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Effects of gas interparticle interaction on dissipative wake-mediated forces
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We examine how the short-range repulsive interaction in a gas of Brownian particles affects behavior of
the nonequilibrium depletion forces between obstacles embedded into the gas flow. It is shown that for an
ensemble of small and widely separated obstacles the dissipative wake-mediated interaction belongs to the type
of induced dipole-dipole interaction governed by an anisotropic screened Coulomb-like potential. For closely
located obstacles, formation of a common density perturbation “coat” around them leads to enhancement of
dissipative interaction, manifested by characteristic peaks in its dependence on both the bath fraction and the
external driving field. Moreover, additional screening of the gas flow due to nonlinear blockade effect gives rise
to generation of a pronounced step-like profile of gas density distribution around the obstacles. This can lead to
additional enhancement of dissipative interaction between obstacles. The possibility of the dissipative pairing
effect and dissipative interaction switching provoked by wake inversion is briefly discussed. All the results are
obtained within the classical lattice-gas model.
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I. INTRODUCTION

Motion of inclusions or probe-particles through a medium
is accompanied by the medium perturbation (e.g., perturbation
of its density) that can manifest itself in the form of wakes.
The medium perturbation can, in turn, induce a nonequilib-
rium interaction between the inclusions. Such interaction is
responsible, in particular, for the coherent part of the collective
friction force as well as for possible formation of dissipative
structures in an ensemble of the inclusions. The nature of
the medium perturbation and the properties of the induced
nonequilibrium interaction are defined by the properties of
the medium, e.g., by its nonlinearity, and the mechanism
of energy losses. The perturbation can lead to generation
of vortices, Cherenkov radiation, or local phase transitions
(some more effect can be found in hydrodynamics [1–6],
optics [7], plasma physics [8–13], quantum liquids and Bose
condensates [14–20]).

In dissipative media, the induced nonequilibrium inter-
action between inclusions can conditionally be divided into
reactive and dissipative parts. In the simplest case, when the
speed of a probe-particle is rather small, e.g., smaller than the
speed of sound in a medium and the hydrodynamic effects can
be neglected, the medium perturbation can be described in the
diffusive approximation [21]. The diffusive wake may be of
large spatial and temporal extensions with power-law damping
(see Refs. [22–26]), which is an evidence of long-time memory
of the medium about the particle passage. The long-living
wakes of individual particles lead, in turn, to a long-range
effective dissipative interaction between the particles [27].
This can be qualitatively described using the linear response
approximation [14,28]. However, the linear response approx-
imation, giving a qualitative picture of medium perturbation,
leads to incorrect results for wakes, dissipative interaction,
and, in general, does not give adequate description of nonlinear
media [29].
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In the present paper, we will be interested in the dissipative
interaction between inclusions induced by their wakes in a
nonlinear medium, resorting to an example of a Brownian
gas with short-range interparticle repulsion (the hard-core
interaction). In this case, the dissipative interaction between
inclusions is often called the nonequilibrium depletion or
entropic interaction (e.g., see Refs. [4,27,30]). At equilibrium,
the depletion interaction is usually short-range; its spatial range
is of the order of the characteristic length scale of the medium
particles [31,32]. In contrast, the nonequilibrium forces be-
tween impurities may exhibit long-range behavior due to
a long-living diffusive wake induced by their motion [22–
24,26,27,33]. In addition, such forces often have unusual prop-
erties, e.g., they violate the Newton’s third law [27,30,34,35].
The non-Newtonian behavior of the nonequilibrium depletion
force was demonstrated at low gas concentrations [27], when
interaction between gas particles is negligible.

To describe the nonequilibrium depletion force for a gas
of interacting particles, we turn to the simplest model of a
lattice gas, when each lattice site can be occupied by only
one particle. Even such a short-range repulsive interaction
results in a number of unexpected kinetic effects, e.g., the
“back correlations” effect [36], drifting spatial structures
[37–39], effects of “negative” mass transport [40–42], induced
long-time correlations [43], and the dissipative pairing effect
for tracers passing through a lattice gas [44]. Increasing of
gas concentration (bath fraction) leads to enhancement of the
role of interaction between gas particles. As was shown in
Ref. [45] this implicates significant changes in the shape of
wake of an obstacle in a gas flow—wake inversion. In addition,
based on the “particle-hole” symmetry of the system and the
oddness property of dissipative force as a function of gas
concentration, it was suggested [45] that wake inversion can
provoke switching of dissipative interaction between obstacles
from effective repulsion to effective attraction or viceversa.
Generally, wake-mediated interaction is determined by the
structure of obstacle wake and should be sensitive to its shape
transformations, in particular, to formation of a common wake
of two or more obstacles and to nonlinear effects in gas such
as the blockade effect (local gas flow screening).

2470-0045/2017/95(1)/012150(14) 012150-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.012150


O. V. KLIUSHNYCHENKO AND S. P. LUKYANETS PHYSICAL REVIEW E 95, 012150 (2017)

In this paper we examine the behavior of dissipative (wake-
mediated) forces acting between obstacles depending on the
distance between them, their mutual alignment, magnitude
of external sweeping field and equilibrium gas concentration.
For distant and/or small (point-like) inclusions, when the
nonlinear effects are less significant, we show that the
dissipative wake-mediated forces between them are a kind of
induced dipole-dipole (generally, multipole) interaction that
is associated with anisotropic screened Coulomb potential.
In contrast to ordinary dipole-dipole interaction, this one
describes the interaction between induced nonsymmetrical
“dipole moments” of obstacles, i.e., between “dipoles” with
nonzero total induced “charge.” We also show that formation
of common or collective wake of obstacles enhances effec-
tive dissipative interaction between them and significantly
depends on the magnitude of external drive, bath fraction, and
obstacles’ mutual orientation. For obstacles located closely
enough to each other, the profile of common gas perturbation
around them has a pronounced step-like behavior due to the
nonlinear blockade effect in gas, which leads to additional
enhancement of dissipative interaction. The dissipative force
switching effect, suggested in Ref. [45] to be caused by wake
inversion, directly follows from the dependence of dissipative
force on equilibrium gas concentration. To demonstrate the
above-mentioned phenomena, we use the mean-field and
the long-wavelength approximations, neglecting the short-
range correlations and fluctuations in the gas; see Refs. [41,45].

Our paper is organized as follows: In Sec. II we specify the
kinetic equations to be used and briefly discuss the employed
approximations. The main results on dissipative forces are
contained in Sec. III. In Sec. III A, the case of small (point-like)
inclusions is considered in the linear flow approximation. In
Sec. III B, the nonlinear blockade effect (i.e., screening of gas
flow) is discussed for large and closely located obstacles. In
Sec. III C, the case of two moderately separated obstacles is
considered numerically for two spatial configurations. Sec-
tion IV briefly summarizes obtained results. The appendices
contain the outlines of two analytic approaches used in
Sec. III A: a naı̈ve one (Appendix A), giving a rough sketch of
the dissipative interaction behavior, and a more sophisticated
one (Appendix B), based on the single-layer potential method
for inclusions with sharp boundaries.

II. MODEL

As was shown in Refs. [41,45], an obstacle in a lattice gas
flow can be considered as a limiting case of a two-component
gas: one of the components is static while the other one is
mobile and driven by a uniform external field. We employ
the simplest model of a two-component lattice gas, when
each lattice site can be occupied by only one particle; see
Ref. [36]. Kinetics of a multicomponent lattice gas is defined
by the jumps of its particles to the neighboring vacant sites.
The variation of the ith site occupancy by the particles of the
αth sort during the time interval �t , τ0 � �t � τl (τ0 is the
duration of a particle jump to a neighboring site and τl being
the lifetime of a particle on a site), is described by the standard
continuity equation (see, e.g., Refs. [36,46]),

nα
i (t + �t) − nα

i (t) =
∑

j

(
J α

ji − J α
ij

) + δJ α
i , (1)

where α and β label the particle species and nα
i = 0,1 are

the local occupation numbers of the αth particles at the ith
site. J α

ij = να
ijn

α
i (1 − ∑

β n
β

j )�t gives the average number of
jumps of the αth particles from site i to a neighboring site j per
time �t . να

ij = να is the mean frequency of these jumps. The
term δJ α

i = ∑
j (δJ α

ji − δJ α
ij ) stands for the Langevin source

that is defined by the fluctuations δJ α
ji of the number of jumps

between sites j and i during �t [46]. These fluctuations are
caused by fast processes, compared to the time scale �t , and
will be neglected for simplicity. It means that we disregard the
fluctuation-induced forces.

