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Einstein-Podolsky-Rosen paradox implies a minimum achievable temperature
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This work examines the thermodynamic consequences of the repeated partial projection model for coupling a
quantum system to an arbitrary series of environments under feedback control. This paper provides observational
definitions of heat and work that can be realized in current laboratory setups. In contrast to other definitions, it uses
only properties of the environment and the measurement outcomes, avoiding references to the “measurement” of
the central system’s state in any basis. These definitions are consistent with the usual laws of thermodynamics
at all temperatures, while never requiring complete projective measurement of the entire system. It is shown
that the back action of measurement must be counted as work rather than heat to satisfy the second law.
Comparisons are made to quantum jump (unravelling) and transition-probability based definitions, many of
which appear as particular limits of the present model. These limits show that our total entropy production is
a lower bound on traditional definitions of heat that trace out the measurement device. Examining the master
equation approximation to the process at finite measurement rates, we show that most interactions with the
environment make the system unable to reach absolute zero. We give an explicit formula for the minimum
temperature achievable in repeatedly measured quantum systems. The phenomenon of minimum temperature
offers an explanation of recent experiments aimed at testing fluctuation theorems in the quantum realm and places
a fundamental purity limit on quantum computers.
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I. INTRODUCTION

A version of the EPR paradox prevents simultaneously
doing work on a quantum system and knowing how much work
has been done. A system can do work on its environment only if
the two have a nonzero interaction energy. During interaction,
the two become entangled, leading to a superposition of
different possible values for the work. According to quantum
mechanics, measuring the energy of either system removes
correlations so that the interaction energy becomes exactly
zero [1]. Therefore either the system-environment interaction
is zero or the work is unknown.

We argue that this paradox presents the central difficulty
in applying fluctuation theorems (FT) and work relations to
quantum systems. It is a restatement of the energy-time un-
certainty principle, and therefore manifests whenever energy
measurements are preformed on nontrivial quantum systems.

One hundred years ago, Einstein presented a first-order rate
hypothesis concerning the rate of energy exchange between
a molecular system and a reservoir of photons [2]. Under
this hypothesis, the transition between states with known
molecular energy levels by emission and absorption of discrete
photons can be shown to bring about thermal equilibrium for
all parties: the photons, the molecular energy levels, and the
particle velocities. This semiclassical picture provided a clear,
consistent, and straightforward picture for the time evolution
of coupled quantum systems. Nevertheless, the argument
must have appeared unsatisfactory at the time because it
only provided a statistical, rather than an exact, mechanical
description of the dynamics.

Many years later, Einstein, Podolsky, and Rosen published
the famous EPR paradox [3,4]. The paradox states that,
before any measurement is made, neither position nor velocity
exist as real physical quantities for a pair of entangled
particles. Either of the two choices can be “made real” only
by performing a measurement. The consequence for energy

exchange processes follows directly. For a two-state system
entangled with a field, no definite separation of energy between
the molecule and the field exists before any measurement is
made.

Recent works on quantum fluctuation theorems confront
this difficulty in a variety of ways. One of the most prominent
is the quantum jump method based on a stochastic unravelling
of Lindblad equation [5,6]. It replaces a dissipative quantum
master equation with an ensemble of trajectories containing
periodic jumps due to measurement [7]. In that setup, the
jump process represents dissipation, so heat is defined as any
energy change in the system due to the jumps. Other changes in
energy, caused by varying the Hamiltonian in time, are counted
as work. Fluctuation theorems for this process are based on
the detailed balance condition for jumps due to the reservoir,
avoiding most issues with defining a work measurement.
Application of the jump process for a Jaynes-Cummings
system showed that the fluctuation theorem for work is
followed exactly when the the coupling uses the rotating
wave approximation [8]. However, that approximation re-
moves the essential difficulty with the energy-time uncertainty
relation [9].

The work of Venkatesh [10] on general coupling Hamilto-
nians shows that regular, projective measurement of worklike
quantities based on the system alone (such as the time
derivative of the Hamiltonian expectation) generally leads
to “qualitatively different statistics from the [two energy
measurement] definition of work and generally fail to satisfy
the fluctuation relations of Crooks and Jarzynski.”

Another major approach is to model the environment’s
action as a series of generic quantum maps. A physical
interpretation as a two-measurement process accomplishing
feedback control was given by Funo [11]. There, an initial
projection provides classical information that is used to choose
a Hamiltonian to evolve the system for a final measurement.
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That work showed that the transition probabilities in the
process obey an integral fluctuation theorem. Although the
interpretation relied on a final measurement of the system’s
energy, it provided one of the first examples for the entropic
consequences of measurement back action [12].

Recent work on the statistics of the transition process for
general quantum maps showed that the canonical fluctuation
theorems hold as long as the maps can be decomposed into
transitions between stationary states of the dynamics [13]. This
agrees with other works showing the importance of stationary
states in computing entropy changes from quantum master
equations [14]. In other words, the essential difficulties with
the quantum case come from differences between the basis
in which the dynamics is carried out and that in which the
measurement is done.

In contrast to these approaches, the present work starts
from a physically realizable measurement process and shows
that work and heat can be defined independently—without
recourse to stationary states of the central system. By doing
so, it arrives at a clear picture of the back action, and a
minimum temperature argument. It also builds a quantum
parallel to the measurement-based definition of work and heat
for classical nonequilibrium systems laid out in Ref. [15].
There, the transition probability ratio is shown to be equivalent
to a physical separation of random and deterministic forces.
Although no fluctuation theorem can be shown in general,
our expressions reduce to well-known limits. In particular,
for weak coupling the interaction commutes with the total
uncoupled energy, ĤA + ĤB , and a fluctuation theorem such
as the one in Ref. [13] applies.

We consider a combination of system and reservoir with
time-independent joint Hamiltonian,

Ĥ = ĤA + ĤB + γ ĤAB. (1)

The coupling Hamiltonian should not be able to simply
shift an energy level of either system, which requires
TrA [f (ĤA)ĤAB] = 0 and TrB [f (ĤB)ĤAB] = 0, for arbitrary
functions, f . A simple generalization discussed later is to
waive the first constraint, but this is not investigated here. Time
dependence comes in by the choice of ĤAB and the initial state
ρB at the start of each measurement interval.

There have been many definitions proposed for heat and
work in quantum systems. These fall roughly into three cat-
egories: the near-equilibrium limit, experimental work-based
definitions, and mathematical definitions based on information
theory.

The near-equilibrium limit is one of the earliest models, and
is based on the weak-coupling limit of a system interacting
with a quantum energy reservoir at a set temperature over
long time intervals. That model is probably the only general
one derivable from first principles where it can be proven that
every system will eventually relax to a canonical equilibrium
distribution with the same temperature as the reservoir [16].
The essential step is taking the Van Hove limit, where the
system-reservoir interaction energy scale γ goes to zero (weak
coupling) with constant probability for energy-conserving
transitions [which scale as γ 2/(�2λ)]. In this limit, the only
allowed transitions are those that conserve the uncoupled en-
ergy, ĤA + ĤB . The dynamics then becomes a process obeying
detailed balance for hopping between energy levels of the

system’s Hamiltonian ĤA. States with energy superpositions
can mix, but eventually decay to zero probability as long as
the environment can couple to every system energy level.

Adding an effective time-dependent Hamiltonian Ĥ eff
A (t)

onto this picture and assuming very long-time scales provides
the following definitions of heat and work [17]:

Q̇eff = Tr
[
Ĥ eff

A (t)ρ̇
]
,

(2)

Ẇeff = Tr

[
∂Ĥ eff

A (t)

∂t
ρ

]
,

where Ḟ = dF/dt denotes the time derivative of F according
to the dynamics, and e−βĤ eff

A (t) must be the stationary state of
the time evolution used. Note that to match the dynamics of
a coupled system, Ĥ eff

A (t) must be a predefined function of t

satisfying [see Eq. (14)]

Tr
[
Ĥ eff

A (t) TrB[ρAB]
] = Tr[(ĤA + γ ĤAB)ρAB]. (3)

Work and heat defined by Eq. (2) have been used extensively to
study quantum heat engines [14,17–24]. For this definition, it is
possible to prove convexity [16], and positivity of Ṡtot = ṠA −
βQ̇eff [17]. Statistical fluctuations of heat and work have also
been investigated [7,11,13,25]. These first applications have
demonstrated some of the interesting properties of quantum
systems, but encounter conceptual difficulties when applied to
dynamics that does not follow the instantaneous eigenstates of
H eff

A (t) [10,12,14].
The paradox described in this work shows why moving

away from eigenstates is so difficult. The small-coupling, slow-
process limit under which Eq. (2) applies also amounts to an
assumption that the system-environment pair is continually
being projected into states with known effective energy. Its
validity in deriving quantum fluctuation theorems relies on
this particular choice of basis.

