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We demonstrate the large-scale effects of the interplay between shape and hard-core interactions in a system
with left- and right-pointing arrowheads <> on a line, with reorientation dynamics. This interplay leads to the
formation of two types of domain walls, >< (A) and <> (B). The correlation length in the equilibrium state
diverges exponentially with increasing arrowhead density, with an ordered state of like orientations arising in the
limit. In this high-density limit, the A domain walls diffuse, while the B walls are static. In time, the approach
to the ordered state is described by a coarsening process governed by the kinetics of domain-wall annihilation
A + B → 0, quite different from the A + A → 0 kinetics pertinent to the Glauber-Ising model. The survival
probability of a finite set of walls is shown to decay exponentially with time, in contrast to the power-law decay
known for A + A → 0. In the thermodynamic limit with a finite density of walls, coarsening as a function of
time t is studied by simulation. While the number of walls falls as t− 1

2 , the fraction of persistent arrowheads
decays as t−θ where θ is close to 1

4 , quite different from the Ising value. The global persistence too has θ = 1
4 , as

follows from a heuristic argument. In a generalization where the B walls diffuse slowly, θ varies continuously,
increasing with increasing diffusion constant.
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I. INTRODUCTION

One-dimensional (1D) systems of interacting particles or
spins show interesting collective effects when the system
approaches an ordered state as the temperature approaches 0
[1,2]. The static properties of such systems are dominated by
a diverging correlation length and generally well understood.
However, dynamic properties are more varied and intricate.
Of particular interest is the way in which domains of ordered
phases grow when the system is quenched from a disordered
state to an ordered one. The coarsening dynamics that ensues
can often be modeled through the kinetics of domain walls; a
well-known example is the Glauber-Ising chain, in which do-
main walls diffuse and annihilate upon contact, corresponding
to the kinetics of the reaction A + A → 0 [1,2].

In this paper we study a system of arrowheads on a
continuous 1D line, as depicted in Fig. 1. Arrowheads resemble
bent core or banana-shaped molecules, assemblies of which are
known to form ordered phases in higher dimensions [3–6]. Our
objective in studying the simpler 1D problem is to understand,
qualitatively and quantitatively, the elements that go into the
formation of large stacks of similarly oriented arrowheads.

These elements turn out to derive from a set of interlinked
themes: entropy-driven ordering, spin models with asymmetric
pairwise interaction, and domain-wall kinetics with alternating
diffusing and stationary walls (A + B → 0). As summarized
in the discussion below, this sequence leads to novel effects
in dynamics, both for a finite number of walls and for a finite
wall density in the thermodynamic limit.

Each zero-area arrowhead points right (>) or left (<) and
stochastically attempts to change its location (via diffusion)
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or orientation (by flipping), respecting a no-overlap constraint
all the while, as discussed in Sec. II. Since only hard-core
interactions operate (tantamount to the no-overlap constraint)
it is evident that purely entropic effects must be responsible for
driving the order. In equilibrium, this is brought out explicitly
by tracing over locations of arrowheads, thereby generating an
effective interaction between successive arrowheads, involving
their orientations (Sec. III). This technique has been used
successfully in the past to study 1D assemblies of interacting
particles [7,8]. In our case, interestingly, this interaction is
not symmetric under the interchange of the orientations of a
near-neighbor pair. A transfer matrix calculation then allows
the equation of state and correlation functions to be calculated.
Our model is closely related to the “chiral” Ising models in [9]
and [10], as discussed in more detail in Sec. II.

In the limit of high density, the degree of alignment is
large and there are long stretches of aligned arrowheads,
with successive stretches being separated by domain walls
comprising a pair of oppositely oriented arrowheads. A
significant outcome of the nonsymmetric interactions is that
there are two species of domain walls, namely, >< (denoted A)
and <> (denoted B), as illustrated in Fig. 1. In the high-density
case of primary interest to us, one species (A) performs a
random walk, while the other (B) is immobile, with reaction
kinetics A + B → 0. This has a crucial bearing on the
dynamics. This is already evident with a finite number of
walkers; as shown analytically in Sec. IV, the full survival
probability decays exponentially with time, in strong contrast
to the power-law decays that characterize A + A → 0 [11],
pertinent to relaxation in the Glauber-Ising model. Further,
during the approach to steady state (Sec. V), the density of
domain walls falls as ∼t−

1
2 as in the Ising case. Persistence

properties show greater variation. The persistent fraction of
arrowheads is found to decay as a power law ∼t−θ , with θ close
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FIG. 1. Arrowheads in one dimension. Oppositely oriented ar-
rowheads define distinct domain walls, >< (A) and <> (B), whose
kinetics governs the dynamics at high densities.

to 1
4 , in contrast to the exact value 3

8 for the Ising case [12–14].
The global persistence decays with the same power 1

4 , a result
which can be justified through theoretical arguments, as in the
Ising case [15].