In what follows we consider only two components, mobile
and static, which are labeled by n and u, respectively. In
the absence of external fields we suggest for a regular
lattice that νn

ji = ν = const for the component n, while the
component u is assumed to be at rest, νu

ji = 0. The presence
of a driving field leads to asymmetry of the particle jumps.
Assuming the activation mechanism of the jumps and a
weak driving field G, frequency νji may be written as νn

ji ≈
ν[1 + G · (ri − rj )/(2kT )], or ν± ≈ ν ± δν, where ν+ and
ν− denote the jump frequencies along and against the field,
respectively. δν = ν�|G|/(2kT ) (� is the lattice constant),
condition �|G|/(2kT ) < 1 is assumed to be satisfied.

Equations for the average local occupation numbers can be
obtained from Eqs. (1) using the local equilibrium approxi-
mation (the Zubarev approach) [46,47], which coincides, in
our case, with the mean-field approximation [48]. Introducing
time derivatives [49], in the long-wavelength approximation
(see Refs. [37–39,41]) the macroscopic kinetics of the mobile
component n is given by the equation

∂τn = ∇2n − ∇(u∇n − n∇u) − (g · ∇)[n(1 − u − n)], (2)

where n = n(r,τ ) and u = u(r) are the average occupation
numbers of the two components at the point r (0 � n � 1
and 0 � u � 1) and g = �G/(2kT ). Here, we have introduced
the dimensionless spatial coordinate r/� → r and time τ = νt ,
and ∂τ stands for the partial time derivative. Note that equations
of the form of Eq. (2), as well as their generalizations for two-
and multicomponent systems, also appear in the problems of
nonlinear cross-diffusion with size exclusion [50], diffusion in
monolayers of reagents on the surface of a catalyst [51], and
serve as a model of fast ionic conductors [37].

In the nonequilibrium case, there are various approaches
to introduce the dissipative force (or interaction) between
inclusions via the Brownian gas environment. The approaches
are not equivalent to each other and may lead to different results
in general; see Ref. [30]. To introduce the force acting on an
obstacle, we first consider a point-like inclusion (impurity)
occupying a lattice site Rj with a given interaction potential
U (ri − Rj ) between the inclusion and a particle of the lattice
gas at site ri . Then, Hamiltonian of the lattice gas in the
presence of impurities is written as H = H0 + Hint, where H0

is the Hamiltonian of the lattice gas without inclusions, and
Hint = ∑

ij niU (ri − Rj ) describes interaction between gas
particles and impurities; ni = 0,1 is the occupation number of
site ri .
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At equilibrium, the total force acting on the j th inclusion
can be written as (see Ref. [30])

f eq
j =

〈
− δ

δRj

Hint

〉
=

∑
{n}

(
− δ

δRj

Hint

)
ρ({n}) (3)

=
∑

i

〈ni〉 δ

δri

U (ri − Rj ), (4)

where ρ({n}) is the equilibrium probability (or statistical op-
erator in the matrix representation [46]) of a given occupancy
configuration {n},

ρ({n},0) = Z−1 exp(−H {n}/kT ), (5)

and Z = ∑
{n} exp(−H {n}/kT ); 〈ni〉 is the mean occupation

number at site ri that describes the equilibrium distribution
of gas concentration. The force f eq

j , Eqs. (3) or (4), can be
expressed in terms of the gas free energy F = −kT ln Z as

f eq
j = − δ

δRj

F. (6)

This relation is often used to define the equilibrium depletion
force [52,53].

In this paper, we use another approach based on Eq. (3)
written with nonequilibrium statistical operator ρt ({n}) (see
Ref. [30]),

f neq
j =

∑
{n}

(
−δHint

δRj

)
ρt ({n}) =

∑
i

〈ni〉t δ

δri

U (ri − Rj ),

(7)
where ρt ({n}) obeys a master equation for the hopping process,
see Ref. [54], and 〈ni〉t = ∑

{n} niρt ({n}) is nonequilibrium gas
concentration. Yet another approach consists in generalizing
Eq. (6) to the nonequilibrium case by introducing an effective
nonequilibrium potential or nonequilibrium free energy for
a gas [30,37,54–56]. As was shown in Ref. [30], these two
definitions of the nonequilibrium force are not equivalent.
Representation Eq. (7) for the force exerted by gas particles
on an obstacle is similar to the hydrodynamic definition of the
force which, in particular, was used in Ref. [27] to describe
the nonequilibrium depletion interaction between obstacles in
a gas of noninteracting particles. Here, we use representation
Eq. (7) to describe the nonequilibrium depletion forces acting
between obstacles via gas perturbation.

In the continuum limit and the mean-field approximation,
f neq

j takes the form

f neq
j = −

∫
U (r − Rj )∇rn(r,t) dr, (8)

where n(r,t) = 〈n(r)〉t . When the obstacle is a cluster formed
by particles of the second (heavy) gas component, poten-
tial U (r) describes the concentration distribution of that
component and n(r,t) obeys Eq. (2) obtained in the long-
wavelength approximation. In what follows, to separate out
the contribution of the gas perturbation δn(r,t) induced by the
gas flow (or the external field g) from the total force Eq. (8),
we consider the quantity

f j = −
∫

U (r − Rj )∇rδn(r,t) dr, (9)

where δn(r,t) = n(r,t) − n0(r), n0(r) is the equilibrium con-
centration distribution, and n0(r → ∞) → n0 ≡ const stands
for the average equilibrium concentration of gas (fraction of
the full lattice occupation, 0 � n0 � 1).

In the case of inclusion with a sharp boundary, f j takes the
conventional form

f j = −
∫

Sj

n(r)δn(r) dr, (10)

where Sj is the surface of j th inclusion and n(r) is its exterior
normal at the point r. In what follows, we will be interested
in nonequilibrium steady-state interaction, i.e., in the limiting
case t → ∞. We will use the lattice gas model Eq. (1) in the
mean-field approximation (neglecting the fluctuation part) and
its continuum version Eq. (2) to describe the character of the
dissipative interaction between obstacles.

III. DISSIPATIVE WAKE-MEDIATED INTERACTION
AND FORMATION OF COMMON WAKE

In this section we consider how the gas particle interaction
and nonlinear screening of gas flow affect the behavior of
dissipative forces acting on obstacles. For a relatively large
obstacle and sufficiently high concentration n0, the gas flow
generates a dense region ahead of the obstacle as the gas
particles have no time to leave this zone via lateral diffusion.
Such a strong accumulation of the gas particles locally
enhances the significance of the interaction between them,
so that the dense region ahead of the obstacle has to grow.
Similar behavior arises for closely located obstacles when
their individual density perturbation “coats” overlap leading to
formation of a common “coat” around them and to additional
screening of the gas flow. The latter means that peculiarities
of dissipative interaction between closely located obstacles are
determined by the nonlinear blockade effect for which the term
∼n2 in Eq. (2) is responsible. We consider these nonlinear
effects numerically on the basis of mean-field version of
Eq. (1), neglecting gas fluctuations.