Entropy can also be defined thermodynamically by analyz-
ing physical processes taking an initial state to a final state.
One of the simplest results using the thermodynamic approach
is that even quantum processes obey a fluctuation theorem for
exchanges of (heat) energy between system and environment
when each transition conserves energy and there is no external
driving force [26]. On averaging, this agrees with the common
experimental definition of heat production as the free energy
change of two reservoirs set up to dissipate energy by a
quantum contact that allows monitoring the energy exchange
process [27–30]. Semiclassical trajectories have also been
investigated as a means to show that postulated expressions
for quantum work go over to the classical definition in the
high-temperature or small-� limit [31].

Other works in this category consider a process where the
system’s energy is measured at the start and end of a time-
dependent driving process. It is then easy to show that the
statistics of the energy change give a quantum version of the
Jarzynski equality for the free energy difference [32,33]. More
general results are difficult owing to the fact that, for coupled
systems, quantum transitions that do not conserve uncoupled
energy are possible, giving rise to the paradox motivating this
work.

There have also been many mathematically based def-
initions of entropy production for open quantum systems.
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The primary goal of a mathematical definition is to quantify
the information contained in a quantum state [34]. It is well
known that preparation of a more ordered system state from
a less ordered one requires heat release proportional to the
information entropy difference [35,36]. From this perspective,
information is more fundamental than measured heats, because
it represents a lower bound on any physical process that
could accomplish this transformation. A maximum work could
be found from such a definition using energy conservation.
However, the disadvantage of a mathematical definition is that
it cannot be used to construct a physical transformation process
obeying these bounds.

Most of the bounds on mathematical entropy production are
proven with the help of the Klein inequality stating that relative
entropy between two density matrices must be positive [37].
There are, in addition, many connections with communication
and measure theory that provide approximations to the relative
entropy [34,38].

One particular class of mathematical definitions that has
received special attention is the relative entropy,

S(ρ|ρ inst) = Tr[ρlnρ − ρlnρ inst]

= β[F (t) − F (eq)], (4)

between an arbitrary density matrix and an “instantaneous
equilibrium” state,

ρ inst = exp [−βĤ eff(t)]/Zeff(β,t). (5)

This definition is closely related to the physical process of
measuring the system’s energy at the start and end of a
process. Several notable results have been proven in those
works, including work relations and integrated fluctuation
theorems [11,13,32,39,40] as well as useful upper and lower
bounds [7,41]. The present work is distinguished from these
mathematical definitions because it completely removes the
requirement for defining or using an instantaneous equilibrium
distribution of the central system or directly measuring the
central system at all.

One of the primary motivations for this work has been to de-
rive a firm theoretical foundation for analyzing time sequences
of measurements in hopes of better understanding the role of
the environment in decoherence [42–51]. The present paper
provides a way of understanding the gap between the Lindblad
operators describing the quantum master equation and the
physical processes responsible for decoherence. Rather than
unravelling the Lindblad equation [6], we choose a physical
process and show how a Lindblad equation emerges. The result
also provides an alternative continuous time, Monte Carlo
method for wave-function evolution [52,53] without using
the dissipation operator associated with the Lindblad master
equation.

Another outcome has been finding a likely explanation for
the anomalous temperature of Utsumi et al. [27,28]. Those
experiments attempted to test the classical fluctuation theorems
for electron transport through a quantum point contact, and
found that the effective temperature of 1.37 K (derived by
fitting the slope of the transport odds ratio, lnpfwd/prev to
the fluctuation theorem) was much higher than the electron
temperature of 130–300 mK. Trying to lower the temperature

further below 1.37 K showed minimal changes in the slope,
indicating a minimum temperature had been reached.

Sections II and III present a repeated measurement process,
and show that it allows for a physical definition of heat
and work that occurs between successive measurements.
Measurements are only performed on the interacting reservoir,
and (because of entanglement) cause instantaneous projection
of the central system according to the standard rules of
quantum mechanics. In this way, it is not required to define a
temperature for the central system. Because the central system
is generally out of equilibrium, the concept of equilibrium is
applied only to the environmental interactions.

Section IV proves the Clausius form of the second law
for the new definitions. Numerical results on simulations of
atom-cavity systems are presented in Sec. V. Specifically, we
perform Monte Carlo simulations of trajectories of the time-
dependent density matrix during relaxation to equilibrium.
The system is a simplified micromaser (a dissipation-free
single-mode optical cavity) started in its first excited state,
and the reservoir is a stream of thermal two-level atoms.
Since the propagator is non-Markovian, we also derive the
Markovian approximation in the Linblad representation. The
heat and work performed on the system by the passing atoms
is compared between the two methods. Finally, in Sec. VI,
we show that continuous finite interaction with the reservoir
causes an effective increase in the “temperature” of the
system’s steady state. Although surprising, the measurement
rate is unavoidable in the theory as it is the exact parameter
controlling broadening of spectral lines [54]. Effects from the
minimum achievable temperature will be seen when all of the
following conditions are met: (i) the reservoir temperature
is less than the system’s first excitation energy, (ii) the
measurement rate is on the order of this excitation energy,
and (iii) the commutator, [Ĥ ,ĤAB], is nonzero.

II. REPEATED MEASUREMENT PROCESS

To study the action of continual environmental measure-
ment on part of a quantum system, we propose the following
process (Fig. 1):

(1) Let |ψ〉 represent a general wave function of the central
system at time tj .

(2) At time tj , the central system is coupled to a mea-
surement device whose state |n〉 is chosen at random from a
starting distribution ρB(tj ) that is diagonal in the measurement
Hamiltonian, so that ĤB |n〉 = �ωB,n|n〉 [Fig. 1(a)],

|ψ〉 → |ψ〉 ⊗ |n〉. (6)

(3) The joint system is evolved forward using the coupled
Hamiltonian, Û (t) = e−itĤ /� until the next measurement time
tj+1 = tj + t [Figs. 1(b) and 1(c)]. Our numerical calculations
assume a Poisson measurement process with rate λ, so that t

has an exponential distribution,

|ψ,n〉 → Û (t)|ψ,n〉. (7)

(4) The state of the measurement device is “measured” via
projection into one of its uncoupled energy eigenstates, |m〉 at
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(a) (b)

(c) (d)

FIG. 1. Schematic of the repeated measurement process. (a)–(c)
Exact evolution of the coupled system + reservoir from an uncoupled
state quickly leads to an entangled state. (c) Measuring the reservoir
energy selects a subsample of the system, removing coherences.
(d) Replacing the reservoir state with a thermal sample results in heat
and work output. The thermal nature of the environment is responsible
for dissipation.

time tj+1 [Fig. 1(c)],

Û (t)|ψ,n〉 → |ψ ′〉 = 〈m|Û (t)|ψ,n〉√
pm

. (8)

This causes the system to undergo a quantum jump with
probability pm = |〈m|U (t)|ψ,n〉|2 [Fig. 1(d)]. The resulting
state, |ψ ′〉, is sent as input to step 1.

When expressed in density matrix notation, steps 4, 1, and
2 combine together to form the “purification” superoperator of
Spohn and Lebowitz [16],

P̂ ρAB(t) = [TrB ρAB(t)] ⊗ ρB(0). (9)

Every time this operation is performed, the memory of the
environmental system is destroyed, all system-environment
superposition is removed, and 〈ĤAB〉 necessarily becomes zero
as explained following Eq. (1). To make use of the information
on the measured state of B, this work treats “measurement”
(step 4) and “thermalization” (step 2) as separate steps.

For studying the thermalization process, it suffices to use a
constant, thermal equilibrium distribution for ρB(tj ),

ρ
eq
B (β) = e−βĤB /ZB(β). (10)

In many experimental cases, ρB(tj ) represents a specially
prepared protocol to drive the system toward a desired
state. Since our calculations are for the case where the
environment is not time dependent, we will use ρB(0) = ρB(tj )
interchangeably.