Finally, upon allowing the B walls to diffuse, albeit more
slowly than the A’s (Sec. VI), a degree of nonuniversality is
revealed: the exponent θ is found to depend continuously on the
ratio of diffusion constants, even though the fraction of domain
walls continues to decay as ∼t−

1
2 . This is reminiscent of the

results in [9,10], where a continuous variation of exponents
was found as a function of the coupling constants, though in
different quantities.

II. MODEL

Our model consists of M arrowheads, each of length � on a
1D line of length L, with a hard-core constraint which implies
no overlap (Fig. 1). While L is taken to be of fixed value with
periodic boundary conditions when discussing dynamics, it
proves expedient to allow L to fluctuate in a constant-pressure
ensemble in order to derive static properties; in this case, the
number density ρ = M

〈L〉 and other thermodynamic quantities
are well defined in the thermodynamic limit. A microscopic
configuration C is specified by the set {xi,Si}, where xi is the
coordinate of the vertex of the ith arrowhead while Si = ±1
represents the orientation, with the positive sign corresponding
to > and the negative sign to <.

The full dynamics involves attempts to make either a spin
flip or a displacement of a randomly chosen arrowhead i, as
follows:

(i) it can attempt to flip about its vertex Si → S ′
i = −Si ;

(ii) it can attempt a displacement δ where δ is chosen with
uniform probability in the interval [xi − �,xi + �], where �

is a fixed length.
The attempted moves in (i) and (ii) are accepted only if

they do not lead to an overlap with other arrowheads and do
not lead to crossing arrowheads in case (ii). As discussed in
Sec. III, these moves respect detailed balance and hence lead
the system to an equilibrium state. This state is characterized by
a correlation length which diverges as ρ → ∞, approaching an
ordered state with like orientations (<<< . . . or >>> . . . ).

Since both arrowhead flip and displacement attempts are
involved in the dynamics, the time-dependent properties of
the system would be expected to depend on parameters which
govern these, both for autocorrelation functions at steady
state and for the dynamics of approach to steady state. Our
preliminary numerical studies indeed indicate that at finite

densities ρ, the observed dynamic decays depend on the
displacement range �.

In this paper, however, we are primarily interested in the
approach to the fully ordered state which is reached only in the
limit ρ → ∞. Accordingly, we retain only the reorientation
move, (i); the displacement move, (ii), is ineffective in this
limit. Hence the allowed dynamical moves for the central
member in a triplet of successive arrowheads are

><<→>>< at rate u/2,

>><→><< at rate u/2,

><>→>>> at rate u,

<><→<<< at rate u. (1)

Note that the triplets <<<, >>>, <>>, and <<> cannot
evolve in the high-density limit considered, owing to the no-
overlap constraint.

These rules have an important implication for interfaces
which separate ordered segments of similarly oriented ar-
rowheads. Evidently, the interfaces are of two types: (A)
. . . >><< . . . and (B) · · · <<>> . . . . While A interfaces
can evolve (and move in the process), B interfaces are static.
This distinction is ultimately responsible for the difference in
behavior in the coarsening dynamics vis-á-vis the Glauber-
Ising model, where both types of interfaces evolve and diffuse
at equal rates. In order to investigate the effects of allowing B

interfaces to diffuse, though more slowly than A interfaces, in
Sec. VI we allow configurations <>> and <<> to evolve,

<>>→<<> at rate u′/2,

<<>→<>> at rate u′/2, (2)

with u′ < u. Evidently, by varying the ratio u′/u between 0 and
1, we generate a family of models which interpolates between
the arrowhead model and the Ising model.

The dynamical evolution rules are closely related to those
considered by Kim et al. [9]. Those authors studied nonequilib-
rium Ising models with dynamics which they termed “chiral,”
namely, with different transition rates at (+,−) and (−,+)
kinks. Besides nonconserving single spin flips (analogous
to arrowhead reorientations), they allowed ASEP-like moves
which conserve spin; these have an important effect on the
dynamics, as discussed in subsequent sections.

III. EQUILIBRIUM STATIC PROPERTIES

A. Introduction

In this section, we consider the equilibrium properties of
the arrowhead model introduced in Sec. II and shown in Fig. 1.
Evidently the hard-core constraint between arrowheads plays
a crucial role in determining the set of allowed microscopic
configurations, i.e., the possible arrowhead vertex coordinates
and “spin” orientations {xi,Si} which specify each allowed
configuration C.