In the particular case of relatively small and distant obsta-
cles, the interaction between gas particles can be taken into
account in the linear approximation [45]. That approximation
allows one to obtain analytical expressions for the asymptotic
behavior of both the density perturbation far from obstacles
and the dissipative interaction between them. Now we proceed
to this case in the subsection below.

A. Dissipative interaction of widely separated inclusions

In what follows we consider a nonequilibrium steady-state
problem by setting ∂τn = 0 in Eq. (2):

∇2n − U∇2n + n∇2U − (g · ∇)n(1 − n − U ) = 0, (11)

where obstacles are given by a distribution U of the heavy gas
component. Far from small obstacle (whose size is comparable
with lattice constant) the density distribution n = n0 + δn

weakly deviates from the equilibrium one n0 [45]. In this case,
interaction between gas particles is less significant and the
drift term in Eq. (2) can be written in the linear approximation
n2 ≈ n2

0 + 2n0δn.
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Simple analytical expressions for density perturbation and
dissipative forces for the ensemble of widely separated small
obstacles can be obtained using the qualitative approach
described in Appendix A. This approach is similar to that based
on the method of molecular field that was used to describe the
elastic interaction of colloidal particles in a liquid crystal; see
Ref. [57]. In particular, the gas density perturbation far from
an isolated obstacle can be written as

δn(r) ∼ (� · ∇r)G(r), (12)

where G(r) is anisotropic screened Coulomb-like potential
that takes the form

G(r) = 1

4π

e−q|r|+q·r

|r| (13)

in the 3D case, and

G(r) = 1

2π
eq·rK0(q|r|) (14)

in the 2D case. Here, K0 is the modified Bessel function,
vector q = (1/2 − n0)g determines the preferable direction of
screening and depends on external sweeping field g (or gas
flow) and on equilibrium gas concentration n0 (bath fraction).
� plays a role of the molecular field or an average flux near
obstacle; see Appendix A.

At low concentrations of gas (n0 < 1/2), the dense region of
the gas ahead of the inclusion is described by an exponential
asymptotics, while the asymptotics of the depletion region
behind the inclusion is power-law. When gas concentration
increases and n0 becomes greater than 1/2, the anisotropy
vector q = (1/2 − n0)g changes its direction to the oppo-
site. It means that switching of the wake direction, wake
inversion [45], occurs together with corresponding switching
between the exponential and power-law asymptotics. The dis-
tribution δn(r), related to the anisotropic screened Coulomb-
like potential, formally describes a “medium polarization”
around the inclusion induced by an asymmetrical “dipole”
(see, e.g., Fig. 1).

In the case of ensemble of distant inclusions, the force
exerted by the ith inclusion on the kth one can be roughly

estimated as (see Appendix A)

f ki ∼ −∇Rk

(
�i · ∇Rk

)
G(Rk − Ri), (15)

where Rk is the center of the kth inclusion. The anisotropic
screened Coulomb potential G, giving the asymmetrical form
of the obstacle wake Eq. (12), naturally leads to the non-
Newtonian character of dissipative forces acting between
obstacles, f ki �= − f ik . As seen from Eqs. (12) and (15),
the asymptotic behaviors of the density perturbation and the
dissipative forces acting between widely spaced small inclu-
sions are defined by the moments of a screened anisotropic
Coulomb potential. The local density perturbation around an
obstacle is formed by an effective flow � (molecular field),
which is determined by the external flow and flows induced
by gas density perturbations of all the inclusions. The latter
means that the interaction between two inclusions cannot be
separated out of the influence of all other inclusions. This
is a general property of a nonlinear response or nonlinear
systems; see Ref. [57]. Formally, Eq. (15) describes induced
dipole-dipole interaction between asymmetrical point-like
dipoles in nonequilibrium steady-state case, where �i can
be considered as effective induced dipole moment of ith
inclusion with non-zero total “charge.” The main contribution
to this interaction is due to the influence of ith dipole on
“uncompensated induced charge” of kth asymmetrical dipole.
Note that form of δn and f ki corresponding to the nonlinear
response is similar to that given by the linear response for
moving probe particles (cf. note Ref. [28]), the only difference
is that asymptotic behaviors are associated with anisotropic
screened Coulomb potential instead of ordinary Coulomb,
|r|−1, and with mean gas flow (mean field) near inclusion
instead of velocity of the probe-particle. However, Eqs. (12)
and (15) are obtained within somewhat naı̈ve approach and
give only a qualitative picture of dissipative interaction for
point-like inclusions.

More rigorous results for the asymptotics behavior can
be obtained within the single-layer potential approach for
finite-size inclusions with sharp boundaries. Representation
of solution for δn in the form of single-layer potential was

FIG. 1. Transverse alignment. Steady-state concentration distributions (average occupation numbers) of the gas particles n(x,y) near the
obstacles, evaluated numerically within the mean-field approximation of Eq. (1) in the 2D case, correspond to various equilibrium concentrations
n0 = 0.2 (a), 0.5 (b), and 0.8 (c). Panels (a)–(c) illustrate three different regimes of the dissipative interaction: (a) effective repulsion (f y

12 > 0,
f

y

21 < 0, |f y

21| = |f y

12|), (b) no interaction (f y

21 = f
y

12 = 0), (c) effective attraction (f y

21 > f
y

12). The external field g (|g| = 0.5) is directed along
the x axis; the impermeable (ū = 1) circular obstacles are of radius a = 7 (in units of �); the distance between the obstacle centers equals 4a.
The gray background corresponds to the equilibrium gas concentration n0 for every contour plot, in consistence with the color bars. Spatial
coordinates are in units of �. Presented distributions illustrate the wake inversion: transition from the typical wake structure (a) at n0 < 0.5
(with a compact dense region ahead of obstacle and a long depleted tail behind it) to an unusual one (c) at n0 > 0.5 (with extended dense region
ahead of obstacle and a localized depleted region behind it).

012150-4



EFFECTS OF GAS INTERPARTICLE INTERACTION ON . . . PHYSICAL REVIEW E 95, 012150 (2017)

proposed in Ref. [45] to describe the gas density perturbation
around single obstacle in 2D case. In this paper, we use this
representation and its multipole expansion (Appendix B) to
find a general form of asymptotic behavior of dissipative forces
for widely separated obstacles. Particularly, in 3D case this
method gives the following asymptotic behaviors:

δn(r) ≈ e−q|r|+q·r

|r| Ĩ (r,q), (16)

for density perturbation caused by a small isolated obstacle,
and

f ki ≈ −e−q|rki |+q·rki

4π |rki |
∫

Sk

n(xk)I (rki ,q,xk) dxk, (17)

for the dissipative force exerted by ith inclusion on kth
one in the dipole approximation, when the distance |rik| =
|Ri − Rk| between inclusions is much larger than their radii
ai(ak) ∼ �, n(xk) is the exterior normal at the point xk on
the surface of the kth inclusion. For simplicity, we have
considered spherical obstacles, Sk is the surface of the kth
inclusion (|xk| = ak). Functions Ĩ (r,q) and I (rki ,q,xk) have
a power-law dependence on 1/r and 1/rki , respectively [see
Eqs. (B26) and (B21)]. In particular, function I (rki ,q,xk) can
be represented in general form as

I = A(q,ai,xk,) + B(q,ai,xk,) ·
(

q − q
rki

|rki | − rki

|rki |2
)

,

(18)
where A and B are determined only by the obstacle surface
and external field g.

In the 2D case, δn and f ki are determined by the potential
exp(q · r)K0(qr), Eq. (14), having the asymptotic behavior
∼r−1/2 exp(q · r − qr) at large r . Detailed form of the density
distribution δn around a single circular obstacle have been
considered in Ref. [45]. The leading asymptotics of the
dissipative force and its comparison with numerical results
for Eq. (1) in 2D are given in Appendix B.

