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We analyze the thermodynamic properties of a generalized Dicke model, i.e., a collection of three-level systems
interacting with two bosonic modes. We show that at finite temperatures the system undergoes first-order phase
transitions only, which is in contrast to the zero-temperature case where a second-order phase transition exists
as well. We discuss the free energy and prominent expectation values. The limit of vanishing temperature is
discussed as well.
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I. INTRODUCTION

The Dicke superradiance model [1] as a test-bed for mean-
field-like phase transitions [2] has received renewed attention
recently, in particular due to its successful implementation in
cold-atom experiments [3–7] and optical setups of cavities
and lasers [8,9]. Much progress has been made toward a real-
istic description of nonequilibrium and dissipation [10–19],
multimode effects [20], the interplay of the superradiant
phase transitions and Bose-Einstein Condensation [21], spin
glasses [22], the analysis of interactions [23], inhomogeneous
couplings [24,25], finite-size effects [26], or the adiabatic
limit [27,28]. Further extensions of the model have appeared
allowing for driving [29,30], the creation of Goldstone
modes [31–33], feedback control [34,35], or the transfer to
other platforms such as solid-state systems [36,37].

In its simplest version, the Dicke model hosts a mean-field-
type ground-state phase transition (“quantum bifurcation”)
at zero temperature [2,38,39] between a field-free (normal)
phase with unpolarized atoms and a superradiant phase with
macroscopic occupation of the field mode and polarization of
the atoms. Above a critical coupling strength, the superradiant
phase also persists at finite temperatures below a critical
temperature, which defines the corresponding thermal second-
order phase transition [40–43].

Thermal aspects of the Dicke-Hepp-Lieb superradiance
phase transition have found recent interest again in the analysis
of thermodynamic aspects like work extraction [44,45], and the
discussion of van Hove-type singularities in the microcanon-
ical density of states at large excitation energies [31,46–54]
(excited state quantum phase transitions). This is our moti-
vation to extend our previous studies [55,56] of an extended
Dicke model toward finite temperatures in this paper.

In the original Dicke model [1], the atoms are approximated
by two-level systems and the light field by a single (bosonic)
mode of a resonator. Naturally, the questions arises what
happens to the phases and phase transitions when the Dicke
model is generalized by having more than just two (atomic)
energy levels and one bosonic mode. In our previous study at
zero temperature, we found an additional superradiant phase
as well as phase transitions of first and second order in a
three-level Dicke model interacting with two bosonic modes
in Lambda configuration. These findings were also of interest
in the context of the discussion of the no-go theorem [57–62]
for superradiant phase transitions in this and other generalized
Dicke models [36,56,63–66].

Our paper is organized as follows: first, we give a
short review of the model and previous findings for zero
temperature [55]. Then, the partition sum of the model is
calculated in the thermodynamic limit from which we identify
the thermodynamic phases relevant expectation values. We
discuss the properties of the phases and the phase transitions
and finally recover the zero-temperature results as a limiting
case of our theory.

II. FINITE-TEMPERATURE PHASE TRANSITION
IN THE � MODEL

A. The model

We consider a system of N three-level systems (the
particles) in � configuration (cf. Fig. 1): two ground states
|1〉, |2〉 with energies E1, E2, respectively, are coupled via two
bosonic modes to the excited state |3〉 with energy E3. The
two bosonic modes have frequencies ω1, ω2, respectively. The
Hamiltonian is given by (cf. Ref. [55])

Ĥ = δÂ 2
2 + �Â 3

3 + �ω1â
†
1â1 + �ω2â

†
2â2

+ g1√
N

(â†
1 + â1)

(
Â 3

1 + Â 1
3

)
+ g2√

N
(â†

2 + â2)
(
Â 3

2 + Â 2
3

)
. (1)

Here, δ = E2 − E1, � = E3 − E1 and gn is the coupling
strength of nth bosonic mode. The operators Â m

n ,n,m ∈
{1,2,3} are collective particle operators and can be written
in terms of single-particle operators â(k)

n,m,

Â m
n =

N∑
k=1

â(k)
n,m. (2)

The operator â(k)
n,m acts on the degrees of freedom of the kth

particle only and can be represented by â(k)
n,m = |n〉(k) 〈m|,

where |n〉(k) is the nth state of the kth three-level system.
We call the single-particle energy levels |1〉 (|2〉) and |3〉

together with the first (second) bosonic mode, the left (right)
branch of the � model.

