L + k0δ(x − xs)]
−1 (A6)

can be employed in the bra-ket notation for the Green’s
function to obtain

G(x,s|x0) = 〈x|[s − L + k0δ(x − xs)]
−1|x0〉

= 〈x|[s − L]−1|x0〉 − 〈x|[s − L]−1(k0δ(x − xs))

× [s − L + k0δ(x − xs)]
−1|x0〉. (A7)

It is necessary to note that

G0(x,s|x0) = 〈x|[s − L]−1|x0〉, (A8)

is the solution of the Green’s function in the absence of a sink.
Upon inserting the resolution of identity, I = ∫ ∞

−∞ dy|y〉〈y|,
in the last term of Eq. (A7) between the two inverses, we get

G(x,s|x0) = G0(x,s|x0) − k0

×
∫ ∞

−∞
dy G0(x,s|y)δ(y − xs)G(y,s|x0). (A9)

It is trivial to perform the integral over y to obtain

G(x,s|x0) = G0(x,s|x0) − k0G0(x,s|xs)G(xs,s|x0). (A10)

Using this equation we can solve for G(xs,s|x0) and further
insert the solution back into Eq. (A10) to obtain the relation
given in Eq. (3), which is

G(x,s|x0) = G0(x,s|x0) − k0G0(x,s|xs)G0(xs,s|x0)

1 + k0G0(xs,s|xs)
. (A11)

APPENDIX B: LAPLACE TRANSFORM OF A FOX H FUNCTION

The Laplace transform of an H function can written in terms of another H function, which is given by [28]

L

{
tρ−1Hm,n

p,q

[
atσ

∣∣∣∣(ap,Ap)
(bq,Bq)

]
; s

}
=

∫ ∞

0
dt e−st tρ−1Hm,n

p,q

[
atσ

∣∣∣∣∣(ap,Ap)

(bq,Bq)

]
= s−ρH

m,n+1
p+1,q

[
as−σ

∣∣∣∣∣(1 − ρ,σ ),(ap,Ap)

(bq,Bq)

]
. (B1)

The Laplace inverse of an H function is

L−1

{
s−ρHm,n

p,q

[
asσ

∣∣∣∣(ap,Ap)
(bq,Bq)

]
; t

}
= tρ−1H

m,n
p+1,q

[
at−σ

∣∣∣∣(ap,Ap),(ρ,σ ),
(bq,Bq)

]
. (B2)

The above equations are valid for ρ,a,s ∈ C and σ > 0.
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APPENDIX C: LONG-TIME BEHAVIOR OF pfree
abs (t)

Starting from the p̃free
abs (s) given in Eq. (16), we are required to obtain its small-s behavior. Using the large argument expansion

(valid for small s values) of the H function [28], we obtain

p̃free
abs (s) = D1/α s−1/α sin(π/α)

|xs − x0|
(
1 + αD

1
α s1− 1

α

k0 csc(π/α)

) H
1,2
3,2

[
D1/αs−1/α

|xs − x0|

∣∣∣∣∣(0,1/α),(0,1),(0,1/2)

(0,1/α),(0,1/2)

]

=
(

1 + α�(1 − α) sin(π/α)

�
(
1 − α

2

)
�

(
α
2

) |xs − x0|α−1

D1− 1
α

s1− 1
α + . . .

)(
1 − αD

1
α s1− 1

α

k0 csc(π/α)
+ . . .

)

= 1 +
(

α�(1 − α) sin
(

π
α

)
�

(
1 − α

2

)
�

(
α
2

) |xs − x0|α−1

D1− 1
α

− αD
1
α s1− 1

α

k0 csc(π/α)

)
s1− 1

α + . . . . (C1)

In order to obtain the Laplace inverse, one can complete the above expansion to an exponential and identify the exponential with
an H function, i.e., e−x = H

1,0
0,1 [x| —

(0,1)], which can be inverted using Eq. (B2) [15]. The long-time behavior of pfree
abs (t) is evaluated

to be

pfree
abs (t) ∼

(
α�(1 − α) sin

(
π
α

)
�

(
1 − α

2

)
�

(
α
2

) |xs − x0|α−1

D1− 1
α

− αD
1
α s1− 1

α

k0 csc(π/α)