In the particular case of half filling (n0 = 1/2), q = 0
and the potential G degenerates into usual Coulomb one; see
Ref. [45] and Appendix B. The form of the interaction between
obstacles corresponds to anti-Newtonian dipole-dipole one as
it is in the case of the linear response [28]. Note that single-
layer potential approach enables not only correct description
of the dipole-dipole interaction but also accounting for the
higher-order multipole moments.

The main result of this subsection is that the effective
dissipative interaction between small and distant obstacles
expressed by Eq. (15) or (17) belongs to the induced dipole-
dipole (generally multipole) type of interaction in the nonequi-
librium steady-state case. In contrast to usual electrostatic
interaction between polarizable particles in electric field,
Eqs. (15) and (17) describe interaction between induced
“asymmetric” dipoles (with nonzero total induced “charge,”
see Appendix B), which is associated with anisotropic
screened Coulomb-like potential with preferential direction
of anisotropy q. Note that the linear flow approximation
also allows us to describe, as suggested in Ref. [45],
concentration-dependent switching of dissipative interaction
between obstacles. This approximation is valid for small and
widely separated obstacles and does not describe the nonlinear

FIG. 2. Stationary wakes (numerical results) with kink-like pro-
files δn(x,y = 0) that describe cavities (a) ahead of and (b) behind
the obstacle; n0 = 0.3 for (a) and n0 = 0.7 for (b). (c) Concentration
profiles n(x,y = 0; n0) at several values of the equilibrium concen-
tration n0. Note that a compact jammed region grows ahead of the
obstacle as n0 tends to 1/2, for n0 exceeding the half filling the
wake profile becomes inverted. (d) Contour plot of concentration
distribution n(x,y) for n0 = 0.38. Here, |g| = 0.5, ū = 1, a = 7 (in
units of �), and spatial coordinates are in units of �.

effects that are essential for closely located obstacles as well
as in the vicinity of a large-sized obstacle.

B. Nonlinear blockade effect near surface of big obstacle

Here, we briefly discuss the nonlinear effects caused by the
gas particles blockade resorting to the numerical stationary so-
lution of two-dimensional Eq. (1) in the mean-field approxima-
tion. For a relatively large obstacle, whose size is much larger
than the lattice constant, the screening of the gas flow near the
obstacle surface leads to a growth of the obstacle’s effective
size. As a result, a compact high-density (jellium-like) region
is formed ahead of the obstacle, Figs. 2(a), 2(c), and 2(d).
Figure 2(a) shows that behavior of δn near the obstacle surface
has a pronounced step-like character at n0 < 1/2. Note that
such a step-like behavior of the density perturbation δn is quite
expected since the general type of Eq. (2) admits kink-like
solutions, e.g., for a one-component lattice gas, u ≡ 0. As gas
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FIG. 3. Kink-like concentration profile n(x,y) formed ahead of
two closely located obstacles at n0 = 0.3. The distance between the
obstacle centers equals 4a, other system parameters are the same as
described in the caption of Fig. 2.

concentration n0 approaches 1/2, the compact dense region
grows (while its boundary becomes diffused), see Fig. 2(c),
until the uniformly decreasing distribution is formed. Further,
at n0 > 1/2, the upstream part of the profile transforms into an
inverted diffusive wake with an extended dense region ahead
of the obstacle, Fig. 2(c), while a localized low-density region
(resembling the form of a cavity) with an inverted step-like
profile is formed downstream, Fig. 2(b). Note that a similar
compact structure occurs in a dusty plasma [12,13]. That
structure is formed by a flow of smaller dust grains ahead
of a void formed by larger grains.

A similar nonlinear effect occurs for closely located
inclusions when their individual density perturbation coats are
overlapped. The overlapping leads to an additional screening
of the gas flow and to the formation of a common nonlinear
coat around them with a step-like behavior of the density
perturbation profile, Fig. 3, at least in 2D case. Note that
formation of a common coat can signify the effective pairing
between the inclusions (at n0 > 1/2), i.e., formation of a stable
coupled doublet [44] (see also Sec. III C).

C. Dissipative forces between two moderately separated big
obstacles and common wake formation

We next consider numerically the wake-mediated force
between two obstacles for two orientations of the line of their
centers—parallel and perpendicular to the gas flow. We use
Eq. (1) in the mean-field approximation that takes into account
the nonlinear blockade effect for gas particles. The total force
exerted on a given obstacle includes the part associated with
the individual friction force and the one associated with the
influence of another obstacle. To separate out the interobstacle
contribution from the total dissipative force we consider the
quantity [27]

f ij = f i − f 0
i =

∫
[δn(r,Ri ,Rj ) − δn(r,Ri)]∇ui(r) dr,

(19)

where f i is the total force acting on the ith obstacle in the
presence of the j th one and f 0

i is its individual friction force.

FIG. 4. Transverse alignment. Dependencies of y components
of dissipative forces f 12 and f 21 against the equilibrium gas
concentration n0. Several regimes of the drive |g| = 0.3; 0.4; 0.5 are
plotted for comparison. Other system parameters are the same as
described in the caption of Fig. 1, the forces are in units of kT /� (�
is the lattice constant).

1. Transverse alignment (Fig. 1)

It has been shown in Ref. [45] that from the “particle-
hole” symmetry of the system it follows that dissipative
forces acting between obstacles should be odd functions of
1/2 − n0; i.e., f y

12(n0) = −f
y

21(1 − n0). This means that when
gas concentration increases, wake inversion causes effective
dissipative interaction to switch from repulsion to attraction
(or viceversa), Fig. 1. Indeed, this property is confirmed by
direct numerical calculation, Fig. 4. Moreover, the dissipative
forces acting between obstacles demonstrate a more complex
dependence on n0 with pronounced peaks at n0 < 1/2 and
n0 > 1/2. That enhancement of the dissipative wake-mediated
interaction is due to formation of common density perturbation
coat (common wake) around the obstacles. From the symmetry
of this configuration it follows that the y components of the
forces two obstacles exert on each other are equal and opposite,
f

y

12 = −f
y

21. At low equilibrium concentrations (n0 < 1/2),
Fig. 1(a), the dissipative interaction manifests itself as an
effective repulsion between the obstacles, since f

y

21 < 0 and
f

y

12 > 0; see Fig. 4. Qualitatively, this effective repulsion is
simply explained by the overlap of the density coats around
the obstacles that leads to formation of a dense region between
them acting like a repulsive barrier; see Fig. 1(a). In contrast,
at n0 > 1/2, the overlap of the individual density perturbation
coats of the obstacles results in formation of an extended dense
zone ahead of them that blocks the gas flow, so that the region
between the obstacles becomes depleted. As Fig. 4 suggests,
this collective blockade effect of gas particles leads to effective
attraction between obstacles in a dense medium, f

y

21 > 0 and
f

y

12 < 0.
In the n0 = 1/2 case, the effective interaction between

the inclusions vanishes, f
y

12 = f
y

21 = 0, regardless of the
distance between them. The dissipative interaction between
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FIG. 5. Longitudinal alignment. Steady-state concentration dis-
tributions (average occupation numbers) n(x,y) of the gas particles
near the obstacles, evaluated numerically within the mean-field
approximation of Eq. (1), corresponding to the equilibrium concen-
trations n0 = 0.2 (a), 0.5 (b), and 0.8 (c). Panels (a)–(c) illustrate three
different regimes of the dissipative interaction, see Fig. 6: (a) effective
attraction (|f x

21| > |f x
12|), (b) anti-Newtonian interaction (f x

21 = f x
12),

(c) effective repulsion (|f x
21| < |f x

12|). The external field g (|g| = 0.5)
is directed along the x axis; the impermeable (ū = 1) circular
obstacles are of radius a = 7 (in units of �), their positions are marked
with the black circles; the distance between the obstacles’ centers
equals 10a. The gray background corresponds to the equilibrium
gas concentration n0 for every contour plot, in consistence with the
colorbar; spatial coordinates are in units of �.

the inclusions naturally vanishes in the limit of empty medium
n0 → 0, due to wake depletion. The same is true in the total
jamming limit n0 → 1.