In a previous work [55], we have studied the ground-state
properties of the Hamiltonian, Eq. (1), as well as collective
excitations above the ground state. The model shows three
phases: a normal phase and two superradiant phases. Both
types of phases show their distinctive features as in the original
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FIG. 1. Single-particle energy levels in � configuration: The
excited state |3〉 is coupled via the two bosonic modes with
frequencies ω1 and ω2 to either of the two ground states, |1〉 and
|2〉, respectively. The corresponding coupling strengths are given by
g1 and g2.

Dicke model [38]. The normal phase has zero occupation
of the bosonic modes and all three-level systems occupy
their respective single-particle ground-state |1〉. In contrast,
the superradiant phases are characterized by a macroscopic
occupation of the bosonic modes and the three-level systems.
The superradiant phases are divided into a so-called blue and
red superradiant phase. For the blue superradiant phase, the left
branch of the � model is macroscopically occupied, whereas
for the red superradiant phase it is the right branch that shows
macroscopic occupation. The phase diagram features phase
transitions of different order; the phase transition between the
blue superradiant phase and the normal phase is continuous. In
contrast, for finite δ, the phase transition between the normal
and the red superradiant phase is of first order. Eventually, in
the limit δ → 0 this phase transition becomes continuous as
well. The two superradiant phases are separated by a first-order
phase transition, irrespective of the parameters of the model.

B. Evaluation of the partition sum

All thermodynamic information of the equilibrium system
is contained in the partition sum [67], Z = Z(N ,T ) =
Tr{exp[−βĤ ]}. Here, T is the temperature and β = 1/(kBT ),
with Boltzmann’s constant kB.

In order to evaluate the trace, we represent the bosonic
degrees of freedom by coherent states [68,69] with respect to
the ân and the trace of the particle degrees of freedom are split
into single-particle traces Trn,

Z =
∫
C

d2α1

π

∫
C

d2α2

π
〈α1,α2|

( N∏
n=1

Trn

)
e−βĤ |α1,α2〉 . (3)

Both integrals extend over the complex plane, respectively.
Due to the coherent states, the bosonic part of the trace is
easily computed. For the particle part of the trace, we observe
that the N single-particle traces are all identical. In addition,
we decompose both α1 and α2 in its real and imaginary part
and scale them with

√
N ,

αn =
√
N yn + i

√
N zn, n = 1,2. (4)

Considering the thermodynamic limit N → ∞, the partition
sum eventually reads

Z = N 2

π2

∫
R4

dy1dz1dy2dz2 e−βN
∑2

n=1 �ωn(y2
n+z2

n)Tr{e−βĥ}N .

(5)

Here, the single-particle Hamiltonian ĥ = ĥ(y1,y2) is given by

ĥ(y1,y2) = δâ2,2 + �â3,3

+ 2g1y1(â1,3 + â3,1) + 2g2y2(â2,3 + â3,2). (6)

Since all particles are identical, we have omitted the superindex
k at the single-particle operators â(k)

n,m.
The remaining single-particle trace is evaluated in the

eigenbasis of the single-particle Hamiltonian,

ĥ =
⎛
⎝ 0 0 2g1y1

0 δ 2g2y2

2g1y1 2g2y2 �

⎞
⎠, (7)

where we have chosen a convenient basis for the matrix
representation of ân,m.

By virtue of Cardano’s formula, the eigenvalues of ĥ can be
calculated exactly. However, the discussion of whether there is
a phase transition or not and the analysis of the phase transition,
is not very transparent. Therefore, we will pass the general case
to a numerical computation and first consider the special case
with δ = 0 only, which is amenable to analytical calculations.