The operation of measurement disconnects the two systems,
and, more importantly, makes the energy of the reservoir
system correspond to a physical observable. A complete
accounting for heat in quantum mechanics can be made
using only these measurements on ancillary systems, rather
than the central, A, system. The thermodynamics based on
this accounting allows the central system to retain most of
its quantum character, while at the same time deriving the
traditional, operational relationships between heat and work.

Although the analysis below is phrased in terms of density
matrices, that view is equivalent to carrying out this process
many times with individual wave functions. Specifically, if
ρA(tj ) = ∑

k pk|ψk〉〈ψk| is composed of any number of pure
states [55], the final density matrix at time tj+1 is a linear
function of ρA and hence of each |ψk〉〈ψk|. Carrying out the
process on individual wave functions thus allows an extra
degree of choice in how to compose ρA(tj ), the use of which
does not alter any of the results.

This process is a repeatable version of the measurement and
feedback control process studied in Ref. [11], gives a discrete-
time version of quantum state diffusion [5], and fits into the
general quantum map scheme of Ref. [13]. Nevertheless, our
analysis finds different results because our thermodynamic
interpretation of the environment and measuring device allows
the reservoir to preform work in addition to exchanging heat.

III. THERMODYNAMICS OF REPEATED MEASUREMENT

In order for heat and work to have an unambiguous
physical meaning, they must be represented by the outcome
of some measurement. Figure 2 presents the energies for each
operation applied to a system and its reservoir over the course
of a measurement interval in Fig. 1. This section assumes
tj = 0 without loss of generality. Initially (in step 2), the
density matrix begins as a tensor product, uncoupled from
the reservoir, which has a known starting distribution, ρB(0).
However, for a coupled system and measurement device, time
evolution leads to entanglement. At the time of the next
measurement, the entanglement is projected out, so it is again

FIG. 2. Work and heat of the intermittently measured quantum
system. On the left, the system (A) and reservoir (B) Hamiltonians
are uncoupled. Coupling (step 2 in the process of Sec. II) does not
initially change their energy, since diagonal elements of ĤAB are
zero. During time evolution (step 3), the total energy is conserved,
leading 〈ĤAB〉 and 〈ĤA + ĤB〉 to oscillate. Measurement (step 4)
projects back into an uncoupled state, requiring work −〈γ ĤAB〉. ρA ⊗
ρB (t) is schematic in this figure, as discussed in the text surrounding
Eqs. (25) and (28). Finally, thermalization of the reservoir removes
accumulated heat, while exporting all work to the environment.

012149-4



EINSTEIN-PODOLSKY-ROSEN PARADOX IMPLIES A . . . PHYSICAL REVIEW E 95, 012149 (2017)

permissible to refer to the properties of the A and B systems
separately.

After a measurement, the total energy of the system-
reservoir pair will have changed from 〈ĤA + ĤB + γ ĤAB〉
to 〈ĤA + ĤB〉. The amount of energy that must be added
to measure the system-reservoir pair at any point in time is
therefore −γ 〈ĤAB〉.

This step is responsible for the measurement “back action,”
and the violation of the FT for general quantum dynamics.
Strictly speaking, this measurement energy does not corre-
spond to an element of physical reality. Nevertheless, the
starting and ending ĤA, ĤB are conserved quantities under
the uncoupled time evolution, and so the energy of the
measurement step can be objectively defined in an indirect
way.

This instantaneous measurement of the reservoir simulates
the physical situation where an excitation in the reservoir leaks
out into the environment. After this happens, the information
it carried is available to the environment, causing traditional
collapse of the system-reservoir pair.

To complete the reset from step 4 back to step 1, the
reservoir degree of freedom must be replaced with a new
sample from its input ensemble. For the micromaser, this
replacement is accomplished spatially by passing separate
atoms (B) through a cavity, one at a time.

On average, the system should output a “hot” ρB(t), which
the environment will need to cool back down to ρB(0).
Using the methods of ordinary thermodynamics [17,19,22],
we can calculate the minimum heat and maximum work
for transformation of ρB(t) back to ρB(0) via an isothermal,
quasistatic process at the set temperature of the reservoir,

βQ = − Tr[ρB(0)lnρB(0)] + Tr[ρB(t)lnρB(t)]

= −	SB, (11)

Wtherm = Tr [[ρB(0) − ρB(t)]ĤB] + 	SB/β

= −	FB, (12)

W = Wtherm + 	HA + 	HB

= 	HA − Q. (13)

These signs of these quantities are defined as the energy added
to the system, while 	X ≡ 〈X̂〉final − 〈X̂〉initial represents the
total change in X̂ during evolution from one measurement time
to the next.

In this work, T always refers to the externally set tempera-
ture of the reservoir system. The temperature of the reservoir,
used in defining β = 1/kBT above, is entirely related to the
conditions under which the reservoir states are prepared. It can
be different for each measurement interval.

Note that when a thermal equilibrium distribution is used
for the reservoir [Eq. (10)], the reservoir dissipates energy from
the system. Since it always begins in a state of minimum free
energy, the reservoir always recovers work from the system as
well, since −Wtherm is always positive by the non-negativity of
Eq. (4). This makes sense when the central system is relaxing
from an initial excited state. When the central system is at
equilibrium, the second law is saved (Sec. IV) by including
the work done during the measurement step.

A. Caution on using a time-dependent Hamiltonian

The assumption of a time-dependent Hamiltonian for the
system leads to an ambiguity on the scale of the measurement
back-action [10–12]. This presentation does not follow the
traditional route of assuming a time-dependent Hamiltonian
for the central system. The assumption of a time-dependent
Hamiltonian is awkward to work with in this context because
it sidesteps the measurement paradox. Instead, it assumes the
existence of a joint system wherein the dynamics for subsystem
A is given exactly by ρ̇A(t) = − i

�
[Ĥ eff

A (t),ρA(t)].
The complete physical system plus environment must have

a conserved energy function. This matches the dynamics,

ρ̇A(t) = − i

�
TrB[ĤA + ĤB + γ ĤAB,ρAB(t)], (14)

exactly when Eq. (3) holds.
In classical mechanics, such a function can be formally

constructed by adding an ancillary degree of freedom y that
moves linearly with time, y(t) = t . The potential energy
function,

V (x,y) = V (x) + V int(x,y) −
∫ y

0

∂V int(xref(t),t)
∂t

dt, (15)

is defined using the known trajectory for xref(t) under the
desired Hamiltonian, H (x,t), so that y experiences no net
force. Alternatively, y can be considered to be infinitely
massive.

When translated to quantum mechanics, neither of these
last two methods avoids the Heisenberg uncertainty principle
[31,56]. An intuitive argument can be based on 〈	p〉〈	x〉 �
�

2 . In both cases, the work done by the system on the

reservoir is ∂V int(x,y)
∂dy

dy, and contributes directly to the change
in momentum of y. The y coordinate was constructed to move
linearly in time, and hence measures the “time” of interaction.
Using these translations from momentum change and position
to work and time provides 〈	py〉〈	y〉 	 〈	tV (x,t)〉〈	t〉.

Although the definitions of heat and work in Eq. (2)
can be shown to be mathematically consistent with the
laws of thermodynamics, they require infinitesimally slow
time evolution under the Markov assumption and constant
comparison to a steady-state distribution [13,14,17]. The
present method is valid under a much less restrictive set of
assumptions. In particular, it allows arbitrary time evolution,
and only makes use of the equilibrium properties of the B

system, not the central A system. The present set of definitions
is also directly connected to the experimental measurement
process.

Strong-coupling schemes define a time-dependent Ĥ ,
which groups the central system together with some aspects
of the reservoir. In the present framework, it is easy to
allow ĤB and ĤAB = Ĥ ′

AB + Ĥ ′
A to be different for each

measurement interval (encompassing even non-Markovian
dynamical schemes [45,57,58]). In this case, the analysis
above mostly carries through, with the exception that, since
〈f (ĤA)ĤAB〉 
= 0, an extra amount of energy is added during
coupling, but not removed during measurement. This extra
energy contributes to the work done on the system according
to Eq. (2). However, the connection to heat found here is
very different because, as the next subsection shows, the
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definition of heat in Eq. (2) requires that the reservoir be near
equilibrium. The comparison presented here is conceptually
simpler because energy stored in the system cannot be
instantaneously altered by an external source.