We first observe that the condition of detailed balance
W (C → C ′)Prob(C) = W (C ′ → C)Prob(C ′) is valid
provided Prob(C) is chosen to be equal for every allowed
configuration C. This is because an allowed arrowhead flip
Si → S ′

i occurs at the same rate as the reverse move, and this
is true also of every displacement move xi → xi + � which
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leads to an allowed configuration, and its reverse. Since every
allowed configuration has equal energy, correlations between
arrowheads develop purely from entropy. It is well known that
in systems with hard-core interactions, entropy can lead to a
tendency towards ordering [16]. Indeed, as we see below, this
tendency is present in our system as well and leads ultimately
to a diverging correlation length with increasing arrowhead
density.

As for several 1D systems with hard objects on a
line [8,17,18], our system of arrowheads can be solved exactly
by integrating over the coordinates {xi}, thereby generating
an effective interaction between nearest-neighbor spins. The
important point in our case is that this interaction is not
symmetric under the interchange of spins in a near-neighbor
pair of Ising spins. As discussed in Sec. II, our model is
closely related to the chiral Ising models discussed in [9,10],
which have a similar asymmetry (though no handedness
distinction). The equilibrium properties of the resulting spin
system can be obtained using a transfer matrix technique,
resulting in closed-form expressions for the equation of state
and correlation functions. We also study the extent of spatial
persistence in this system.

B. Equation of state

It is convenient to embody the hard-core constraint between
arrowheads by introducing an orientation-dependent potential
energy of interaction,

V++(xi+1 − xi) = V−−(xi+1 − xi) = V+−(xi+1 − xi)

= 0 if (xi+1 − xi) > 0,

V−+(xi+1 − xi) = ∞ if 0 < (xi+1 − xi) < 2�,

= 0 if (xi+1 − xi) � 2�. (3)

We work in a constant-pressure ensemble, where the
pressure P and temperature T ≡ 1/β are specified. The
coordinate x1 of the first particle is held fixed (though S1 can
flip), while all other xi can fluctuate, implying that the total
length of the system L = (xM − x1) can fluctuate as well. The
corresponding partition function is then

QM =
∑
{Sk}

M∏
k=2

∫
dxkexp

[
−β

M−1∑
i=1

{VSiSi+1 (xi+1 − xi)

+P (xi+1 − xi)}
]
. (4)

For a specified set of spin orientations Si it is straightfor-
ward to perform the integrals over xi sequentially over i, with
the result

QM =
∑
{Si }

M−1∏
i=1

w(Si,Si+1) (5)

where w(+,+)=w(−,−)=w(+,−) = 1/βP and w(−,+)=
exp(−2βP�)

βP
. In terms of the transfer operator W with matrix

elements w(Si,Si+1), we may write

QM =
∑

{S1,SM }
〈S1|WM−1|SM〉, (6)

which may readily be evaluated by diagonalizing W. Let us
define g = exp(−βP�). Then the eigenvalues λ± are given
by (1 ± g), with corresponding right eigenvectors |e±〉 and
left eigenvectors 〈e±|. The (unnormalized) entries of |e±〉 are
(1,±g), while those of 〈e±| are (g, ± 1).

We find

QM =
(

1

βP

)(M−1) (1 + g)2

2g
[(1 + g)M−1 − (1 − g)M−1].

(7)

In the limit of large M , we obtain

1

M
lnQM = ln

1

βP
+ ln(1 + g). (8)

Recalling that the average system length 〈L〉 = − ∂lnQM

∂βP
we

may find the number density ρ ≡ M
〈L〉 as a function of β and

P , yielding the equation of state,

1

ρ
= 1

βP
+ �

(1 + eβP�)
. (9)

The contribution to the equation of state coming from the
arrowhead configurations is embodied in the second term on
the right-hand side. This term is a correction to the ideal-gas
contribution 1/βP ; it arises from the hard-core interaction
between arrowheads. Interestingly, it is small at both high and
low values of βP�. When βP� is small, arrowheads are well
separated and their orientation is unimportant, so that they
approximate a free ideal gas. On the other hand, when βP� is
large, the large entropic cost of the pair sequence (−,+) makes
its occurrence exponentially unlikely. The vertex locations of
the remaining sequences of arrowheads are isomorphic to those
of an ideal gas of point particles. The rare occurrence of (−,+)
implies that (+,−) is equally rare, as these pair sequences must
alternate. Together, this implies that the system correlation
length must become very large as T → 0. This is verified by
direct calculation as discussed below.