For δ = 0, the partition sum can be written in compact form
as (again in the thermodynamic limit N → ∞)

Z = N 2

π2

∫
R2

dy1dz1

∫
R2

dy2dz2 e−Nf , (8)

with

f = f (y1,y2,z1,z2) = β�ω1y
2
1 + β�ω2y

2
2 + β�ω1z

2
1

+β�ω2z
2
2 − ln

[
1 + 2e−β�/2 cosh

(
β�

2
	

)]
(9)

and a corresponding 	 given by

	 = 	(y1,y2) =
√

1 + 16g2
1y

2
1

/
�2 + 16g2

2y
2
2

/
�2 . (10)

The remaining integrals cannot be done exactly. However, we
can approximate them for large N by Laplace’s method [70].
Since large values of f are exponential suppressed, the main
contribution to the integral is given by the global minimum of
f . Given the minimum, the partition sum is proportional to

Z ∝ e−Nf0 , (11)

where f0 = f (y1,0,y2,0) with the position the minimum
(y1,0,y2,0). We anticipate that both zn are identical zero
at the minimum. This will be shown below. Hence, the
leading contribution to the free energy F [67] is given by
F = N kBTf0.

Before we determine the minimum of f , we will first
compute expectation values of observables using the same
approximations as above.

C. Expectation values

In order to identify the phases and phase transitions, we
discuss several observables. Of interest are the occupations
of the bosonic modes, 〈â†

mâm〉 ,(m = 1,2), and the three-level
systems, 〈Â n

n 〉 ,(n = 1,2,3). In addition, the quantities 〈Â 3
1 〉

and 〈Â 3
2 〉 are considered. The real part of these give the

macroscopic polarizations of the three-level systems of the
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left and the right branch of the � model, respectively. They
are generalizations of the polarization in the Dicke model.
There, the polarization is proportional to the expectation value
of the x component of the atomic pseudospin operator.

For functions G of operators of the two bosonic modes, the
expectation value is given by (the calculation can be found in
Appendix A1)

〈G(â†
1,â1,â

†
2,â2)〉

= G(
√
N y1,0,

√
N y1,0,

√
N y2,0,

√
N y2,0). (12)

With that, we obtain for the occupation of both modes

〈â†
nân〉 = N y2

n,0. (13)

Expectation values of collective operators of the three-level
systems can be calculated in a similar manner. Let M̂ be a
collective operator and m̂(n) the corresponding single-particle
operator for the nth three-level system, such that

M̂ =
N∑

n=1

m̂(n). (14)

Then, the mean value of M̂ is given by (the calculation can be
found in Appendix A2)

〈M̂〉 = N 〈m̂〉0 . (15)

Here, 〈·〉0 is the single-particle expectation value for a thermal
state with the single-particle Hamiltonian ĥ evaluated at the
minimum (y1,0,y2,0) of f . Thus, the expectation values for
the collective atomic operators Â m

n can be traced back to the
single-particle operators ân,m,〈

Â m
n

〉 = N 〈ân,m〉0 . (16)

This derivation and the following calculation holds even for
nonzero δ.

Let εn be the eigenvalues and wn the corresponding
eigenvectors of ĥ0. Then we evaluate the traces in Eq. (16)
in this eigenbasis and the expectation values can be written as

〈
Â m

n

〉 = N 1

z

3∑
k=1

(w∗
k)n(wk)m e−βεk . (17)

Here z = Tr{exp[−βĥ0]} is the partition sum of the single-
particle Hamiltonian ĥ0 and we have used that the matrix
elements of ân,m are given by zeros, except for the entry of the
nth row and mth column, which is one.

D. Partition sum

We continue with the calculation of the partition sum,
Eq. (8). Therefore, we need to find the minimum of f , Eq. (9).
This analysis will be done in the following.

The variable zn enters only quadratically in f , such that
upon minimizing f , both zn need to be zero. Minimizing f

with respect to yn yields the two equations (n = 1,2)

0 = yn

[(
gn,c

gn

)2

	 − q(	)

]
, (18)

with

q(	) = 2e−β�/2 sinh
[

β�

2 	
]

1 + 2e−β�/2 cosh
[

β�

2 	
] , (19)

and

gn,c =
√

��ωn

2
. (20)

Of course, Eqs. (18) are always solved by the trivial solution
y1 = y2 = 0. But do nontrivial solutions exist, and for which
parameter values?

We first observe that Eqs. (18) do not support solutions
where both y1 and y2 are nonzero. For given y1 and y2, the
parameter 	 = 	(y1,y2) is fixed. Then the squared bracket
cannot be zero for both equations. Hence, the nontrivial
solutions are given by one yn being zero and the other being
finite. In the following, the nonzero solution will be called yn,0.