2. Longitudinal alignment (Fig. 5)

At low concentrations (n0 < 1/2), a typical situation for
Brownian systems takes place: An inclusion falling on the
depleted wake induced by another inclusion is effectively
attracted to it since the friction force in depleted regions
is weaker [4,27]. This type of effective interaction is often
referred to as wake-mediated [58,59]. As Fig. 6(b) suggests,
the second obstacle does not practically affect the first one,
f x

12 ≈ 0. In contrast, at high concentrations (n0 > 1/2), the
second obstacle does not feel the influence of the first one,
f x

21 ≈ 0, whereas the first obstacle comes under the excess
pressure of the dense gas region created ahead of the second
one due to the blockade effect. In the case of n0 = 1/2, the
effective interaction between the inclusions becomes strictly
anti-Newtonian, f x

12 = f x
21 �= 0; see Fig. 6(b). For a dense

gas in the blockade regime, the second obstacle “pushes”
the first one upstream, thus reducing the total friction force
f x

1 exerted on the first obstacle, Fig. 6(a). Note that in
contrast to transverse configuration, the force acting on ith

FIG. 6. Longitudinal alignment. Concentration dependence of
the total forces f x

1 (n0) and f x
2 (n0) acting on each obstacle (a), and

the forces f x
12(n0) and f x

21(n0), acting between the obstacles (b), at
three magnitudes |g| = 0.3, 0.4, 0.5 of the drive field. Other system
parameters are the same as in Fig. 5, forces are in units of kT /� (� is
the lattice constant).

obstacle from j th one is not an odd function of 1/2 −
n0, i.e., f x

ij (n0) �= −f x
ij (1 − n0). Nevertheless, switching of

effective dissipative interaction between the obstacles from
attraction to repulsion takes place, i.e., f x

12(n0) − f x
21(n0) =

−[f x
12(1 − n0) − f x

21(1 − n0)]. This is more general condition
for dissipative interaction switching with wake inversion.

The above described behavior of forces, Fig. 6, can be
qualitatively explained by using the results of the linear
flow approximation. For example, for point-like obstacles at
n0 < 1/2, forces f x

12 and f x
21, see Eq. (15), are associated with

potentials ∝ exp(−2qr12)/
√

r12 and ∝1/
√

r21, respectively
[see asymptotic Eq. (A15) in Appendix A], so that |f x

12| �
|f x

21|. Besides, the single-layer potential method gives correct
leading asymptotics f x

12 ∼ |r12|−3/2 at large |r12|, that is in
satisfactory agreement with numerical result for the general
nonlinear problem, Eq. (1); see Appendix B.

Note that for closely located obstacles the nonlinear inter-
obstacle attraction can determine the dissipative pairing by the
creation of common perturbation coat around them. The effect
of a similar nature was obtained earlier in Ref. [24] for two
driven tracers. Indeed, at high gas concentration (n0 > 1/2) the
depleted cavities formed around each obstacle, see Figs. 1(c)
or 5(c), can entail specific behavior of dissipative forces
depending on the distance between obstacles. In particular, the
effective interaction between two obstacles in close proximity
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FIG. 7. Dissipative forces (a) f
y

12 (for transverse alignment) and
(b) f x

21 (for longitudinal one) versus the external drive g for the
gas concentrations n0 = 0.1, 0.2, 0.3. Obstacle sizes and separation
correspond to that on Figs. 1 and 5. Schematic illustrations of the
shape transformations of density perturbation coats are shown for
transverse alignment.

undergoes an abrupt change in the asymptotic behavior, see
Appendix B and figures therein, that can be indicative of the
dissipative pairing effect.

Dependence of the strength of dissipative interaction
between obstacles on the external driving field g appears
to be nonmonotonic; see Fig. 7. The characteristic peak of
interaction corresponds to the drive magnitude when the most
efficient common density coat is formed around the obstacle
pair. This behavior can be explained by the changes in the shape
of density perturbations, e.g., for the case 0 < n0 < 1/2; see
Fig. 7(a). At low gas concentration the effective repulsion
between obstacles vanishes in the limit of weak driving,
since slow flow of a sparse gas does not induce significant
gas perturbations and, thus, wake-mediated interactions. The
characteristic peak of interaction corresponds to the driving
magnitude when the common density coat is formed (see
schematic illustrations on Fig. 7): in this regime, profile of
the density perturbation provides the most efficient dissipative
wake-mediated influence between obstacles. Strong driving
field causes the perturbation coat around each obstacle to
decrease in lateral dimension and increase in longitudinal, so
that overall density coat stretches along the flow direction. As

a result, overlap of the individual obstacles’ coats reduces,
and their mutual influence decays. In other words, strong
enough drift flow reduces the common density coat. This
qualitative reasoning is also true in the case of effective
attraction under longitudinal alignment. Note that the peak
position shifts and increases towards the region of strong
driving as gas concentration decreases in case of longitudinal
alignment of obstacles, Fig. 7(b), while in case of transverse
one the situation is just the opposite, Fig. 7(a). Hence,
the most favorable condition for the pronounced common
coat organization is determined by both the equilibrium gas
concentration n0 and the strength of external driving field g.

The magnitude of the evaluated forces can be easily
estimated, e.g., for the case of atoms adsorbed on solid surface.
Choosing the lattice spacing parameter to be � = 3 Å, at
room temperature one obtains the range of dissipative forces
to be 5–10 pN [see Fig. 6(b)], while the friction force is
approximately one order of magnitude stronger [see Fig. 6(a)].
Notice that the same ratio between magnitudes of friction
and dissipative forces is observed for probe-colloids moving
through a colloidal suspension in the 3D case [5,6]. In addition,
as is seen from Fig. 6(a), at concentrations close to n0 = 1/2
the forces exerted on each obstacle by the gas are almost
equal, i.e., the dissipative interaction between obstacles takes
anti-Newtonian character, f x

12 = f x
21; see Fig. 6(b). It should

be mentioned that an analogous behavior occurs for two
probes moving along their line of centers through a colloidal
suspension: both inclusions may experience the same drag
force, as was observed in a recent experiment [6], at the
effective volume fraction of 0.41. However, in this case, the
effect is due to the hydrodynamic interactions between bath
particles.

IV. CONCLUSION

Let us briefly summarize the main obtained results for
dissipative (wake-mediated) interaction between obstacles
embedded into gas flow with taking into account short-range
repulsive interaction between gas particles.

—In the case of small and widely separated obstacles,
the wake-mediated dissipative interaction between them has
been shown to belong to the type of induced dipole-dipole
(generally, multipole) interaction associated with anisotropic
screened Coulomb potential. To this end, we have developed
the representation for the gas density perturbation in the form
of single-layer potential. Formally, this is a generalization
of the single-layer potential approach for the electrostatic
interaction between polarizable particles induced by stationary
external field. Our approach is applicable to nonequilibrium
steady-state case where interaction between the obstacles
is induced by gas flow. Obtained analytical expressions
qualitatively explain the asymmetry of the obstacle’s wake,
the long-range behavior of dissipative interaction, its non-
Newtonian character, and switching of both the wake direction
and the dissipative forces.

—Dissipative interaction between obstacles is most pro-
nounced when a common perturbation coat around them
(collective wake) is formed. The force depends nonmonotoni-
cally on equilibrium gas concentration, magnitude of external
sweeping field (gas flow), and alignment of the obstacles.
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In particular, at low gas concentrations two obstacles are
effectively attracted in the case of longitudinal alignment and
repel each other in the case of transverse one. At high gas
concentrations the situation is just the opposite.