C. Correlation function and spatial persistence

The two-point correlation function can be evaluated using
the transfer matrix formalism. With free boundary conditions,
we have

C(r) ≡ 〈SiSi+r〉
= Q−1

M

∑
{S1,SM }

〈S1|W i−1σ zW rσ zWM−i−r |SM〉, (10)

where σ z is the z Pauli matrix. C(r) can be evaluated
through a standard route. Assuming that i and M − i − r

are both of order M , we obtain C(r) = ( λ−
λ+

)r = ( 1−g

1+g
)r in the

thermodynamic limit M → ∞. Thus the correlation length ξ

is given by ξ = −1/(ln tanh βP�

2 ). In the dense packing limit
βP� → ∞, we obtain ξ ≈ 1

2eβP� ≈ 1
2eρ�.

It is also interesting to ask for the spatial persistence,
namely, the probability that the same value of the spin,
say +1, occurs unbroken over a stretch of r sites [19].
In terms of the projection operator n+ = (1 + σ z)/2, with
eigenvalues n+ = 0 or 1, this probability is given by Ppers(r) ≡
〈n+,in+,i+1 . . . n+,i+r−1〉 = λ−r

+ 〈e+|(n+W)r |e+〉, where the
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thermodynamic limit M → ∞ has been assumed. Given
the form of the operator n+W, the matrix element on the
right-hand side is found to be (1 + g)/2, independent of r .
Thus Ppers(r) decays exponentially, as ∼e−r/ζ , where ζ =
1/[ln(1 + e−βP l)]. In the dense packing limit βP� → ∞, we
obtain ζ ≈ eβP� ≈ eρ�. Thus in the limit of high density, both
the correlation length ξ and the persistence length ζ diverge
in similar ways, with prefactors differing by a factor of 2.
Recall that these “lengths” pertain to spin separations which
correspond to arrowhead labels, so they need to be divided by
the density in order to convert them to lengths on the line.

Finally we investigate the effect of interaction asymmetry
on the spatial separation of arrowheads. Suppose the orienta-
tions of the ith and (i + r)th arrowheads have been specified to
be S ′

i and S ′
i+r , and their mean separation is 〈Y (S ′

i ,S
′
i+r )〉. For

a given sequence {Sj } of intermediate spins, Y is the sum of
separations of successive pairs y(Sj ,Sj+1). From Eq. (3) it is
easy to see that y(+,+) = y(−,−) = y(+,−) = 1/βP while
y(−,+) = 1

βP
+ 2�. Thus

〈Y (S ′
i ,S

′
i+r )〉 = r

βP
+ 2�f (S ′

i ,S
′
i+r ). (11)

Here f (S ′
i ,S

′
i+r ) is the mean number of (−,+) pairs in the

stretch (i,i + r); it can be calculated using the transfer matrix
within the finite stretch, keeping track of each occurrence of
(−,+). The result is

f (−,+) = 1

2

(
1 + gr

(1 + g)r−1 + (1 − g)r−1

(1 + g)r − (1 − g)r

)
,

f (+,−) = 1

2

(
−1 + gr

(1 + g)r−1 + (1 − g)r−1

(1 + g)r − (1 − g)r

)
. (12)

The mean numbers of <> pairs differ by exactly 1 for
the two specifications of (S ′

i ,S
′
i+r ), implying that 〈Y (−,+)〉

exceeds 〈Y (+,−)〉 by 2�. This is a quantitative measure of the
effects of asymmetry in the interaction.

IV. DYNAMICS WITH N WALKERS

A. Domain walls, survival probability

In the 1D model being considered any possible configu-
ration is a sequence of domains each with all arrows in one
direction (< or >) bounded by domain walls >< or <>. The
dynamic moves are flips of arrows about their vertex, with no
overlap allowed between arrowheads. Allowed arrowhead flips
like >>< going to ><< can generate hopping of the domain
walls >< (hereafter called “walkers” or mobile A particles in
this section). Here we take the limit ρ → ∞ (corresponding
to T → 0 in the spin model), which makes any (isolated) one
of the other type (“walls” or B particles) immobile.

Further, since <>< can go to <<< (etc.) we have a process
which is a special form of A + B → 0 in which a walker
pair-annihilates with an otherwise fixed wall. The no-overlap
constraint prevents the annihilation of pairs of like particles.

Furthermore, the two types of domain walls/particles, A and
B, alternate and continue to do so even after any allowed pair
annihilation. But the surviving B’s are fixed. It is seen that the
general system dynamics is qualitatively different from that of
A + A → 0.