To check whether a nonzero yn,0 really exists, we have to
analyze the equation

0 =
(

gn,c

gn

)2

	n,0 − q(	n,0), (21)

with

	n,0 =
√

1 + 4
�ωn

�

(
gn

gn,c

)2

y2
n,0. (22)

The function q(	) is bounded by one (see left panel of
Fig. 2) and 	 itself is always greater or equal one. Therefore,
for gn < gn,c, Eq. (21) has no solution and yn has to be zero
as well.

On the other hand, for gn > gn,c, nontrivial solutions of
Eq. (21) can exist. In the right panel of Fig. 2, both terms of
Eq. (21) are drawn. We see that for every finite temperature,
the two curves always intersect twice, so that Eq. (21) always
has two solutions. Of course, for a differentiable f , the two
solutions cannot both correspond to minima of f . Hence,
one solution stems from a maximum and the other from a
minimum. Since the right side of Eq. (21) is the derivative
of f , its sign-change signals whether a maximum (plus-minus
sign change) or a minimum (minus-plus sign change) is passed

FIG. 2. Graphical analysis of Eq. (21) for gn < gn,c (left) and
gn > gn,c (right) for a certain n and fixed temperature. The red straight
line corresponds to the first term, ( gn,c

gc
)2	, the other blue curved line

corresponds to q(	) of Eq. (21) involving the hyperbolic functions.
Of physical relevance is the region 	 > 1 only. Thus, for g < gn,c

no physical solution is possible, whereas for gn > gn,c a physical
solution might exist.
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FIG. 3. The function f of Eq. (9) with zn = 0 = y2, and y1 = y

for fixed temperature. The coupling strength g increases from the
upper to the lower curves. The units are arbitrary and f has been
rescaled for comparison, such that f (0) = 0 for all coupling strengths
g. On increasing g, a local minimum forms distant from the origin.
For large g this minimum eventually becomes a global minimum.

when 	 is increased. Therefore, the first solution corresponds
to a maximum and the second to a minimum.

We gain additional insight, if we directly analyze f (yn)
for different coupling strengths [f (yn) ≡ f (y1,0,0,0) from
Eq. (9), w.l.o.g. n = 1]. This is shown in Fig. 3. We see that for
small coupling strengths, f (yn) has one local minimum only,
which is located at yn = 0, the trivial solution. If the coupling
strength is increased, a maximum-minimum pair forms at
finite values of yn. In general, this local minimum at yn > 0
is energetically higher than the local minimum of the trivial
solution at yn = 0, cf. Fig. 3. Hence, the trivial solution still
minimizes f (yn) globally. However, if the coupling strength is
increased even further, the local minimum at yn > 0 becomes
the global minimum. So we see that the position yn,0 of the
global minimum jumps at a certain value of the coupling
strength from zero to a finite value.

The above discussion refers to the case δ = 0. However, for
finite δ, the results are qualitatively the same. We discuss the
properties of the phase transition for finite δ below.

III. THE PHASE TRANSITION

In the above analysis, we have shown the existence of
three different minima of f appearing in the exponent of
the integrand of the partition sum. We have also shown
that for a given temperature T , we find coupling strengths
g1,c(T ), g2,c(T ), below which the trivial solution y1,0 =y2,0 =0
minimizes f . In Eq. (13), yn,0 measures the macroscopic
occupation of the bosonic modes and can therefore serve
as an order parameter of the phase transition. Hence, in the
parameter regime where the trivial solution minimizes f , the
system is in the normal phase.

In addition, above the coupling strengths g1,c(T ), g2,c(T ),
f is minimized by nonzero values of either y1,0 or y2,0.
The first corresponds to the red superradiant phase, the
latter to the blue superradiant phase of Ref. [55]. The two
superradiant phases at nonzero temperatures show only one
macroscopically occupied bosonic mode as well; mode one
for the blue superradiant phase and mode two for the red

superradiant phase, while the occupation of the other mode is
zero.

As we have seen in the previous section, the location of the
global minimum yn,0 jumps from the trivial solution to nonzero
solutions. A jump of the order parameter defines a first-order
phase transition. Therefore, the finite-temperature superradiant
phase transition in the � model is a first-order phase transition.
Hence, the continuous phase transition at zero temperature of
Ref. [55] transforms into a first-order phase transition at finite
temperatures.