For a specific example, consider the energy exchange pro-
cess taking place between a nuclear spin and its environment in
an NMR spin-relaxation experiment [23]. In order to represent
stored energy, the Hamiltonian of the atom can be defined with
respect to some static field, Ĥ ′

A = �ω0
2 σz. Rather than varying

the field strength (ω0) directly, changing the atomic state from
its initial equilibrium can be brought about with an interaction
Hamiltonian, Ĥ ′

AB , such as the Rabi model studied here. The
work can be added over each time interval to give∫ t

0
dt ′ W (t ′) = �ω0

2
Tr{σz[ρA(t) − ρA(0)]} −

∫ t

0
dt ′ Q(t ′).

(16)

The heat release can be analyzed using either of the methods in
the next section (Sec. III B). Assuming the minimum heat re-
lease leads to

∫ t

0 dt ′β(t ′)Q(t ′) = SA(t) − SA(0), in agreement
with the rules of equilibrium thermostatics. Alternately, in the
limit where the B system always begins at thermal equilibrium
and moves infinitesimally slowly between each measurement
interval, Eq. (2) is recovered, giving W (t) = 0. The key point
is that this model separates the system and environment in such
a way that changes in the environment cannot instantaneously
change the energy stored in the system.

B. Comparison to common approximations
for the heat evolution

The heat generated in the process of Figs. 1 and 2 comes
directly from the entropy change of the measurement system
B. Most analyses ignore the measurement system, making
this result difficult to compare with others in the literature.
This section presents two simple methods for calculating 	SB

from quantities available in other methods.
First, assuming the time dependence of ρA(t) is known,

a lower bound on the heat emitted can be derived from the
state function, SA(t) = − Tr [ρAlnρA]. Over each time interval,
	SA + 	SB � 0, so the total heat added obeys the inequality,

	Q(t) = −	SB/β � 	SA/β. (17)

Assuming the minimum required heat release leads to a
prediction of the quasistatic heat evolution,∫ t

0

dQ(t ′)
dt ′

dt ′ �
∫ t

0
dSA(t ′)/β(t ′) dt ′. (18)

This is exactly the result of equilibrium quantum thermody-
namics, valid for arbitrary processes, ρA(t).

Second, if the B system always begins in thermal equilib-
rium, ρB(0) = ρ

(β)
B , and the change in occupation probability

for each energy level [	 diag(ρB)] over a measurement interval
is small, then we can directly use the expansion [16]

δSB = −
∑

j

δpj lnpj . (19)

This is helpful because in Fig. 2, the entropy of the B system
is always calculated in the energy basis of B. Substituting the

canonical equilibrium distribution,

δQ = −
∑

j

δpjEj = −δHB. (20)

Equations (19) and (20) apply whenever ρB(0) is a canonical
distribution and the change in ρB is small over an interval.

In the Van Hove limit (see Appendix B), energy is conserved
between the A and B systems. Because of energy conservation,
the heat evolution of Eq. (20) is exactly the well-known result
of Eq. (2) in this case. We have therefore proven that our
scheme is bounded by the von Neumann entropy and that it
reduces to the standard definitions in the weak-coupling limit.

IV. THERMODYNAMIC CONSISTENCY

For the definitions of work and heat given above to be
correct, they must meet two requirements. In order to satisfy
the first law, the total energy gain at each step must equal
the heat plus work from the environment. This is true by
construction because the total energy change over each cycle is
just 〈	ĤA〉. Next, in satisfaction of the second law, the present
section will show that there can only be a net heat release over
any process returning to its initial thermodynamic state. Since
Q has been defined as heat input to the system, this means∮

Q � 0. (21)

There is a fundamental open question as to whether the
energy change caused by the measurement process should be
classified as heat or work. Counting it as heat asserts that it is
spread throughout the environment in an unrecoverable way.
Conversely, counting it as work asserts that measurement can
only be brought about by choosing to apply a stored force over
a distance. In the cycle of Fig. 2, it is classified as work, because
this is the only assignment consistent with thermodynamics.

Counting 〈γ ĤAB〉 as heat leads to a systematic violation of
the second law, as is now shown. Over a thermodynamic cycle
(many repetitions of the measurement cycle of Fig. 2), ρA must
eventually return to its initial state. Therefore

∮ 〈	HA〉 drops
out when integrating the quantity

R = 〈	HA〉 + 〈	HB〉 − 	SB/β (22)

to leave ∮
R =

∮
〈	HB〉 − 	SB/β. (23)

If the B subsystem starts each interval in thermal equilibrium
[Eq. (10)], this is the free energy difference used in Eq. (4). The
Klein inequality then proves the positivity of each contribution
to Eq. (23). Therefore, over a cyclic process,

∮
R � 0.

A thermodynamically sound definition is found when
counting as part of Q only the entropy change of the reservoir.
Heat comes into this model because the environment is
responsible for transforming ρB(t) back into ρB(0). Using a
hypothetical quasistatic, isothermal process to achieve this will
require adding a heat, Q = [SB(0) − SB(t)]/β = −	SB .

We now show that
∮

	SB � 0 by considering en-
tropy changes for the A-B system jointly. At the starting
point of each measurement cycle, the two systems are
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decorrelated [38],

S[ρA(0) ⊗ ρB(0)] = SA(0) + SB(0). (24)

The time evolution of this state is unitary, so ρAB(t) has the
same value as Eq. (24) for the entropy. However, projection
always increases the entropy [38,55], so it is easy to show,

S[ρA(t) ⊗ ρB(t)] � S[ρAB(t)], (25)

with ρA(t) = TrB [ρAB(t)], etc. Combining Eqs. (24) and (25),

	SA + 	SB � 0. (26)

This is quite general, and applies to any measurement time,
starting state, and Hamiltonian ĤAB . Again, for a cyclic
process A must return to its starting point, so

∮
	SA = 0,

and
∮

Q � 0.
Although the form above is useful in most cases, a stronger

form of Eq. (25) can be shown when the projected joint
state is

ρAB(t)′ =
∑
m

〈m|ρAB(t)|m〉 ⊗ |m〉〈m|. (27)

In this case, since Tr[ρAB(t)′lnρAB(t)′] = Tr[ρAB(t)lnρAB(t)′],
the Klein inequality applies to show that

S[ρAB(t)′] � S[ρAB(t)]. (28)

It should be stressed that the results of this section
hold regardless of the lengths of the measurement intervals
{tj+1 − tj } or driving protocols [{ρB(tj ),ĤAB,j }]. The choice
of thermal driving and a Poisson measurement process is not
justified in every case. This is especially true for the physical
micromaser, where the input state can be precisely controlled
and measurement times are usually Gaussian, based on the
cavity transit time for each atom.

V. RESULTS

We illustrate the results of the previous sections by compar-
ing the dynamics of the process from Sec. II applied to models
of the relaxation dynamics of a single-mode atom-cavity
system. In all cases, the system is a single optical mode with
Hamiltonian

ĤA = �ωA

(
n̂A + 1

2

)
, n̂A = a†a. (29)

The cavity begins at time t = 0 in its singly excited state
(nA = 1). At all times, there is also a two-level atom present,
with Hamiltonian

ĤB = �ωB

2
(|e〉〈e| − |g〉〈g|) = �ωB

(
n̂B − 1

2

)
. (30)

According to the process of Sec. II just after every mea-
surement performed on the atom, the atom is reset to a
state diagonal in ĤB with imposed excited- and ground-state
probabilities σe and σg .

A. Jaynes-Cummings model

In the Einstein picture, photons in A can cause excitation of
the atom B at a fixed rate. This section uses the model of Sec. II
to derive the rate, starting from the transition probabilities

of the Jaynes-Cummings model (JCM). It uses an atom-field
coupling,

γ Ĥ 0
AB = γ (a†σ− + aσ+), (31)

where

σ− ≡ |g〉〈e|, σ+ ≡ |e〉〈g|. (32)

The analysis of this model is well known [59–61], and
leads to an expression for the transition probabilities |bm(t)|2
[Eq. (A7)] that depend on the total number of excitations
present, m = 〈n̂A + n̂B〉, and which are periodic in time. The
heat and work exerted by the atom on the cavity are easily
found by computing Eqs. (11) and (13) using the model’s
analytical solution,

x(t) ≡
∞∑

n=0

pn[σg|bn(t)|2 − σe|bn+1(t)|2], (33)

σe(t) = σe + x(t), (34)

σg(t) = σg − x(t), (35)

〈	HA(t)〉 = −�ωAx(t), (36)

〈	HB(t)〉 = �ωBx(t). (37)

The numbers pn are the initial occupation probabilities of the
cavity, and σg (σe) is the initial probability of the atom’s ground
(excited) state. To interpret this correctly, note that both A and
B started in uncoupled diagonal states at t = 0 and that a
measurement on B alone was performed at time t .