FIG. 2. Schematics for walkers.

In this section we investigate the survival probability for the
general case of N + 1 walls with N intervening walkers. The
specific aim is to obtain the probability QN,N+1 ({xk}, {ak};
{bj }) of survival to time t of all N walkers, k = 1 to N (with
initial positions ak) to positions xk , and of all walls, j = 1 to
N + 1 (fixed at bj ). This can be treated by an image method
of the type used for vicious walkers and related systems [11]
despite the very different dynamics resulting.

B. Image method

Figure 2(a) gives the simplest illustration of the image
method, for a single walker.

The thick black line represents a particular realization of
the path of a walker shown by the black circle (at its position x

at time t , increasing to the right and downwards, respectively).
Effects of an added fixed reflecting or absorbing wall, shown
by the vertical line, can be represented by an image walker,
shown by the open circle, together with its path, a reflection
(in the wall) of the original path.

This scheme is appropriate for walls of type <> in the
system being studied, which pair-annihilate with the walker.
For a single random walker with no wall the “free” probability
function (over all possible paths starting at x = a at t = 0) is

φ(x,a) = (4πt)−1/2exp[−(x − a)2/4t] (13)

(taking diffusion constant unity).
The corresponding probability of an image’s resulting from

a wall at b in the manner just described is Rb φ(x,a) =
φ(x,2b − a). The operation Rb corresponds to a sort of
reflection in the wall at x = b. Then (1 − Rb)φ vanishes at
x = b and is, up to that point, the appropriate probability for
obtaining the survival properties for the system of a single
walker with pair-annihilating wall at x = b.

Similarly, for a single walker between two such walls at
b1 and b2 an image method provides the survival probability
distribution function Q1,2(x,a; b1,b2). However, here the
character of the procedure (after the first stages) and the con-
sequences are very different from those in the trivial case just
described, and are representative of those in the general case.

To satisfy the necessary boundary conditions (vanishing
of Q1,2 at the walls) repeated application of the operations
(1 − Rb1 ) and (1 − Rb2 ) to the free distribution function φ(x,a)
is required. This gives rise to a proliferation of images whose
positions are periodically related at any time, including t = 0.

Figure 2(b) shows, for a particular realization, the paths,
and positions at a specific time t , of the walker and of its
images produced in this way. The black circle is the walker,
and the dashed and open circles are, respectively, its positive
and negative images (having contributions to Q1,2 of opposite
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signs, coming from the negative sign in the factors (1 − Rb1 )
and (1 − Rb2 ). Consequently, the survival probability for the
N = 1 case being considered is

Q1,2(x,a; b1,b2) =
∞∑

n=−∞
[φ(x + 2(b2 − b1)n,a)

−φ(2b1 − x + 2(b2 − b1)n,a)]. (14)

Any distribution μ(a) of initial positions a which gener-
alizes the free distribution function φ(x,a) to �(x; μ) =∫

da μ(a)φ(x,a) gets similarly proliferated, and superposition
allows us to include this in what follows, by replacing φ in
Eq. (14) with �.

Our discussion so far has not made apparent a crucially
important property of the survival probability for the case being
considered, namely, its exponential time decay. This property,
shared with generalizations (below) to unlimited numbers of
walkers, is a consequence of the walk’s confinement. The
exponential decay is most easily quantified using the Fourier
representation of Q1,2. The Fourier transform of φ(x,a) is
e−q2tCq , where Cq ∝ e−iqa .

It is easy to show that the nonvanishing Fourier components
of Q1,2 have discrete wave vectors q = {qn} = { nπ

b2−b1
}, where

n is any nonzero integer (corresponding to the period of the
image structure, allowing for its alternation). The resulting
form for Q1,2 is

Q1,2(x,a; b1,b2)

=
∞∑

n=1

2e−qn
2t [cosqn(a − x) − cosqn(x + a − 2b1)]. (15)

So at long times t � q1
−2 ≡ τ the survival probability

decays exponentially ∝ exp(−t/τ ) with the decay time τ =
( b2−b1

π
)2. This τ applies also for the generalized case having

distribution μ(a) of initial positions, but here the replacement
in (14) of φ by � takes (15) to a generalized form involving
the Fourier transform of μ(a).

C. General case of N walkers, N + 1 walls

The generalization of the above development to N + 1
fixed, periodically located, absorbing walls <> and N in-
tervening walkers >< can be treated in a similar fashion. This
is true both for walkers with specific initial positions and for
those with distributions of initial positions. For simplicity, we
give the development just for the first, simpler, case, which
generalizes trivially.