So far, we have identified the phases and phase transitions
using the occupation of the bosonic modes. In the following,
we will further characterize the phases using observables of
the three-level systems.

A. Normal phase

In the normal phase with y1,0 = y2,0 = 0, the Hamiltonian
ĥ0 is diagonal and the eigenvectors wk are given by Cartesian
unit vectors. Hence, the expectation value of all collective
operators Â m

n with n �= m vanish. Conversely for the diagonal
operators Â n

n , the occupations; their expectation values are
given by

〈
Â 1

1

〉 = N 1

1 + e−βδ + e−β�
, (23)

〈
Â 2

2

〉 = N e−βδ

1 + e−βδ + e−β�
, (24)

and 〈
Â 3

3

〉 = N e−β�

1 + e−βδ + e−β�
. (25)

Here, we explicitly see that in the normal phase the expectation
values are independent of the coupling strengths g1 and g2.
Furthermore, we note that for finite temperatures, in addition
to the single-particle ground state |1〉, the energetically higher-
lying single-particle states |2〉 and |3〉 are macroscopically
excited as well. Hence, in contrast to the bosonic modes, the
particle part of the system gets thermally excited. From that
point of view, i.e., concerning the populations of the single-
particle energy levels, the particle system in the normal phase
behaves like a normal thermodynamical system.

B. Superradiant phases

For the superradiant phases, we cannot give explicit
expressions for the expectation values, neither for finite or
vanishing δ. That is because we need to compute the minimum
of f numerically. Though for δ = 0, we can say that some
expectation values are exactly zero. This will be done next,
separately for the red and the blue superradiant phases.

1. Red superradiant phase

First consider the red superradiant phase with y1,0 ≡ y0 �= 0
and y2,0 = 0. Then, the single-particle Hamiltonian ĥ(y0,0)
reads [cf. Eq. (7)]

ĥ(y0,0) =
⎛
⎝ 0 0 2g1y0

0 0 0
2g1y1 0 �

⎞
⎠, (26)
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and its exponential has the form

e−βĥ(y0,0) =
⎛
⎝a+ 0 b1

0 1 0
b1 0 a−

⎞
⎠. (27)

The matrix elements a± and bn are given by (the matrix element
b2 is needed below).

a± = e− β�

2

(
cosh

[
β�	

2

]
± sinh

[
β�	

2

]
	

)
, (28)

bn = −4gnyn

�	
e− β�

2 sinh

[
β�	

2

]
, n = (1,2). (29)

The product of the exponential operator, Eq. (27), with
matrices of the form⎛

⎝ 0 M12 0
M21 0 M23

0 M32 0

⎞
⎠ (30)

is traceless. Therefore, the expectation values of the collective
operators Â 2

1 , Â 3
2 and their Hermitian conjugates are zero,

i.e., there is no spontaneous polarization between both the
single-particle states |1〉 and |2〉, and the single-particle states
|2〉 and |3〉. Contrary, the polarization in the left branch of
the � model, i.e., between the states |1〉 and |3〉, is finite and
macroscopic.

2. Blue superradiant phase

For the blue superradiant case, the discussion is similar.
Here we have y2,0 ≡ y0 �= 0 and y1,0 = 0, and the exponential
of the single-particle Hamiltonian reads

e−βĥ(0,y0) =
⎛
⎝1 0 0

0 a+ b2

0 b2 a−

⎞
⎠. (31)

The matrix elements are given above, Eqs. (28) and (29). Now,
the product of the exponential operator, Eq. (31), with matrices
of the form ⎛

⎝ 0 M12 M13

M21 0 0
M31 0 0

⎞
⎠ (32)

is traceless and thus expectation values of the collective
operators Â 2

1 , Â 3
1 and their Hermitian conjugates are zero.

On the other hand, the expectation value of the operators Â 3
2 ,

Â 2
3 is finite and macroscopic. Hence, only the transition in the

right branch of the � model is spontaneously polarized.
In conclusion, we find that in the superradiant phases at

finite temperature, only the corresponding branch of the �

model shows spontaneous polarization: the left branch in
the red superradiant phase and the right branch in the blue
superradiant phase. In the normal phase, the polarization
is completely absent. Hence, in contrast to the populations
of the atomic system, the polarizations are not thermally
excited and show a genuine quantum character. Thus, both the
polarizations and the occupations of the two resonator modes
show a similar behavior in the three phases. Therefore, we have
two sets of observables, the polarizations for the three-level

systems and the occupations of the bosonic modes, to detect
the superradiant phase transition at finite temperatures.