)
1

�
(

1
α

− 1
) 1

t2− 1
α

upon simple algebraic manipulations using the identity �(1 + x) = x�(x),

∼
(

α�(2 − α)�
(
2 − 1

α

)
sin

(
πα
2

)
sin2

(
π
α

)
π2(α − 1)

|xs − x0|α−1

D1− 1
α

+ (α − 1)D
1
α sin

(
π
α

)
k0�

(
1
α

)
)

1

t2− 1
α

. (C2)

APPENDIX D: LONG-TIME BEHAVIOR OF plin
abs(t) FOR F � 1

The Laplace transform of the propagator is given by

G lin
0 (x,s|x0) = 1

2π

∫ ∞

0
dte−st

∫ ∞

−∞
dpe−Dt |p|α eip(x−x0−F t/γ ),

performing the integral over

= 1

π

∫ ∞

0
dp

cos (p(x − x0))(Dpα + s)

(Dpα + s)2 + (F/γ )2p2
+ F/γ

π

∫ ∞

0
dp

p sin (p(x − x0))

(Dpα + s)2 + (F/γ )2p2
. (D1)

In the limit F � 1, F 2 will be negligibly small and it can be neglected. Correspondingly, the Laplace transform of the Green’s
functions will be

G lin
0 (x,s|x0) ≈ 1

π

∫ ∞

0
dp

cos (p(x − x0))
(Dpα + s)

+ F/γ

π

∫ ∞

0
dp

p sin (p(x − x0))

(Dpα + s)2 (D2)

and

G lin
0 (x,s|x) ≈ 1

π

∫ ∞

0
dp

1

(Dpα + s)
= csc(π/α)

αD
1
α s1− 1

α

. (D3)

The Laplace transform of the absorption-time distribution when F � 1 is, therefore,

p̃lin
abs(s) = αD

1
α s1− 1

α

π csc(π/α)
(
1 + αD

1
α s1− 1

α

k0 csc(π/α)

)
(∫ ∞

0
dp

cos (p(xs − x0))
(Dpα + s)

+ F

γ

∫ ∞

0
dp

p sin (p(xs − x0))

(Dpα + s)2

)

= αD
1
α s1− 1

α

π csc(π/α)

(∫ ∞

0
dp

cos (p(xs − x0))
(Dpα + s)

)(
1 − αD

1
α s1− 1

α

k0 csc(π/α)
+ . . .

)

+ F

γ

αD
1
α s1− 1

α

π csc(π/α)

(∫ ∞

0
dp

p sin (p(xs − x0))

(Dpα + s)2

)(
1 − αD

1
α s1− 1

α

k0 csc(π/α)
+ . . .

)
. (D4)

In the above expression, the terms independent of F are identical to those in the free Lévy flight problem and we can use the
analysis done in Appendix C to obtain their small-s limit.
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The integral in the force-dependent term in Eq. (D4),
∫ ∞

0 dp
p sin (p(xs−x0))

(Dpα+s)2 , can be evaluated by writing the sin function as a
contour integral:

1

π

∫ ∞

0
dp

p sin (p(xs − x0))

(Dpα + s)2 = (xs − x0)

π |xs − x0|
∫ ∞

0
dp

p

(Dpα + s)2

1

2i

∫ c+i∞

c−i∞
dk

�(k)

�
(

k
2

)
�

(
1 − k

2

) (p|xs − x0|)−k

= (xs − x0)

2πiα2

∫ c+i∞

c−i∞
dk U (k) s

2−2α−k
α ,

where

U (k) = �(k)�
(
1 − 2−k

α

)
�

(
2−k
α

)
�

(
k
2

)
�

(
1 − k

2

) (k + α − 2)|xs − x0|−k−1

D
2−k
α

. (D5)