We treat N + 1 walls <> (denoted j = 1 to N + 1) stuck at
sites bj = 2(j − 1)b and N intervening walkers ><, position
variables xk , k = 1 to N , initially at sites ak = bk + dk , which
are distant dk and b − dk from the walls on their left and right,
respectively.

It can be verified that the image procedure used above to
treat the case N = 1 again closes for this case of general
N . However, here each walker k has its own image system
arising from the two adjacent fixed walls on either side of
it. Each such system is just like that for the case of a single
walker between two walls just discussed and, in particular, is
periodic with the same periodicity. So, up to the time of the
first walker annihilation, the probability of survival to time t

of all N walkers to positions xk , and of all N + 1 walls, is the
following product of factors for each walker:

QN,N+1({xk},{ak}; {b}) =
N∏

k=1

Q1,2(xk,ak; bk,bk+1). (16)

Here either of the two equivalent forms for Q1,2 [given
in (14) and (15)] can be used. It is easily verified (using either
form) that QN,N+1 vanishes for any xk equal to bk or bk+1

(walker at wall). Until the first such event it provides the
proper value for the survival probability distribution since all
walkers are then between “their” two walls. The correspond-
ing “survival-everywhere” probability Q̃N,N+1({ak};{bj }) is
obtained from (16) by integrating each xk over all possible
values (between walls).

The late-time dependence of both types of survival prob-
ability for general N is easily obtained from the product of
the forms (15) for the N = 1 case, which involves the same
discreteness of wave vectors, related by qn = nπ

b2−b1
to the wall

spacing. This again gives exponential decay at late times, the
same for the two probabilities, but now for general N the
product of N factors makes the decay time

[(b2 − b1)/π2]/N. (17)

Concerning early times, (16) shows, using (14), that then
each survival probability is dominated by the contribution from
the free-walk term in (14) unless any walker starts near a wall,
in which case the corresponding image term in (14) gives an
appreciable addition to the free-walk term after a time of order
d2

k or (b − dk)2. The dominant early-time term, needed below,
for the survival-everywhere probability for N walkers starting
midway between their walls is[

1− 1√
πt

exp(−b2/16t)

]N

. (18)

Among other quantities described in this paper, the an-
alytical predictions for the survival-everywhere probability
can be compared with the numerical results from simulation.
Simulations were carried out using an appropriate algorithm
for the no-arrow-overlap dynamics, i.e., with mobile walkers
and immobile walls, corresponding to the process A + B → 0
and also for the process A + A → 0. After the generation of
appropriate initial states, simulations were run up to times
long enough to exceed the expected (and actual) characteristic
times and finite cutoffs from finite size. Averaging over many
histories (∼105) was exploited. For both types of processes a
wide range of values of N and of wall separations was used.

In the first case, with the no-overlap constraint, each mobile
walker was initially taken to be midway between its fixed
confining walls (a = b/2). The results for this case exhibited in
Figs. 3 and 4 are all for the survival-everywhere probability of
all N + 1 walls and N walkers. Figures 3 and 4 both give clear
evidence of exponential decay after a time roughly comparable
to that, (2a/π )2/N , predicted by the theory.

The wide range of N values covered by the results in Fig. 3
allow an accurate estimate of the N dependence of the decay
time. The inset, showing log τ versus log N , gives exponent
0.94. Similarly, in Fig. 4 the wide range of a values used in
the log-log plot in the inset allows the exponent estimate 2.22.
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FIG. 3. Probability of all-walker survival for A + B → 0:
variation with N . Inset: τ versus N .

The exponents appear to be converging towards the theoretical
values (1 and 2) as the simulation runs get longer.

Figure 4 also exhibits, particularly for the largest a’s, the
type of early-time behavior theoretically predicted in (18). The
late exponential decay in Figs. 3 and 4 is in stark contrast to
the behavior in Fig. 5 for the A + A → 0 case.

Here the results are consistent at long times with power-law
decay, t−γ (N), where γ (N ) = N (N − 1)/4, as predicted by the
“vicious walkers” theory [11].

As just discussed, it has been found that for finite N in the
A + B → 0 process (I) the probability that all walkers survive
up to t falls decreases exponentially, i.e., much more rapidly
than (the power law) for the A + A → 0 (process II). However,
for persistence (see Sec. V B) the fraction of walkers surviving
decreases more slowly for process I than for process II.