C. Numerical evaluation of the partition sum

The above analysis for vanishing δ already shows that the
phase transition in the � model for finite temperatures is a
first-order phase transition. This fact renders the calculation
of the exact location of the phase transition with our methods
impossible. This can be understood with the help of the free
energy as follows. In the thermodynamic limit, the global
minimum of the free energy defines the thermodynamic phase
of the system. We explicitly saw this when we have computed
the partition sum. In a phase transition, the system changes
from one thermodynamic state to another thermodynamic
state. This new state corresponds to a different, now global
minimum of the free energy.

For continuous phase transitions, the new minimum evolves
continuously from the first minimum and the first minimum
changes its character to a maximum. Hence, the continuous
phase transition is characterized by a sign-change of the
curvature of the free energy at the position of the minimum of
the state describing the normal phase. Often, this is tractable
analytically.

In contrast in the case of first-order phase transitions, the
new global minimum of the free energy appears distant from
the old global minimum of the free energy, cf. Fig. 3. There
are still two minima and we cannot detect the phase transition
by the curvature of the free energy. Thus, to find the phase
transition for first-order phase transitions, we first need to find
all minima of the free energy and then find the global minima
of these. This has to be done numerically here.

For the numerical computation, we do not solve Eq. (18),
but we test for the minima of f (y1,y2), Eq. (9), directly.
Therefore, we apply a brute-force method, i.e., we look for
the smallest value of f (y1,y2) on a y1-y2 grid. Due to the
reflection symmetry of f (y1,y2), we can confine the grid to
positive values for y1 and y2. This yields the position of the
minimum (y1,0,y2,0). Then we compute the eigenvalues and
eigenvectors of the Hamiltonian ĥ at this point and obtain via
Eq. (A1) the expectation values for the operators of the bosonic
modes, and via Eq. (17) the corresponding expectation values
for the three-level systems.

Figures 4, 5, and 6 show the occupation 〈â†
nân〉 of the modes

of the resonator, the occupation Â n
n of the single-particle levels

of the atoms, and the polarizations Â 3
1 , Â 3

2 of the atoms for
low and high temperatures, respectively. All plots have been
generated numerically for finite values of δ.

These figures corroborate our findings from the analytical
discussion of the partition sum for vanishing δ. We see three
phases: a normal phase for coupling strengths g1 and g2

below the critical coupling strengths g1,c and g2,c, a red
superradiant phase for large coupling strengths g1 above the
critical coupling strength g1,c, and a blue superradiant phase
for coupling strengths g2 above the critical coupling strength
g2,c.

The normal phase is characterized by a zero occupation
of both bosonic modes (Fig. 4) In addition, the polarization,
or coherence, of the three-level systems is zero in the normal
phase (Fig. 6).
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FIG. 4. Numerical computation of the scaled occupations
〈â†

nân〉 /N of the two bosonic modes for kBT = 0.001 � (left) and
kBT = 0.25 � (right). The parameters are set to � = 1, δ = 0.1,
ω1 = 1.1, and ω2 = 0.8. The computation has been done in the
thermodynamic limit using Laplace’s method.

In contrast to the normal phase, the two superradiant phases
are characterized by a macroscopic occupation of only one of
the two bosonic modes: mode one in the red superradiant phase
and mode two in the blue superradiant phase. In addition, the
red (blue) superradiant phase shows a spontaneous polarization
〈Â 3

1 〉 (〈Â 3
2 〉).

We see that these defining properties remain for increasing
temperature (right part of Figs. 4–6). As discussed in Sec. III A,
we see that the population 〈Â 2

2 〉 of the single-particle energy
level |2〉 increases for rising temperature. The same is true for
the occupation 〈Â 3

3 〉, though this is not visible in the right part
of Fig. 5 due to the fact that the temperature is yet too small.