—The nonlinear blockade effect of gas particles is sig-
nificant near the surface of relatively big obstacles and/or for
closely located ones. In this case, repulsive interaction between
gas particles has been shown to lead to screening of the gas flow
near the obstacles and to formation of a common coat of gas
density perturbation around them, with pronounced step-like
behavior of the density profile. Formation of common coat
can determine the non-linear mechanism of dissipative pairing
between the obstacles (see, e.g., Refs. [36,44]).

Switching of effective dissipative interaction to its opposite,
due to wake inversion with increasing gas concentration, that
was suggested in Ref. [45], now is directly confirmed by
numerical calculations.

It should be noted that we initially used rough approxi-
mations, so that a number of important questions were left
behind the scope of our paper. In particular, using the mean-
field approximation, we lose information on the short-range
correlations in a gas, such as “back correlations,” see, e.g.,
Refs. [36,44], which have to occur near the obstacle surfaces
(another gas component). In addition, neglecting fluctuations
in a gas, i.e., the term δJ α

i in Eq. (1), we do not take into
account the fluctuation-induced (Casimir-like) forces, see, e.g.,
Refs. [54,60–65], which can be significant for pairing effect at
small interobstacle distance.

Obtained results may be of interest when considering the
dissipative structure formation (see, e.g., Ref. [59]), collective
friction force or collective energy losses in an ensemble
of inclusions, and can find applications in systems with
driven hopping transport (e.g., surface kinetics of adsorbed
atoms [22,23,46,66], fast ionic conductors, etc.) or serve as a
rough model for colloidal suspensions or dusty and complex
plasma [12,13].
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APPENDIX A: QUALITATIVE PICTURE OF DISSIPATIVE
INTERACTION: A ROUGH ANALYTICAL APPROACH

In this appendix, we roughly estimate the wake-mediated
interaction between widely separated small obstacles imbed-
ded into gas flow. Let us consider a nonequilibrium steady-state
problem in the long-wavelength approximation, Eq. (11):

∇2n − U∇2n + n∇2U − (g · ∇)n(1 − n − U ) = 0, (A1)

where inclusions are given by a distribution U of the heavy gas
component. For simplicity, we consider a smooth distribution
U (r) = ∑

k u(r − Rk), where distribution u(r − Rk) describes
kth inclusion and has a compact carrier located near the
inclusion center Rk . For distant inclusions, we assume that∫

u(r − Rk)u(r − Rj ) dr ≈ 0.
For widely separated small obstacles (whose sizes are

comparable with the lattice constant), interaction between the

particles is less significant and the drift term in Eq. (A1)
can be written in the linear approximation; see Ref. [45].
Assuming that distribution n = n0 + δn weakly deviates from
the equilibrium one n0, we linearize the drift flow term in
Eq. (A1), taking n2 ≈ n2

0 + 2n0δn, and rewrite the equation in
the following form:

∇2δn − 2(q · ∇)δn = U∇2δn − (n0 + δn)∇2U

− (g · ∇)(n0 + δn)U, (A2)

where q = (1/2 − n0)g. Based on Eq. (A2), we estimate the
asymptotic behavior of the dissipative interaction between
the obstacles depending on the distance between them, their
mutual alignment, and equilibrium gas concentration n0. We
shall use a qualitative approach that allows us to obtain simple
analytical expressions for density perturbation and dissipative
forces.

It is convenient to consider an integral representation of
Eq. (A1) using the Green’s function G(r − r′) of the equation

∇2
r G(r − r′) − 2(q · ∇r)G(r − r′) = −δ(r − r′). (A3)

The form of this Green’s function is similar to the anisotropic
screened Coulomb potential

G(r − r′) = e−q|r−r′ |+q·(r−r′)

4π |r − r′| (A4)

in the 3D case and

G(r − r′) = 1

2π
eq·(r−r′)K0(q|r − r′|) (A5)

in the 2D case. By using Eq. (A3), we can rewrite the equation
for the gas density perturbation δn in the form

δn(r) = [n0 + δn(r)]U (r)

+
∫

U (r′)[�(r′) · ∇r]G(r − r′) dr′, (A6)

where

�(r) = 2g(1 − n0)[n0 + δn(r)] − 2∇rδn(r). (A7)

Equation (A6) can be simplified by applying an approach
similar to the self-consistent molecular field approach [57].
Since distribution U of the heavy component is localized
near the inclusion centers Rj and has compact carriers
uj (r) = u(r − Rj ) � 1, we may consider uj (r) as a prob-
ability density distribution and the integral in Eq. (A6)
as an average (� · ∇G)j associated with this distribution.
Here, (. . .)j = ∫

(. . .)u(r − Rj ) dr. Then, using the mean-field
approximation, (� · ∇G)j ≈ �j · ∇Gj ≈ �j · ∇G(r − Rj ),
Eq. (A6) can be rewritten as

δn(r) ≈ [n0 + δn(r)]U (r) +
∑

j

[�(Rj ) · ∇r]G(r − Rj ),

(A8)

where

�(Rj ) = 2g(1 − n0)[n0 + δnj ] − 2∇δnj (A9)

plays the role of a molecular field or an average flux in the
system, these quantities being defined by external field g and
the density perturbation field due to other inclusions. Equations

012150-9



O. V. KLIUSHNYCHENKO AND S. P. LUKYANETS PHYSICAL REVIEW E 95, 012150 (2017)

for the constants δnj and ∇δnj can be obtained in a self-
consistent manner by using Eq. (A8); see Ref. [67].

Representation Eq. (A7) enables us to estimate qualitatively
the asymptotic behavior of gas density perturbation far from
an isolated inclusion and the asymptotic behavior of the
dissipative force between widely separated inclusions. Using
Eq. (A4), gas density perturbation Eq. (A8) far from an isolated
inclusion can be written as

δn(r) ∼ (� · ∇r)G(r), (A10)

that is

δn(r) ∼ (� · ∇r)
e−q|r|+q·r

|r| (A11)

in the 3D case and

δn(r) ∼ (� · ∇r)
e−q|r|+q·r

|r|−1/2
(A12)

in the 2D case. In the last expression, the asymptotic behavior
of the Bessel function K0(q|r|) ∼ |r|−1/2e−q|r| for large r was
used. At low concentrations of gas (n0 < 1/2), the dense
region ahead of the inclusion is described by an exponential
asymptotics, while the asymptotics of the depleted region
behind the inclusion is power law. When gas concentration
increases and n0 becomes greater than 1/2, vector q = (1/2 −
n0)g changes its direction. It means that switching of the
wake direction occurs, together with corresponding switching
between the exponential and power-law asymptotics. At
n0 = 1/2 we have q = 0 and the asymptotics of perturbation
δn corresponds to a dipole-like polarization of gas density
perturbation around the inclusion.

The force acting on the kth inclusion is f k =∫
δn(r)∇ru(r − Rk) dr ∼ −∇δnk . For small (point-like) in-

clusions, the force exerted by the j th inclusion on the kth one
can be roughly estimated as

f kj ∼ −∇Rk

(
�j · ∇Rk

)
G(r), (A13)

that is

f kj ∼ −∇Rk

(
�j · ∇Rk

)e−q|Rk−Rj |+q·(Rk−Rj )

|Rk − Rj | (A14)

in the 3D case and

f kj ∼ −∇Rk

(
�j · ∇Rk

)e−q|Rk−Rj |+q·(Rk−Rj )

|Rk − Rj |−1/2
(A15)

in 2D. As is seen from Eqs. (A10) and (A13), the local density
perturbation around an obstacle is formed by an effective flow
� (molecular field), which is determined by the external flow
and the flows induced by gas density perturbations of all the
inclusions.