Such observations raise general questions about possible
effects, including crossovers, of particular conditions consid-
ered and of things such as finite number versus finite density
of walkers. A particular condition which affects the decay
rate of the all-walker-survival probability QN . . . is the initial
gap distribution. With all gaps starting at the same value, b,
Eq. (18) gives Q decaying exponentially at rate ∼b−2. For the
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FIG. 4. Probability of all-walker survival for A + B → 0:
variation with initial spacing a. Inset: τ versus a.
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FIG. 5. Probability of all-walker survival for A + A → 0.
Dashed lines indicate the power-law decays predicted in Ref. [11].

same initial condition in process II the corresponding decay
starts similarly but the greater possibility of gaps increasing
allows a crossover to later power-law decay [11].

For persistence the late-time regime of interest is that where
a large fraction of the walkers has been annihilated, the b’s have
become large, and the rare survivors are of interest. All this
occurs well after the crossover just referred to, which allows
a less drastic diminution of the number of surviving walls in
II than in I. But simple qualitative arguments do not easily
explain the faster decay of unflipped arrowheads in II than in
I. Different initial gap distributions can lead to different or no
crossovers. For example, distributions giving weight to very
small gaps allow much smaller characteristic and crossover
times, and most initial distributions give rise to long-time
distributions which are invariant except for a common inflation
of gaps with time (∼t

1
2 ).

V. COARSENING AND PERSISTENCE

In this section, we discuss the dynamics of approach to
equilibrium in large systems. Every arrowhead configuration
has alternating A and B domain walls and the approach
to steady state involves a decrease in their number under
annihilation kinetics A + B → 0. We study the case in which
A walls diffuse while B walls are stationary, as appropriate
to the limit ρ → ∞; the effects of B-wall diffusion are the
subject of Sec. VI.

We monitor domain-wall densities and persistence proper-
ties of arrowheads as the system evolves towards equilibrium.
We use two types of initial conditions: (a) random—with
random placement of arrowheads, leading to random locations
of domain walls; and (b) periodic—with equally long alter-
nating stretches of . . . >>> . . . and . . . <<< . . ., implying
a periodic arrangement of domain walls. In either case, A

and B domain walls alternate in sequence. As we see, there
are some similarities to, and some marked differences from,
Glauber-Ising systems, whose dynamics is governed by the
single-species annihilation process A + A → 0.

Evidently, arrowhead kinematics leads to alternating A and
B walls in all configurations, including initial conditions. This
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is very different from the situation in several studies of A +
B → 0, where A and B particles are placed at random [20–24].
In the latter case, concentration fluctuations decay very slowly
and dominate the late-time dynamics. Our study is closer to
those in [25–28] as discussed in Sec. VI.

Numerical results are obtained using Monte Carlo sim-
ulations where the system size is typically L = 10 000 and
averaging is done over a few hundreds of histories.

A. Domain-wall density

As time passes, diffusing A walls annihilate with stationary
B’s. In Sec. IV we saw that, with a finite number of walls,
the all-walker survival probability decays exponentially with
time, with a decay time which varies inversely with the number
of walkers N . This time is vanishingly small in the present
context, where the number of walls is macroscopic. We focus,
to start with, on the wall density and how it decays with time.

Since the underlying dynamics of the mobile species is
purely diffusive, we expect that the result would be quali-
tatively similar to that for A + A → 0 in the Glauber-Ising
case. This is borne out by our numerical results which show
the decay of wall density for the two systems, with initial
conditions (a) and (b) in each case. The density follows a t−δ

decay, with δ = 1
2 in all cases. See Fig. 6.

This result agrees with that in [9], where it was found that
δ = 1

2 when the rate of the ASEP-like moves is set equal to 0.

B. Persistence

Persistence quantifies how much of particular properties
of the initial configuration survives without change up to time
t [12–14]. These properties can be either local (for example, the
orientation of individual arrowheads) or global (for instance,
the majority orientation of arrowheads).

In spin models, it is customary to monitor the fraction F (t)
of persistent spins, i.e., those which have not flipped up to time
t . Equivalently, F (t) can be thought of as the probability that a
given spin has not flipped. The persistence probability follows
a power-law decay, F (t) ∼ t−θ . A closed-form expression has
been obtained for θ for q-state Potts models on a 1D lattice
[13]; for the Ising model, the result is θ = 3

8 .

10
2

10
4

10
6

Monte  Carlo  time

10
-2

10
-1

1

P
er

si
st

en
t  

sp
in

  f
ra

ct
io

n

alternating, A+B ---> 0
random, A+B ---> 0
alternating, A+A ---> 0
random, A+A ---> 0

t
 -0.25

t
 -0.375

FIG. 7. Decay of persistence.