From the Figs. 4–6 we also see that the shape of the phase
boundary remains a straight line between the normal and
the two superradiant phases. Between the red and the blue
superradiant phases, the form of the phase boundary seems
to persist as well. The only effect of the rising temperature is
a shift of the phase boundary toward higher values of the
coupling strengths g1 and g2. This is visualized in Fig. 7
where the polarization 〈Â 3

1 〉 of the transition |1〉 ↔ |3〉 of the
three-level systems is shown for variable coupling strength g1

and temperature T . The coupling strength of the second mode
is fixed to g2 = 0.2 g2,c. We see that for increasing temperature,
the superradiant phase diminishes.

In addition to the shift of the phase boundary, the jump in the
observables at this first-order phase transition increases. This
is shown in Fig. 8 for the occupation 〈â†

1â1〉 of the first bosonic
mode. Of course, numerically, jumps are hard to detect since
we get a discrete set of points as an output anyway. However,
the dotted lines in Fig. 8 connect two largely separated points;

FIG. 5. Numerical computation of the scaled occupations
〈Â n

n 〉 /N of the single-particle energy levels of the three-level systems
for kBT = 0.001 � (left) and kBT = 0.25 � (right). Parameters as in
Fig. 4.

FIG. 6. Numerical computation of the scaled polarizations
〈Â 3

1 〉 /N , 〈Â 3
2 〉 /N of the three-level systems for kBT = 0.001 �

(left) and kBT = 0.25 � (right). Parameters as in Fig. 4.
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FIG. 7. Numerical computation of the scaled polarization
〈Â 3

1 〉 /N of the transition |1〉 ↔ |3〉 of the three-level system.
Parameters as in Fig. 4 and g2 = 0.2 g2,c.

each of the lines consists of 1000 data points. Thus, we can
really speak of jumps in the observables and thus of a first-order
phase transition.

D. Zero-temperature limit

Last, we analyze the zero-temperature limit of the � model
for δ = 0. For decreasing temperature, the function q(	),
Eq. (19), becomes more and more step function like. Indeed,
for β�  1, q(	) can be written as a Fermi function, and
eventually in the limit β� → ∞, q(	) is given by

q(	) =
{

0, 	 < 1
1, 	 > 1.

(33)

Hence, at zero temperature, Eq. (21) has always a unique
solution for coupling strengths gn > gn,c. In addition, since
f (y) shows no additional maximum, we have a continuous
phase transition in this quantum limit.

FIG. 8. Occupations 〈â†
1â1〉 of the first bosonic mode as a function

of the coupling strength g1 for fixed coupling strength g2 = 0.2g2,c

and rising temperature (left to right, blue to red, respectively). The
other parameters are set to � = 1, δ = 0.1, ω1 = 1.1, and ω2 = 0.8.

Furthermore, we can also compute the position of the
minimum of f . In the limit T → 0, Eq. (21) reads

0 =
(

gn,c

gn

)2
√

1 + 4�ωn

�

(
gn

gn,c

)2

y2
n − 1. (34)

Solving for yn, we obtain

yn = ± g

�ωn

√
1 −

(
gn,c

gn

)4

. (35)

If we identify yn with the mean fields ϕn of Ref. [55], we
reproduce our results [55] for the superradiant phases of the
quantum phase transition of the � model.

The mean fields �n of Ref. [55] can be reproduced as well.
Consider for instance �3, which is related to 〈Â 3

3 〉 through
〈Â 3

3 〉 = N�2
3 , except for a possible phase. Using the results

for the Boltzmann operator in the red superradiant phase,
Eq. (31), plus the above expression for y1, Eq. (35), and finally
insert everything into the expectation value of Eq. (16), we
obtain 〈

Â 3
3

〉 = N
2

1 − eβ�	 + (1 + eβ�	)	

[1 + eβ�	 + e
β�

2 (	+1)]	
, (36)

which in the zero-temperature limit β� → ∞ reduces to

〈
Â 3

3

〉 = N
2

	 − 1

	
. (37)

Here, 	 = 	(y1) from Eq. (22). If we finally insert the position
y1 of the minimum of the free energy, Eq. (35), the population
of the third single-particle energy level in the zero-temperature
limit is given by

〈
Â 3

3

〉 = N
2

[
1 −

(
g1,c

g1

)2
]
, (38)

which agrees with the findings of Ref. [55] for �3. Applying
the same technique, we can obtain the expectation values of
all other collective atomic operators Â m

n in both superradiant
phases. This again coincides with the results of Ref. [55].