APPENDIX B: SINGLE-LAYER POTENTIAL APPROACH

A more rigorous result for wakes and for the dissipative
force can be obtained in the framework of the single-layer
potential method for inclusions with sharp boundaries. Again,
we start from Eq. (11). It is convenient to use a new
function ψ(r) = n(r)/[1 − u(r)] governed by the equation
(see Ref. [45])

∇ · {ε[∇ψ − ψ(1 − ψ)g]} = 0, (B1)

where ε = ε(r) = [1 − u(r)]2, and it is assumed that u(r) �= 1.
Let us represent the solution ψ(r) ≈ ψ0 + δψ(r) as a small
deviation δψ(r) from the equilibrium distribution ψ0 ≡ n0,
and linearize Eq. (B1),

∇ · [ε(∇δψ − 2qδψ − Q)] = 0, (B2)

where Q = n0(1 − n0)g and q = (1/2 − n0)g. This linear
equation takes into account the interaction between gas
particles in the first order of the perturbation theory. In this
sense, Eq. (B2) is the simplest possible generalization of the
drift-diffusion equation that was exploited in Ref. [27] for a
gas of noninteracting particles at low concentrations.

The inclusions are represented by the distributions of
heavy gas-component uj (r) = u(r − Rj ) centered at points Rj

with homogeneous concentration uj (r) = ūj = const inside
inclusions and uj (r) ≡ 0 outside them. Note that in the case
of inclusions with sharp boundaries, Eq. (B1) allows for a
solution in the class of continuous functions, whereas function
n(r), obeying Eq. (A1), as well as its normal derivative, have
a jump at the inclusion’s boundary. The density perturbation
inside (δψ−) and outside (δψ+ ≡ δn) the inclusions obey the
equation

∇ · (∇δψ± − 2qδψ± − Q) = 0. (B3)

Equation (B3) is supplemented by the matching conditions for
δψ± on the surface Si of ith inclusion:

δψ+(r) = δψ−(r),

ε+[∇+
n δψ+(r) − 2qnδψ

+(r) − Qn]

= ε−
i [∇−

n δψ−(r) − 2qnδψ
−(r) − Qn], (B4)

where Qn = Q · nr and qn = q · nr is the outward normal
at the point r ∈ Si , ε+ = 1 outside the inclusions and ε−

i =
(1 − ūi)2 inside the ith inclusion, and notation ∇±

n (. . .) ≡
lim|̃r−Ri |→|r−Ri |±0 ( ∂(...)

∂n )(̃r) is used.
The solution of Eqs. (B3) and (B4) can be represented in

the form of a single-layer potential, similarly to that used in
Ref. [45] for a single obstacle,

δψ(r) =
∑

i

∫
Si

G(r − r′)μi(r′) dr′, (B5)

where G(r − r′) is the Green’s function, Eq. (A4) in 3D, or
Eq. (A5) in 2D. The quantity μi(r′) plays the role of a “charge”
density induced by the external field g on the obstacle surface
Si [68]. It satisfies the following integral equation determined
by the matching conditions Eq. (B4):

2λi[∇+
n − 2qn(ri)]

∑
j

∫
Sj

G(ri − rj )μj (rj ) drj

+ (λi − 1)μi(ri) = 2λiQn(ri), (B6)

where ri ∈ Si and λi = λ(ūi) = (ε+ − ε−
i )/(ε+ + ε−

i ). Equa-
tion (B6) was derived with the use of the jump theorem for
the normal derivative of the potential of a single layer on
an obstacle surface [69], ∇±

n δψ±(r) = ∓μ(r)/2 + ∇nδψ(r).
Representation Eq. (B5) and Eq. (B6) describe the general
solution for obstacles with arbitrary geometry of their surfaces
(Lyapunov surface, see Ref. [69]).
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Considering that δψ+(r) ≡ δn(r) and using Eq. (10), we
can write final expression for the density perturbation around
obstacles and the force acting on an obstacle, both being
induced by sweeping field g (or by the gas flow):

δn(r) =
∑

j

∫
Sj

G(r − rj )μj (rj ) drj , (B7)

f k = −
∑

j

∫
Sk

∫
Sj

n(rk)G(rk − rj )μj (rj ) drkdrj . (B8)

This representation of the solution has direct analogy with
induced interaction between dielectric particles in a stationary
electric field Q: External electric field induces charge μ on the
particle surface, leading to its polarization, e.g., inducing the
dipole moment for a spherical particle; see Ref. [8]. This,
in turn, leads to multipole (e.g., dipole-dipole) interaction
between the particles. However, in our case, contrary to the
electrostatic problem the density μk is induced by an external
field (flow) on the inclusion surfaces, and multipole interaction
between them is determined not by the Coulomb potential |r|−1

but anisotropic screened Coulomb-like potential |r|−1 exp(q ·
r − q|r|) (in 3D case); see Eqs. (A4) and (A5). Such form of
the potential leads, in particular, to nonconservation of induced
surface density,

∫
μdS �= 0, and to asymmetric distribution of

“induced potential” δn near the inclusion. The latter describes
inclusion wake, e.g., wake with a localized region of dense gas
ahead of the inclusion and an extended depleted tail [see, e.g.,
Fig. 1(a)].

In the particular case of the half filling (n0 = 1/2), the
second term in Eq. (B2) vanishes (q ≡ 0) and the problem is
reduced to an electrostatic-like problem ∇ · [ε(∇δψ − Q)] =
0 for dielectric particles in a uniform electric field Q = g/4. In
this case, density distribution δψ(r) is similar to the distribu-
tion of the electrostatic potential characterizing the scattered
field. It means that the induced interaction between obstacles
via their common environment (density perturbation) behaves
like electrostatic dipole-dipole (generally, multipole) interac-
tion. For a single obstacle with radius a, density perturbation
δn = δψ+ around the obstacle at n0 = 1/2 can be obtained in
an explicit form: δn = λa2(Q · ∇r) ln a|r|−1 for 2D case and
δn = λa2(Q · ∇r)|r|−1 for 3D. These results explain both the
power-law asymptotic behavior of gas perturbation and the
symmetry of the “upstream-downstream” tail; see Fig. 2(b)
and Ref. [45]. This case (n0 = 1/2) corresponds to the linear
response of δn to the external field g; cf. Ref. [28]. Note that
symmetry of wake (or profile of perturbation) generated in a
medium by a moving probe particle is a common result for
systems described in the linear response approximation (see,
e.g., Ref. [14]).

For widely separated inclusions, when the distance between
their centers |rkj | = |Rk − Rj | is much larger than their char-
acteristic sizes aj , |rkj | = |Rk − Rj | � ak(aj ), the multipole
expansion of the potential G can be used:

G(rk − rj ) ≈ G(rkj ) + (
xkj · ∇rkj

)
G(rkj ) + . . . , (B9)

where xkj = xk − xj and xk = rk − Rk . Next we consider the
particular 3D case for spherical obstacles with radii ak . For
obstacles located far from each other, |rki | � |xki |, one can
use the multipole expansion Eq. (B9) for the kernel of integral

operator in Eq. (B6). In the dipole approximation, the integral
equation for the induced surface density μk(xk) on the surface
of the kth inclusion takes the form

�̂xk
μk(xk) + xk · (∇+

xk
− 2q

) ∑
i �=k

e−q|rki |+q·rki

4π |rki |

×
∫

Si

(1 + xki · uki) μi(xi) dxi = xk · Q, (B10)

where

uki(rki) = q − q
rki

|rki | − rki

|rki |2 , (B11)

and �̂xk
denotes the integral operator for a single obstacle

�̂xk
μk(xk) = ak

λk − 1

2λk

μk(xk) + xk · (∇+
xk

− 2q)

×
∫

Sk

e−q|xkk |+q·xkk

4π |xkk| μk(x′
k) dx′

k. (B12)

Equation (B10) for μk has small parameter
exp (−q|rki | + q · rki)/4π |rki | � 1, which allows us to
consider the influence of other obstacles on a given one as
a small perturbation μ1

k of the solution μ0
k = μ0 for a single

obstacle, μk ≈ μ0
k + μ1

k . In this approximation, equations for
μ0

k = μ0 and μ1
k take the form

�̂xk
μ0

k(xk) = xk · Q, (B13)