All of the quantities in Eqs. (33)–(37) are measurable in
this particular model because the JCM is a very special case
where unitary evolution only mixes the states |n − 1,e〉 and
|n,g〉. Thus the only allowed transitions are between these two
states, and all the results can be neatly expressed in terms of
x(t), the average number of photons absorbed by the atom.

To complete the analysis of this model, we apply the
assumption of Poisson measurement events (with rate λ)
to determine the expected number of absorptions over all
measurements. This average is

E[|bm(t)|2] = 1

2

(
1 − λ2 + 	2

c

λ2 + 	2
c + 4mγ 2/�2

)
, (38)

where 	c = ωB − ωA is the difference between atom and
cavity frequencies and E[f (t)] ≡ λ

∫ ∞
0 dt exp(−λt)f (t). We

simplify the result by noting that both fast and slow
measurement-rate limits of this equation give identical first-
order terms,

lim
λ→∞

E[|bm(t)|2] = lim
γ /�→0

E[|bm(t)|2] = 2mγ 2/�
2

λ2 + 	2
c

. (39)

Since measurements happen with rate λ, the effective total
rate of atomic absorptions in these limits is

λE[x(t)] = 2λγ 2/�
2

λ2 + 	2
c

[σg〈n̂A(0)〉 − σe〈n̂A(0) + 1〉]; (40)

the two parts of Eq. (40) show Einstein’s simple picture
of photon emission and absorption processes occurring with
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equal rates [2],

dWabs/	Eabs = σgB
e
g〈n̂A〉dt, (41)

dWem/	Eem = σe

(
Ag

e + Bg
e 〈n̂A〉)dt. (42)

All the A,B coefficients are equal to the prefactor of Eq. (40)
here because x(t) counts only a single cavity mode at frequency
ωA. In a blackbody, the A coefficient goes as ω2dω because
more modes contribute [54].

The denominator λ2 + 	2
c is exactly the one that appears in

the traditional expression for a Lorentzian line shape. Here,
however, the measurement rate λ appears rather than the
inverse lifetime of the atomic excited state. The line broadens
as the measurement rate increases, and the atom is able
to absorb or emit photons further away from its excitation
frequency. Only the resonant photons will cause equilibration,
while others will cause noise. In the Van Hove limit, γ,λ → 0
so that the contribution of the resonant photons will dominate.
From the importance of 	c in this example, we see already
that the work of measurement, 	ĤA + 	ĤB , will be critical
for understanding energy balance.

B. Rabi model

The Rabi model uses the more complete [62] coupling
between the field and a dipole oriented in the x direction,

γ ĤAB = γ (a† + a)(σ+ + σ−). (43)

To compute the work and heat under this coupling, we
must resort to numerical simulation [64]. Because the process
in Fig. 1 is repeated after each measurement, the simulation is
carried out by averaging over the distribution of N = 0,1, . . .

measurement times,

P
({t}N1 ,N

∣∣tj > tj−1
) =

N∏
j=1

λ−1e−λ(tj −tj−1), (44)

starting from the initial state at time t0 = 0. Numerically, the
averages plotted are Monte Carlo averages over 5000 samples
from Eq. (44). The evolution of the density matrix according
to Sec. II is completely determined when the number and
times of measurement are known. Average heat and work
values [Eqs. (11) and (13)] were computed numerically at each
fixed time tf by taking a weighted average over these Monte
Carlo samples of the Poisson process. The sample weights,
λ−1e−λ(tf −tj ) (where tj is the last measurement time before tf )
were used to account for the probability that the plotted time
tf is a measurement time.

Figure 3(a) shows the average work and heat computed for
the parameters ωA = ωB = 2π , γ /� = 0.05, λ = 10−2. The
quantities shown are cumulative from the starting time, so
that sum − 	HA/�ωA = 1/2 − HA(t)/�ωA. Rabi oscillations
can be seen clearly as the photon exchanges with the
reservoir (atom). Initially, this increases the entropy of the
incoming atom’s energy distribution. When there is a strong
probability of emission, however, the integrated heat release,
− ∫ t

0 Q(t ′)dt ′, shows that the system actually decreases the
entropy of the reservoir. This happens because the the reservoir
atom is left in a consistent, high-energy, low-entropy state.
In this way, the reservoir can extract useful work from the
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FIG. 3. Work and heat production during decay of a photon in
a cavity (nA = 1) coupled to a two-level reservoir via (43), with
ωA = ωB = 2π , γ = 0.05, λ = 10−2, β = 1. Panels (a) and (b)
compare the system energy loss 	HA to the work and heat computed
from the measured reservoir states [Eqs. (13) and (11)]. Panels (c)
and (d) show the information entropy of the A system and the
combined entropy change, Stot(t) = SA(t) − ∫ t

0 Q/T > 0. Note that
the traditional calculation of heat [Eq. (2)] gives only Q ≈ 	HA,
W ≈ 0. Panels (a) and (c) show results for the time evolution of the
density matrix using the exact process, while panels (b) and (d) are
computed using the weak-coupling approximation of Sec. V C.

cavity, even during a thermalization process. Figure 3(c) plots
the von Neumann entropy of the A system and Stot [the
sum of SA(t) and the integrated heat release], to show that
no laws of thermodynamics are broken. Average work was
extracted because the system starts in a pure state, but ends
in a mixed, equilibrium state. The information entropy of
the system itself increases appreciably during the first Rabi
cycle. Eventually, the equilibration process ends with the initial
excitation energy being transformed into both heat and work.
Despite the appearance of Fig. 3(a), the final total emitted
heat was generally nonzero for other coupling strengths (not
shown).

C. Comparison to weak coupling

The work and heat defined by Sec. III differ substantially
from the standard literature definition based on weak coupling
[Eq. (2)]. This is because the earlier definition is based only
on the “A” system, without considering the reservoir, “B.” It
therefore provides no way to use the energy of the atom after
interaction for useful work. Equation (2) therefore finds zero
work for the process studied here, and classifies 	HA entirely
as heat lost to the environment.

A better comparison to Eq. (2) is made if we modify
the standard weak-coupling scheme to track changes to the
reservoir during interaction. Appendix B derives expressions
for the time dependence of the joint density matrix ρAB in
the weak-coupling limit and averages over Poisson-distributed
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measurement times to find the Lindblad equation,

dρAB (t)

λdt
= − iγ

�
[H̃AB(λ),ρAB(0)] + γ 2

�2
L′[ρAB(0)], (45)

where

ĤAB ≡
∑

ω

V̂ω, (46)

H̃AB(λ) =
∑

ω

1

λ − iω
V̂ω, (47)

L′[ρ] =
∑
ω,ω′

sω,ω′

(
V̂ωρV̂

†
ω′ − 1

2
{V̂ †

ω′ V̂ω,ρ}
)

+ iaω,ω′

2
[V̂ †

ω′ V̂ω,ρ], (48)

sω,ω′ = 2λ − i(ω − ω′)
dω,ω′

, (49)

aω,ω′ = ω + ω′

dω,ω′
, (50)

dω,ω′ = (λ − iω)(λ + iω′)[λ − i(ω − ω′)]. (51)

This equation reduces to the traditional dynamics [16] in the
Van Hove limit (γ,λ → 0 with γ 2/λ → const). Note that the
sums run over both positive and negative transition frequencies
ω and that these quantities have the symmetries V̂ †

ω = V̂−ω,
s∗
ω,ω′ = sω′,ω, d∗

ω,ω′ = dω′,ω, and a∗
ω,ω′ = aω′,ω. The canonical

Lindblad form can be obtained by diagonalizing the matrix
[sω,ω′]. Numerical simulations of the Lindblad equation were
carried out using QuTiP [64].

To make the comparison with weak coupling, we carried
out the same sampling over Poisson-distributed measurement
times as in the last section, but replaced the propagator with
the integrated form of Eq. (45). As before, the heat and work
were computed from the joint density matrix at the beginning
and end of each measurement interval.

Figures 3(b) and 3(d) show that the initial cos2 shape and
Rabi oscillation structure are lost in the weak-coupling limit.
Instead, the L′ propagator creates a fast initial loss of cavity
energy followed by exponential decay toward the steady state.
Nevertheless, the observed decay rate and eventual steady
states match very well between the two methods. The total
evolved heat shows a discrepancy between methods because
the fast initial loss in the L′ propagator quickly mixes ρB .