There are two sets of poles for the above contour integral upon closing the contour on the left-hand side using a semicircle of
radius R → ∞:

k∗
1 (n) = −n ∀ n ∈ N, arising from �(k), (D6)

k∗
2 (n) = 2 − α − nα ∀ n ∈ N, arising from �

(
1 − 2 − k

α

)
. (D7)

The contour integral can be evaluated as

1

2πi

∫ c+i∞

c−i∞
dk U (k) s

2−2α−k
α =

∞∑
n=0

Res
[
U (k∗

1 (n))s
2−2α−k∗

1 (n)

α

] +
∞∑

n=0

Res
[
U (k∗

2 (n))s
2−2α−k∗

2 (n)

α

]
.

Using the above analysis, one can find the lowest order terms in the small-s expansion of p̃lin
abs(s) to be

p̃lin
abs(s) = 1 + F

γ
(x − x0)

�
(
2 − 3

α

)
�

(
3
α

)
sin

(
π
α

)
πD

2
α

s−1+ 2
α +

(
α�(1 − α) sin

(
π
α

)
�

(
1 − α

2

)
�

(
α
2

) |xs − x0|α−1

D1− 1
α

− αD
1
α

k0 csc(π/α)
+ F

γ
(x − x0)

α�(2 − 2α) sin
(

π
α

)
sin(πα)

π

|x − x0|2α−3

D2− 1
α

)
s1− 1

α + . . . . (D8)

The Laplace inverse of the above equation giving the long-time behavior of the absorption-time distribution after simple algebraic
manipulations using the identity �(1 + x) = x�(x) is

plin
abs(t) ∼

{
(α − 1)|xs − x0|α−1

D1− 1
α

(
π �(3 − α)

2α �
(
2 − 1

α

)
�

(
2 − α

2

)
�2

(
1
α

)
�

(
α
2

)
)

+ 1

k0

(α − 1)2 D
1
α π

α�
(
2 − 1

α

)
�2

(
1
α

)
+ F

γ
(xs − x0)

(α − 1)2|xs − x0|2α−3

(2α − 3)D2− 1
α

(
π�(5 − 2α)

4α �(α)�(3 − α)�
(
2 − 1

α

)
�2

(
1
α

)
)}

1

t2− 1
α

−
{

F

γ
(xs − x0)

(2 − α)(α − 1)

(2α − 3)D
2
α

(
2 �

(
4 − 3

α

)
�

(
3
α

)
3α �

(
3 − 2

α

)
�

(
2 − 1

α

)
�

(
1
α

)
)}

1

t
2
α

. (D9)

APPENDIX E: HARMONIC POTENTIAL

1. Laplace transform of Ghar
0 (x,t|x)

The Laplace transform, Ghar
0 (x,s|x0), given in Eq. (38) is valid for 0 < α � 2. The Laplace transform of the loop propagator

with the initial and final position placed at the origin is

Ghar
0 (0,s|0) = 1

π

∫ ∞

0
dt e−st

∫ ∞

0
dp e− Dγ

αλ
pα (1−eαλt/γ ) =

(
αλ

Dγ

)1/α �
(
1 + 1

α

)
π

∫ ∞

0
dt e−st

(
1 − e

− αλt
γ

)−1/α
,

making a change of variable such that

g = 1

1 − e−αλt/γ
− 1 =

(
αλ

Dγ

)1/α γ�
(
1 + 1

α

)
παλ

∫ ∞

0
dg

g
sγ

αλ
−1

(1 + g)(2− 1
α

)+( sγ

αλ
−1)

(E1)

=
(

αλ

Dγ

)1/α csc
(

π
α

)
sα

�
(
1 + sγ

αλ

)
�

(
1 − 1

α
+ sγ

αλ

) . (E2)

It can be easily seen that Eq. (E1) converges only at 1 < α � 2.
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2. Long-time behavior of phar
abs (t)

The absorption-time distribution in a harmonic potential with the sink placed at the origin can be written in terms of a contour
integral as given in Eq. (40) as

phar
abs(t) = 1

2πi

∫ c+i∞

c−i∞
ds est k0Ghar

0 (0,s|x0)