�̂ μ1
k(xk) = −xk · (∇xk

− 2q
) ∑

i �=k

e−q|rki |+q·rki

4π |rki |

×
∫

Si

(1 + xki · uki) μ0
i (xi) dxi . (B14)

The formal solution of the last equation can be written as

μ1
k(xk) =

∑
i �=k

e−q|rki |+q·rki

4π |rki | �̂−1
xk

∫
Si

W (xk,xi ,rki) μ0
i (xi) dxi ,

(B15)

where

W (xk,xi ,rki) = 2(q · xk)(1 + xki · uki) − xk · uki . (B16)

The dissipative force acting on an obstacle is determined
by the gas density perturbation δn(r) on its surface, Eq. (10).
In this case we can set δn ≈ δψ(r), where r ≈ Rk + xk and
|xk| = ak is the radius of the kth obstacle. In the dipole
approximation, Eqs. (B9), (B13), (B14), density perturbation
near the kth obstacle can be written in the form

δnk ≈ δn0
k +

∫
Sk

G(xkk)μ1
k(x′

k) dx′
k +

∑
i �=k

∫
Si

[
G(rki)

+ (
xki · ∇rki

)
G(rki)

]
μ0

i (x′
k) dx′

k. (B17)

The right-hand side of Eq. (B17) containing the sum over all
the obstacles i �= k describes their direct influence on the given
kth obstacle. The first term in Eq. (B17),

δn0
k =

∫
Sk

G(xkk)μ0
k(xk) dx′

k, (B18)
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gives the contribution to the gas perturbation around the kth
obstacle caused by the kth obstacle itself.

Using Eqs. (B15) and (B17), contribution to the density
perturbation δnk near the kth inclusion caused by other
inclusions in 3D case can be written as

δnk − δn0
k ≈

∑
i �=k

δnki, (B19)

where

δnki ∼ e−q|rki |+q·rki

4π |rki | I (rki ,q,xk) (B20)

is a contribution of the ith obstacle to the density perturbation
near the kth obstacle surface,

I (rki ,q,xk) =
∫

Si

[
(1 + xki · uki)μ

0
i (x′

i) +
∫

Sk

e−q|xkk |+q·xkk

4π |xkk|

× �̂−1
x′

k
W (x′

k,x
′
i ,rki) μ0

i (x′
i)dx′

k

]
dx′

i . (B21)

As it follows from Eq. (B21), I (rki ,q,xk) has a power-law
dependence on rki and in the case of ai � rik depends only
on the mutual alignment of the obstacles with respect to the
external field g, i.e., on θki , the angle between rki and g.

Using Eq. (B20) for the density perturbation δnk , we can
represent the force exerted on the kth inclusion by the ith one
in the form that is similar to Eq. (A13):

f ki ≈ −
∫

Sk

n(xk)δnki(xk) dxk

=−e−q(1−β cos θki )|rki |

4π |rki |
∫

Sk

n(xk)I (rki ,q,xk) dxk. (B22)

Equations (B20)–(B22) are obtained in the dipole approxi-
mation and give a rough asymptotic behavior of the induced
nonequilibrium correlations and dissipative forces between
two obstacles located far from each other, depending on the
distance between them |rik| and their mutual alignment θik with
respect to the external field g. In view of Eqs. (B20)–(B22), the
influence of the ith obstacle on the kth one is not equivalent to
that of the kth obstacle on the ith one (θki = π − θik), i.e., these
correlations are not reciprocal, δnki �= δnik , and the forces are
non-Newtonian, f ki �= − f ik .

As is seen from Eq. (B22), dissipative forces acting between
inclusions are expressed, in the dipole approximation, in
terms of induced density μ0 of isolated inclusion. Distribution
n0(r) = n0 + δn0(r) for a single obstacle in 3D case takes the
form

n0(r) = n0 +
∫

S

eq·(r−r′)−q|r−r′ |

4π |r − r′| μ0(r′) dr′. (B23)

Far from the obstacle, when |r| � a (a is its characteristic
size), we can easily extract the leading asymptotics for the
gas density perturbation δn induced by the external field q =
(1/2 − n0)g:

δn(r) ≈ eq·r−q|r|

|r| Ĩ (r,q) (B24)

[compare with Eq. (A6)]. Ĩ (r,σ ) is responsible for the sign
of δn dependence on r direction and, in turn, depends on |r|
through a power law.

Behavior of Ĩ (r,q) in the case of a spherical obstacle is
defined by the asymptotics of the Bessel function Km+ 1

2
(qr)

[70]:

δn0 ≈
√

2πa2 e−qr(1−β cos θ)

r
Ĩ (r,q), (B25)

I ≈
∑
m=0

αm

(
1 + m2 + m

2qr
+ · · ·

)
Im+ 1

2
(qa)

√
qa

Pm(cos θ ),

(B26)

where αm = αm(qa) depends only on the obstacle radius ak

and external field q. The coefficients αm are from the Legendre
polynomials expansion μ0(θ ) = eβqa cos θ

∑∞
n=0 αnPn(cos θ ) at

the obstacle surface and can be obtained as a solution of
Eq. (B6), θ is the angle between r and g, and β = (1/2 −
n0)/|1/2 − n0| = ±1. Distribution δn0(r) for an isolated
circular inclusion in 2D case was obtained in Ref. [45]. In the
particular case of n0 < 1/2, the dipole approximation gives
the following distributions for the gas perturbation: ahead of
the obstacle, q · r = −qr ,

δn(r) ≈ be−2qr
{
[3c + 1](qr)−

1
2 + 3

8 [c + 1](qr)−
3
2
}
,

(B27)

and behind it, q · r = qr ,

δn(r) ≈ −b
{
(qr)−

1
2 + 3

8 [2c + 1](qr)−
3
2
}
. (B28)

Here, constants c = 2[3(qa)K1(qa)I2(qa)]−1 and b =√
8πn0(1 − n0)|1 − 2n0|−1I2(qa)K−1

2 (qa) are expressed in
terms of the modified Bessel functions In and Kn; a is the
radius of the impermeable obstacle (λ → 1). In the case
of the point-like inclusion, qa ∼ q� � 1, this method gives
δn ∼ e−2qr r−1/2 for a region ahead of the inclusion and
δn ∼ −r−3/2 for the tail asymptotics. This is in qualitative
agreement with the numerical results [45] and coincides with
the asymptotic behavior of the wake relaxation for a moving
intruder [22]. The general form of the dissipative force in 2D

FIG. 8. Asymptotic behavior of dissipative forces (a) f x
12 (longi-

tudinal alignment) and (b) f
y

12 (transverse alignment) at large interob-
stacle separation r12. The slope on (a) corresponds to the asymptotics
f x

12 ∼ r
−3/2
12 . Equilibrium concentration n0 = 0.8, external field g

(|g| = 0.5) is directed along the x axis, the impermeable circular
obstacles are of radius a = 7 (in units of �), forces are in units of
kT /�.
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case is analogous to Eq. (B22):

f ki ∝ −e−q|rki |+q·r

|r|1/2

∫
Sk

n(xk)I (rki ,q,xk) dxk. (B29)

It is easy to show that for longitudinal alignment u12(r12) =
−r12/|r12|2 and the leading asymptotic behavior f x

12 ≈
A|r12|−3/2, that is in agreement with numerical result for

nonlinear Eq. (1), see Fig. 8(a), when the distance between
obstacles |r12| is much larger than their radii ai . The form-
factor A depends only on external field g and the obstacle
radius a. For the transverse alignment, the force leading
asymptotics behaves exponentially, ln f

y

12 ∝ −q|r12| + . . . ,
which is also in qualitative agreement with numerical result;
see Fig. 8(b).
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[26] V. Démery and D. S. Dean, Phys. Rev. Lett. 104, 080601 (2010).
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