The only source of differences between exact evolution
and the Lindblad form of Eq. (45) is the additional dis-
sipation brought about by smearing over the measurement
times. Because a dissipative propagator (L′) is used within
a measurement interval, some quantum correlations with the
reservoir are not captured. Neglecting these correlations leads
to artificial heat release. This effect may be exaggerated here
because the two systems are at a resonance condition.

Figure 4 illustrates the effect of using the weak-coupling
propagator (L′) at different measurement rates. Without the
trace over the environment—i.e., at a slow measurement rate
as in panel (a)—L′ just gives the approximation to ρAB(t)
from second-order perturbation theory. This actually decays
faster than when repeated projection is used—i.e., at a fast
measurement rate as in panel (d)—because the environment
loses its memory after each projection [55]. Both the fast initial
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FIG. 4. Decay of the system simulated in Fig. 3 from an excited
state [EA(0) = �ωA] at different values of the measurement rate.
Panels (a)–(d) have rates λ = 10−4, 5 × 10−3, 10−2, and 5 × 10−2,
respectively. The exact propagator is compared with the weak-
coupling propagator under the same repeated measurement process.
The shape of the decay to steady-state behavior is a combination of
fast energy exchange due to Rabi oscillations and the slower process
of memory loss through repeated measurement.

relaxation and slow exponential tail (due to measurement) are
visible in the figure.

This crossover highlights a tradeoff in choosing the time
scale for simulations employing weak-coupling approxima-
tions. Although a slow measurement rate λ is needed to
minimize the effect of measurement back reaction on the
system energy, agreement with the exact dynamics is better
at fast measurement rates. Actually performing repeated
measurements has important energetic and dynamical con-
sequences for the system.

VI. MINIMUM ACHIEVABLE TEMPERATURE

Simulation results of the last section reveal that even as
the reservoir temperature approaches zero, the probability of
the first excited state does not vanish. In fact, the results very
nearly resemble a Gibbs distribution at elevated temperatures.
As the reservoir goes to absolute zero, the effective system
temperature levels off to a constant, minimum value.

This section gives both intuitive and rigorous arguments
showing that this is a general phenomenon originating from
work added during the measurement process. First, observe
that the total Hamiltonian Ĥ is preserved during coupled time
evolution. When allowed by the transitions in ĤAB (i.e., when
[Ĥ ,ĤAB] 
= 0), a portion of that total energy will oscillate
between ĤA + ĤB and ĤAB . Consider, for example, a dipole-
dipole interaction, Ĥ = x̂2

A + p̂2
A + x̂2

B + p̂2
B + γ x̂Ax̂B . At

equilibrium, the individual systems have 〈x̂〉 = 0, but the
coupled system polarizes so that 〈ĤAB〉 < 0.

Intuitively, the joint system can be pictured as relaxing to
a thermal equilibrium at an elevated temperature 1/β ′. The
initial density matrix at each restart, ρA(β ′) ⊗ ρB(β), would
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then look like an instantaneous fluctuation of

ρAB(β ′) = e−β ′Ĥ /ZAB(β ′), (52)

where 〈ĤAB〉 = 0 is too high and 〈ĤB〉 is too low.
At steady state, 〈ĤA〉 must be the same at the beginning and

end of every measurement cycle. This allows the equilibrium
argument above to determine β ′ by self-consistency,

〈E[ĤB(t)] − ĤB(β)〉 = −γ 〈E[ĤAB(t)]〉. (53)

If equilibrium at β ′ = 1/kBT ′ is reached by the average
measurement time, then expanding 〈ĤB(β ′) − ĤB(β)〉 yields

	T 	 −γ 〈E[ĤAB(t)]〉
CV,B

, (54)

where CV,B is the heat capacity of the reservoir system.
It is well known that quantum mechanical degrees of

freedom freeze out at temperatures that are fractions of their
first excitation energy (	E1). Since the heat capacity when
β−1 < 	E1 goes to zero, while the interaction energy should
remain nonzero, this intuitive argument suggests that the
temperature of the system cannot go much below 	E1/kB .

To be more quantitative, 〈E[ĤAB(t)]〉 can be estimated in
the weak-coupling limit from the second-order perturbation
theory of Appendix B. This comparison considers the case
	c = 0, since the stationary state where 	c 
= 0 is known to
be noncanonical. Also, the JCM with rotating wave approxi-
mation is too idealistic, since when 	c = 0 no off-resonance
interactions can occur—so ĤAB commutes with Ĥ and the
minimum temperature argument does not apply. In other
words, in the rotating wave approximation, the number of
absorption events x(t) always increases the energy of the atom
and decreases the energy of the cavity by the same amount.

However, if the more physical interaction Hamiltonian
[Eq. (43)] is used, then the weak-coupling theory should also
include transitions between 0,g and 1,e. The average number
of simultaneous excitations must be tracked separately, since
it increases both the energy of the atom and cavity. Using
Eq. (48) with ωA = ωB = ω, this average is

〈a†σ+ + aσ−〉 = 2γ 2/�
2

λ2 + (2ω)2
(σg〈n̂A + 1〉 − σe〈n̂A〉). (55)

In the low-temperature limit, only the probabilities of the
four lowest-lying states, labeled p0/1σg/e, contribute substan-
tially. Inserting Eq. (55) into the weak-coupling dynamics
[Eq. (45)],

∂〈ĤA〉
∂t

= 2ω
λ
γ 2/�(

λ
2ω

)2 + 1

[(
λ

2ω

)2
(p0 − p1) + σep0 − σgp1

]
.

(56)

This result applies whenever ĤAB allows for both 0,e ↔
1,g and 0,g ↔ 1,e transitions with with equal weight and
respective energy differences of zero and 2�ω. Equation (56)
can be solved for steady state to find

p1

p0
=

(
λ

2ω

)2 + σe(
λ

2ω

)2 + σg

. (57)

FIG. 5. Steady-state inverse temperature vs reservoir β. The
arrows plot the limiting value of −ω−1lnp1/p0 from Eq. (58). Each
line represents the steady states found using a fixed measurement
rate λ as the reservoir temperature varies. Their y values were
computed from the steady-state probabilities for simulation in the
weak-coupling limit [Eq. (B11)].

In the low-temperature limit,

lim
σg→1

p1

p0
=

(
λ

2ω

)2

(
λ

2ω

)2 + 1
. (58)

This argument brings the energy-time uncertainty principle
into sharp focus. If the measurement rate is on the order of the
transition frequency ω then p1/p0 can be of order 1, making
absolute zero unreachable regardless of the coupling strength
γ or the reservoir temperature determining σe/σg . On the
other hand, as the relative measurement rate λ/ω approaches
zero the thermodynamic equilibrium condition σep0 = σgp1

dominates. In the limit where measurements are performed
very slowly, transitions that do not conserve the energy of the
isolated systems are effectively eliminated.

Figure 5 illustrates these conclusions by solving numeri-
cally for the steady states of the Rabi model (Sec. V B) as
a function of environmental temperature, kBT = β−1. The
limiting predictions of Eq. (58) are drawn as arrows for each
simulated value of the measurement rate λ. For high reservoir
temperatures and low measurement rates, the system’s steady-
state probabilities follow the canonical distribution with the
same temperature as the reservoir (since they fall on a straight
line). When the reservoir temperature is lowered below a
limiting value, the system is unable to respond—effectively
reaching a minimum temperature determined by Eq. (58).
Effects from the minimum temperature can be controlled by
lowering the measurement rate.

VII. CONCLUSIONS

A measurement process is required in order to avoid the
EPR paradox for defining heat and work in a quantum setting.
However, continually measuring the energy of an interacting
quantum system has important energetic and dynamical
consequences for the system. Traditional definitions of work
and heat avoid this problem because they assume infinitely
slow measurement rates. Our process shows that quantum
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systems under repeated measurement do not always reach
canonical (Boltzmann-Gibbs) steady states. Instead, the steady
state of a quantum system depends both on its coupling to an
external environment and the rate of measurement.