1 + k0Ghar
0 (0,s|0)

= α sin
(π

α

)(
Dγ

αλ

)1/α ∞∑
n,m=0

(−x0/D
1
α

)n

�(n + 1)�(m + 1)
ψn,m(0)

1

2πi

∫ c+i∞

c−i∞
ds est Wn,m(s), (E3)

where

Wn,m(s) = s

s + (n + mα) λ
γ

�
(
1 − 1

α
+ sγ

αλ

)
�

(
1 + sγ

αλ

) 1

1 + sα sin(π/α)
k0

(
Dγ

αλ

)1/α �(1− 1
α
+ sγ

αλ )
�(1+ sγ

αλ )

. (E4)

When the sink strength is fairly large, Wn,m(s) can be written as

Wn,m(s) ≈ W
n,m
1 (s) + W

n,m
2 (s)

k0
, (E5)

where

W
n,m
1 (s) = s

s + (n + mα) λ
γ

�
(
1 − 1

α
+ sγ

αλ

)
�

(
1 + sγ

αλ

) , W
n,m
2 (s) = −

(
Dγ

αλ

) 1
α s2α sin

(
π
α

)
s + (n + mα) λ

γ

�2
(
1 − 1

α
+ sγ

αλ

)
�2

(
1 + sγ

αλ

) . (E6)

In the approximation in Eq. (E5), all the terms with 1/kn
0 where n � 2 are neglected. The poles of W

n,m
1 (s) and W

n,m
2 (s) are

situated at

s∗
1 (n,m) = −(n + mα)

λ

γ
∀n, m ∈ N, arising from

(
s + (n + mα)

λ

γ

)−1

,

s∗
2 (k) = − λ

γ
(α − 1 + kα) ∀k ∈ N, arising from �

(
1 − 1

α
+ sγ

αλ

)
. (E7)

It may be noted that the poles at s∗
2 (k) are simple poles for W

n,m
1 (s), while these are poles of order 2 for W

n,m
2 (s). Calculation of

residues at the poles results in

1

2πi

∫ c+i∞

c−i∞
ds est Wn,m(s) ≈ Res

[
es∗

1 (n,m)W
n,m
1 (s∗

1 (n,m))
] + Res

[
es∗

1 (n,m)W
n,m
2 (s∗

1 (n,m))
]

+
∞∑

k=0

Res
[
es∗

2 (k)W
n,m
1 (s∗

2 (k))
] +

∞∑
k=0

Res
[
es∗

2 (k)W
n,m
2 (s∗

2 (k))
]
. (E8)

One can infer that evaluation of the residue at s∗
2 (0) = −(α − 1)λ/γ leads to the lowest power in the exponential decay. This

is the term which will dominate at long times, and hence, it is sufficient to evaluate the residue at this particular pole for this
analysis.

Res
[
es∗

2 (0)W
n,m
1 (s∗

2 (0))
] = e−(α−1)λt/γ

γ �
(

1
α

) αλ(1 − α)

(n + 1) + (m − 1)α
, Res

[
es∗

2 (0)W
n,m
2 (s∗

2 (0))
] = e−(α−1)λt/γ w′(s)

∣∣
s=− (α−1)λ

γ

, (E9)

where

w(s) = α2λ

γ

(
Dγ

αλ

) 1
α s2 sin

(
π
α

)
s + (n + mα) λ

γ

�2
(
2 − 1

α
+ sγ

αλ

)
�2

(
1 + sγ

αλ

) . (E10)

Therefore, asymptotic behavior of phar
abs(t) when 1/k2

0 � 1 is

phar
abs(t) ∼ e−(α−1)λt/γ

{
α sin

(π

α

)(
Dγ

αλ

)1/α ∞∑
n,m=0

(−x0/D
1
α

)n

�(n + 1)�(m + 1)
ψn,m(0)

(
1

γ�
(

1
α

) αλ(1 − α)

(n + 1) + (m − 1)α
+ w′(s∗

2 (0))
k0

)}
.

(E11)
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