IV. CONCLUSION

We have analyzed the � model in the thermodynamic
limit at finite temperatures using the partition sum of the
Hamiltonian. Compared to the quantum phase transition of this
model [55], we found that at finite temperatures the properties
of the phases and phase transition partially persist. Namely,
we found three phases: a normal and two superradiant phases.
These have the same properties as in the quantum limit. For
small couplings and/or at high temperatures, the system is in
the normal phase, where all particles are in their respective
single-particle ground-state and both bosonic modes are in
their vacuum state. If one of the coupling strengths is increased
above a temperature-dependent critical coupling strength, the
system undergoes a phase transition into a superradiant phase,
which is characterized by a macroscopic occupation of one of
the bosonic modes only and a spontaneous polarization of the
corresponding branch of the three-level system.

A new characteristic of the phase transition at finite temper-
atures is the appearance of first-order phase transitions only.
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For the quantum phase transition we already found first-order
phase transitions between the normal and the red superradiant
phase and between the two superradiant phases. Here, at finite
temperatures, the phase transition from the normal to the blue
superradiant phase becomes a first-order phase transition as
well. This change of the order of the phase transition would
appear for a single bosonic mode as well. Hence, it is due
to the additional single-particle energy level that first-order
phase transitions show up. In addition, we emphasise that
even in the degenerate limit, δ → 0, the phase transitions
from the normal to both superradiant phases are of first
order.

It is remarkable that in contrast to the original Dicke model,
the mean-field phase transitions at finite temperatures are
not continuous. This facet becomes significant if real atoms
and photons are considered. Here, for the original Dicke
model with its continuous phase transition, there exists a
no-go theorem [36,57–63]. However, for first-order mean-field

quantum phase transitions, it is known [56,66] that this no-go
theorem does not apply and superradiant phase transitions
occur. We expect an identical conclusion for the � model
at finite temperatures.

The effect of finite temperature is relevant for an ex-
perimental realization as well. In fact, the original Dicke
model has been implemented via an effective Hamiltonian
in experiment [3,4,6,7,9]. By an extension of the experimental
setup (inclusion of additional energy levels and modes and
cavity modes) it should be possible to realize an effective
description of our extended Dicke model and observe this
first-order superradiant phase transition.
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APPENDIX

1. Expectation values of bosonic mode operators

We calculate the expectation value of functions G of operators of the two bosonic modes as

〈G(â†
1,â1,â

†
2,â2)〉 = 1

Z Tr
{
G(â†

1,â1,â
†
2,â2) e−βĤ

}
(A1)

= 1

Z

∫
C2

d2α1d
2α2

π2
G(α∗

1 ,α1,α
∗
2 ,α2) e−β

∑2
n=1 �ωn|αn|2 Tr{e−βĥ}N (A2)

= 1

Z
N 2

π2

∫
R2

dy1dy2G(
√
Ny1,

√
Ny1,

√
Ny2,

√
Ny2) e−βf (A3)

= G(
√
N y1,0,

√
N y1,0,

√
N y2,0,

√
N y2,0). (A4)

In the last step we used that the exponential dominates for large N . Hence, the function G can be considered constant and the
remaining integral plus the prefactor is equal to the partition sum.

2. Expectation values of operators of the three-level systems

For mean values of collective operators M̂ (cf. Sec. II C) of the three-level systems we have

〈M̂〉 = 1

Z Tr{M̂e−βĤ } (A5)

= 1

Z

∫
C2

d2α1d
2α2

π2
e−β

∑2
n=1 �ωn|αn|2

N∑
k=1

Tr
{
m̂(k)e−βĥ(1) · . . . · e−βĥ(N )}

(A6)

= 1

Z

∫
C2

d2α1d
2α2

π2
e−β

∑2
n=1 �ωn|αn|2 Tr{e−βĥ}NN Tr{m̂e−βĥ}

Tr{e−βĥ} (A7)

= N Tr{m̂ e−βĥ0}
Tr{e−βĥ0} (A8)

≡ N 〈m̂〉0 , (A9)

with ĥ0 = ĥ(y1,0, y2,0).
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