This analysis creates a less restrictive proof of the unattain-
ability of absolute zero, which is one part of the third law of
thermodynamics [65,66]. Other proofs in the literature have
arrived at similar conclusions for the minimum achievable
temperature by examining specific models for the optimal rate
of cooling in quantum engines under weak coupling [67], or
in heat exchangers using scattering theory [68]. A general
minimum temperature argument was constructed in Ref. [69]
by maximizing the probability that the system is set to the
ground state over arbitrary unitary coupling to a reservoir.
The present result (Sec. VI) applies generally to all systems
and reservoirs that follow the dynamic measurement process
considered in this work.

The presence of a measurement rate in the theory indicates
the importance of the outside observer—a familiar concept
in quantum information [5]. Most experiments on quantum
information have been analyzed in the context of a Lindblad
master equation, whose standard interpretation relies on
associating a measurement rate to every dissipative term.
All energy changes arising from these terms were previously
assumed to be lost as heat. We have shown that every process
with a measurement rate can be used as a source and sink
for work as well as heat. This use creates an alternative
to time-dependent coupling Hamiltonians required by other
theories.

Our argument was based on accounting for heat and
work during each single measurement step. We showed
that averaging over Poisson-distributed measurement times
rederives the master equation as the approximation to this
process in the limit of weak coupling. The result agrees with
standard line-shape theory and extends thermodynamics to
fast, strongly coupled measurement processes.

The physical consequences of the measurement rate will
become increasingly important as quantum experiments push
for greater control [51]. However, they also present an
opportunity to probe the measurement rule and energy-time
uncertainty principle. For the micromaser, the rate seems to
be the number of atoms sent through the cavity per unit
time—since every atom that leaves the cavity is measured via
its interaction with the outside environment. It is not, however,
because even there the atoms can be left isolated and held
in a superposition state indefinitely, leading to entanglement
between successive particles [61]. Most generally, the number
of measurements per unit time is determined by the rate
at which information can leak into the environment. If
information leaks quickly, the amount of energy exchanged
can be large and the minimum effective temperature of the
system will be raised. If information leaks slowly, the work
done by measurement will be nearly zero, and the quantum
system will more closely approach the canonical distribution.
By the connection to the width of spectroscopic lines, this rate
is closely related to the excited-state lifetime.

This model presents an experimentally motivated and
thermodynamically consistent treatment of heat and work
exchange in the quantum setting. By doing so, it also raises
questions about the thermodynamics of measurement. First,

the explicit connection to free energy and entropy of reservoir
states provides an additional source of potential work that
may be extracted from coupling. Connecting multiple systems
together or adding further dynamic details to the measurement
process (rather than simple projection) are well posed within
this framework. Second, we have shown the conditions needed
for the present definitions to reduce to well-known expressions
in the literature. Third, although the initial process was defined
in terms of wave functions, the average heat and work is
defined in terms of the density matrices. Definitions [Eqs. (11)
and (13)] still apply when the density matrix consists of
a single state, but the repeated measurement projecting to
a single wave function has a subtly different interpretation.
The difference (not investigated here) is related to Landauer’s
principle [22,35], since measuring the exact state from the
distribution, ρA ⊗ ρB , carries a separate “recording” cost.

There have been many other investigations on thermody-
namics of driven, open quantum systems. The restriction to
time-independent Hamiltonians in this work differs from most
others, which assume a prespecified, time-dependent ĤA(t).
To make a comparison, either the cycle should be modified
as described in Sec. III A or work at each time step in such
models must be redefined to count only energy that is stored
in a time-independent Hamiltonian for the central system HA.

Quantum jump and power measurement based methods
assume, following weak-coupling definitions, that heat is
defined as all energy exchange with a “dissipative” reservoir.
There, work is supplied by the time dependence of the
Hamiltonian. An interesting point of the present study is that
heat may be more closely identified with changes to the von
Neumann entropy of the B system, and by strong subadditivity,
to the time-dependent entropy of A. The energy exchange
with the reservoir is only indirectly connected to the heat
exchange through Eq. (20). The fact that this becomes exact
in the Van Hove limit explains the role of the steady state
for A and observations by many authors that the work of
measurement is the source of nonapplicability of fluctuation
theorems [10–12,26,31].

When [Ĥ ,ĤAB] = 0, then energy is conserved between the
subsystems (	HA + 	HB = 0). In this case, the measurement
back action disappears, and the fluctuation theorem for 	HA is
given by the formalism of Ref. [13]. It should also be possible
to derive a forward fluctuation theorem (not restricted to time
reversal) for predicting the force- flux relationships along the
lines of Ref. [15].

The process studied here retains a clear connection to the
experimental measurement process, and is flexible enough to
compute heat and work for continuous feedback control. In
view of the near identity between our Eq. (58) and Eq. (10) of
Ref. [27] [also similar in form to Eq. (77) of Ref. [69] it is very
likely that recent experimental deviations from the fluctuation
theorem are due to the phenomenon of minimum temperature,
as well as to differences between traditional, system-centric,
and the present, observational, definitions of heat and work.
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APPENDIX A: ANALYSIS OF THE MICROMASER

Exact numerical results are known for the micromaser in
the rotating wave approximation—a single-qbit system (B)
in state e or g coupled to a single mode of an optical cavity
(A) in a Fock state, n = 0,1, . . . [59–61]. The Hamiltonian is
known as the Jaynes-Cummings model (JCM) and is given by
Eq. (31). The rotating wave approximation neglects a term,

γ Ĥ ′
AB = γ (a†

Aa
†
B + aAaB), (A1)

in the Hamiltonian causing simultaneous excitation of the qbit
and cavity that is present in the Rabi model [Eq. (43)]. It is
usually justified when the two frequencies, ωA and ωB , are near
resonance [70], but is critical for reproducing some quantum
effects [9].

The JCM is an idealized model for understanding exper-
iments on the one-photon micromaser. There, a sequence of
atoms are passed through an optical cavity tuned to a resonant
frequency ωA. The work exchange between the field and a
passing atom is realized when the energy of the exiting atom
is measured. This will project the environment into a state with
known excitation, nB = 1 or 0.

For completeness, we derive the solution of the JCM given
in Eq. (33). The solution is well known [7,59,60], but is
restated here because the notation is slightly different. For
states with m > 0 total excitations, the time-evolution operator
decomposes into a 2 × 2 block diagonal [70],

[〈n − 1,e|ψ(t)〉
〈n,g|ψ(t)〉

]
= e−iωAt(n−1/2)

×
[
an(t) bn(t)
bn(t) an(t)∗

][〈n − 1,e|ψ(0)〉
〈n,g|ψ(0)〉

]
,

(A2)

with the definitions [59]

n = 2γ

�

√
n, (A3)

	c = ωB − ωA, (A4)

′2
n = 2

n + 	2
c, (A5)

an(t) = cos(′
nt/2) − i	c

′
n

sin(′
nt/2), (A6)

bn(t) = − in

′
n

sin(′
nt/2). (A7)

Starting at t = 0 from |n − 1〉〈n − 1| ⊗ |e〉〈e| gives

ρAB(t) =
[|n − 1,e〉

|n,g〉
]T [ |an(t)|2 −an(t)bn(t)

a∗
n(t)bn(t) |bn(t)|2

]

×
[〈n − 1,e|

〈n,g|
]
. (A8)

Starting, instead, at t = 0 from |n〉〈n| ⊗ |g〉〈g| gives

ρAB(t) =
[|n − 1,e〉

|n,g〉
]T [ |bn(t)|2 an(t)bn(t)

−a∗
n(t)bn(t) |an(t)|2

]

×
[〈n − 1,e|

〈n,g|
]
. (A9)

Because of the simplicity of this system, measuring the
atom also projects the cavity into a Fock state. This simplifies
the analysis, since we only need to track the pure probabilities
pn. Assuming the incoming atomic states are chosen to be pure
e or g at random (with probabilities σe or σg , respectively),

pn(t) = pn(0) + |bn+1(t)|2(σgpn+1 − σepn)

− |bn(t)|2(σgpn − σepn−1). (A10)

Equation (A10) uses the fact that b0 = 0. This expression for
the density matrix immediately after measurement can be used
to make exact calculations of the work and heat in the JCM.

This master equation has a nontrivial steady state at pn =
p0( σe

σg
)n. The existence of this steady state, and the fact that

the cavity does not have a canonical distribution, even when
the atom does (σe/σg = e−β�ωB ), were noted by Jaynes [70].
Experimentally, relaxation to the canonical distribution occurs
because of imperfect isolation of the cavity, which allows
thermalization interactions with external resonant photons and
results in a near-canonical (but not perfect) steady state [60].
Such interactions could easily be added to the present model,
but for clarity this analysis focuses on interaction with the
single reservoir system B.

Equation (38) is derived by averaging over the distribution
of measurement times,

E[|bn(t)|2] =
∫ ∞

0
λe−λtdt

2
n

′2
n

sin2(′
nt/2). (A11)

In the limit of many measurements (T/t → ∞), this expecta-
tion gives the rate of transitions (and from those the rates of
heat and work) per average measurement interval. Note that
for the physical micromaser setup, the interaction time is set
by the velocity of the atom and the cavity size—resulting in a
narrow Gaussian distribution rather than the Poisson process
studied here.

APPENDIX B: WEAK-COUPLING LIMIT

The classical Van Hove limit was investigated in detail by
Spohn and Lebowitz [16], who showed generally that thermal
equilibrium is reached by ρA in this limit irrespective of the
type of coupling interaction ĤAB . First, the interaction strength
γ must tend to zero so that only the leading-order term in
the interaction remains. This makes the dynamics of ρA(t) =
TrB [ρAB(t)] expressible in terms of two-point time-correlation
functions for the reservoir. We use the term “weak-coupling
limit” in the text to refer only to γ → 0.

We use the term “Van Hove limit” to refer to taking the
weak coupling first, followed by assuming an infinitely slow
measurement process. We derive the long-time limit below
as λ → 0. This enforces energy conservation because time
evolution causes off-diagonal matrix elements to oscillate and
average to zero over long enough time scales.
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Finally, the Gibbs ensemble is found to be stationary
by combining energy conservation with the detailed balance
condition obeyed by the reservoir,

TrB[e−βĤB Â(0)B̂(t)] = Tr[e−βĤB B̂(t − iβ)Â(0)], (B1)

which enforces for the A system,

e−βEA
n Bm

n = e−βEA
mBn

m. (B2)

The time dependence of the operators in this equation is
defined by the Heisenberg picture, below.

Because Sec. V C requires expressions for the time de-
pendence of both ρA and ρB , this section rederives the
weak-coupling limit without taking the partial trace. The time
dependence of ρ can be found from second-order perturbation
theory,

θAB(t) = ρAB(0) − iγ

�

∫ t

0
dx [ĤAB(x),ρAB(0)] + O

(
γ 3

�3

)

− γ 2

�2

∫ t

0
ds

∫ s

0
dx [ĤAB(s),[ĤAB(x),ρAB(0)]],

(B3)

where ρAB(0) = ρA ⊗ ρB(0). This equation uses the following
notation for the density matrix and time dependence in the
interaction representation:

θAB(t) = U−t
0 ρAB(t)Ut

0, (B4)

ĤAB(t) = U−t
0 ĤABUt

0 (B5)

with time-evolution operator

U0 = e−i(ĤA+ĤB )/�. (B6)

The time evolution can be written more explicitly by
decomposing ĤAB into transitions between joint system-
reservoir states (m to k) with energy difference ωk − ωm,

ĤAB(t) =
∑

ω

V̂ωeiωt (B7)

where

V̂ω ≡
∑

k,m : ωk−ωm=ω

|k〉〈k|ĤAB |m〉〈m|. (B8)

Equation (45) in the text is derived by averaging each term
in Eq. (B3) over a Poisson distribution for the measurement
time t ,

E[θ (t)] = λ

∫ ∞

0
dt e−λt θ (t) (B9)

= ρAB(0)− iγ

�
[H̃AB(λ),ρAB(0)]+ γ 2

�2
L′[ρAB(0)].

(B10)

When λ → 0, transitions where energy is conserved be-
tween the A and B systems (ω = 0) dominate in the sum,
resulting in a net prefactor of (γ /λ�)2. The transition rate is
then γ 2/�

2λ—exactly the combination that is kept constant in
the Van Hove limit. In this limit, tracing over B in Eq. (48)
should recover Eq. (III.19) of Ref. [16].

By applying the interaction part of Eq. (48) to the time
evolution with rate λ, the effective master equation in the
weak-coupling limit becomes

∂ρA

∂t
= − i

�
[ĤA,ρA(t)] + γ 2λ

�2
TrB[L′[ρA(t) ⊗ ρB(0)]].

(B11)

For the JCM, there is just one V̂	c
= aσ+. The time evolution

in this picture reproduces the exact result, Eq. (40).

APPENDIX C: FAST COUPLING LIMIT

For the atom-field system, it was shown that the transition
rate approached the same value in both the weak-coupling and
infinitely fast measurement case. To find the general result
for the Poisson measurement process as λ → ∞, note that
the Taylor series expansion of the time average turns into an
expansion in powers of λ−1,

λ

∫ ∞

0
dt e−λt θ (t) =

∞∑
k=0

λ−kθ (k)(t). (C1)

It is elementary to calculate successive derivatives, θ (k), by
plugging into

∂θ (t)

∂t
= − iγ

�
[ĤAB(t),θ (t)]. (C2)

The average measured θ after a short interaction time on the
order of λ−1 is therefore

E[θ (t)] = ρAB(0) − iγ

λ�
[ĤAB,ρAB(0)]

+ γ

λ2�2
[[ĤA + ĤB,ĤAB],ρAB(0)]

+ γ 2

λ2�2

(
2ĤABρAB(0)ĤAB − {

Ĥ 2
AB,ρAB(0)

})

+O

(
γ 3

λ3�3

)
. (C3)

We can immediately see that this limit is valid when the
measurement rate is faster than γ /� measurements per second.
The O(γ ) terms are in the form of a time propagation over
the average measurement interval λ−1. They have only off-
diagonal elements, and do not contribute to 〈ĤA〉 or 〈ĤB〉.

The third term has the familiar Lindblad form, which
immediately proves a number of important consequences.
First, all three terms are trace free and totally positive. Next,
this term introduces dissipation towards a stationary state for
ρ. For a system under infinitely fast repeated measurement, the
O(γ ) terms do not contribute to TrB , and the density matrix
evolves according to

ρ̇A(t) = − i

�
[ĤA,ρA(t)]

− γ 2

λ�2
TrB[[ĤAB,[ĤAB,ρA ⊗ ρB(0)]]]. (C4)

A more explicit representation is possible by defining the
submatrices,

[V̂ nm]ij = [ĤAB]in,jm. (C5)
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These have the symmetry V̂ nm = V̂ †mn, so

−[[ĤAB,[ĤAB,ρA ⊗ ρB(0)]]]m,m

=
∑

n

pB
n 2V̂ mnρAV̂ †mn − pB

m{V̂ mnV̂ †mn,ρA}. (C6)

For the JCM, this gives

λ〈x〉 = 2γ 2

�2λ
(σg〈n〉 − σe〈n + 1〉). (C7)

The stationary state of this system will usually not be in
the canonical, Boltzmann-Gibbs form. In fact, the prefactor

does not depend on the cavity-field energy mismatch 	c, so
it gives atomic transitions regardless of the wavelength of the
light.

This phenomenon is an explicit manifestation of the
energy-time uncertainty principle. In the long-time limit of
Sec. B, energy-preserving transitions dominated over all
possibilities. In the short-time limit of this section, all the
transitions contribute equally, and the energy difference caused
by a transition could be infinitely large. In between, energy
conservation (and convergence to the canonical distribu-
tion) depends directly on the smallness of the measurement
rate λ.
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[23] L. Diósi, A Short Course in Quantum Information Theory, Lec-
ture Notes in Physics Vol. 827, 2nd ed. (Springer, Heidelberg,
2011).

[24] H. Li, J. Zou, W.-L. Yu, L. Li, B.-M. Xu, and B. Shao,
Negentropy as a source of efficiency: A nonequilibrium quantum
Otto cycle, Eur. Phys. J. D 67, 134 (2013).

[25] H. T. Quan, S. Yang, and C. P. Sun, Microscopic work
distribution of small systems in quantum isothermal processes
and the minimal work principle, Phys. Rev. E 78, 021116
(2008).

[26] C. Jarzynski and D. K. Wójcik, Classical and Quantum Fluctu-
ation Theorems for Heat Exchange, Phys. Rev. Lett. 92, 230602
(2004).

[27] Y. Utsumi, D. S. Golubev, M. Marthaler, K. Saito, T. Fujisawa,
and G. Schön, Bidirectional single-electron counting and the
fluctuation theorem, Phys. Rev. B 81, 125331 (2010).
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