Our data for the persistent fraction F (t) in the arrowhead
problem are shown in Fig. 7 alongside the data for the Ising
model. It is evident that the decay exponent is substantially
different; we find that the value of θ is approximately 0.245,
intriguingly close to 1

4 . Note that the value of θ is independent
of the initial condition, (a) or (b).

The global persistence G(t) is defined as the fraction of
histories in which a global variable has not changed sign. An
appropriate global variable is the “order parameter,” A(t) =
A+(t) − A−(t), where A+(t) and A−(t) are, respectively, the
number of right- and left-pointing arrowheads. From our
numerical results (Fig. 8) we find G(t) ∼ t−θG , where the value
of θG is consistent with 1

4 , which agrees with the value for θG

in the Ising case.
For the Ising model, the result θG = 1

4 was derived in [15]
by observing that the scaled order parameter [analogous to
A(t)/

√
M] obeys random walk dynamics provided we redefine

the time variable to be τ = t2. The only input required for this
argument is that the density of surviving walkers decreases as
t−

1
2 . Since this is true in our case as well, the result θG = 1

4
also holds here.
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Since individual entities generally decay more rapidly than
global variables, we expect that the value of θ should be greater
than or equal to θG. Thus we surmise that the value of the site
persistence exponent is also 1

4 . In all other systems we are
aware of, θ > θG; this is the first instance where the equality
θ = θG seems to hold.

VI. EFFECTS OF B-WALL DIFFUSION

In order to investigate the universality of the results obtained
in Sec. V, we have studied the effects of letting the B walls
diffuse, by allowing the moves of Eq. (2) in addition to those of
Eq. (1). In the original arrowhead problem, movement of a B

wall would require a large enough gap to open up for it to occur
without violating the hard-core constraint; in the equilibrium
state, this would be extremely rare if the density is high. Thus
the moves considered [Eq. (2)] are best viewed as being put
in “by hand”; they would need a softening of the hard-core
constraint between arrowheads at B interfaces in order to
happen. Our motivation in studying such moves is purely
to investigate the theoretical question of universality with
respect to allowing B wall diffusion, motivated partly by the
importance of the question for the A + B → 0 problem, and
partly by the observations in [9], where the authors observed
a continuous variation of decay exponents as some rates were
changed in their model.

We first examined numerically the manner in which the
density of walls decays. We found that it follows ρ(t) ∼ t−δ ,
where the value of δ appears to remain fixed at 1

2 , as for the
arrowhead and Ising cases. The data are not displayed but fall
in between the two limiting cases shown in Fig. 6. This is in
contrast to the variation of δ observed in [9] when the rate of
the ASEP-like move in their model was varied.

Coming to the question of persistence, namely, the proba-
bility that a given spin has not flipped up to time t , we note that
the question may be posed in the context of a finite number
of walls, as considered in Sec. IV. In fact, the simplest case is
most illuminating: three walkers, with a diffusion constant D

for the outer two walkers and D′ for the central walker. The
survival problem can be solved exactly by a mapping to the
motion of a composite particle in a wedge-shaped domain [29].
The result is

θ = π

2cos−1 D′
D+D′

. (19)

The significant point is that θ depends explicitly on the ratio
D′/D. It is instructive to check limiting cases. If the central
particle is a stationary B particle surrounded by two A’s, we
obtain θ = 1, implying a faster decay than with a single A

particle (θ = 1
2 ). On the other hand, if the central particle is an

A surrounded by two B particles, we obtain θ = ∞, consistent
with the exponential decay found in Sec. IV.

To see whether this dependence of the power-law exponent
on the diffusion constants remains also for persistence prop-
erties in a thermodynamically large system, we numerically
studied the fraction of persistent spins F (t) as a function of
t and found a definite variation of the power-law exponent
θ as the ratio of diffusion constants u′/u is varied. The data
in Fig. 9 indicate a smooth variation of θ from about 0.25 in
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FIG. 9. Variation of power laws characterizing decay of persis-
tence with varying diffusion constants for B particles.

the arrowhead model (u′/u = 0) to 0.375 in the Ising model
(u′/u = 1).

However, the global persistence G(t) continues to show a
t−

1
4 decay as in the arrowhead and Ising cases. This is not

unexpected as, following the argument in Sec. V, the decay of
G(t) is related to the manner in which the density of domain
walls decays, and as we have seen above, this does not depend
on u′/u.

VII. CONCLUSION

In this paper we have studied a system of stochastically
reorienting arrowheads in one dimension. Our study of the
static properties and the dynamics of approach to the steady
state has touched on several issues, and we discuss our results
in that context. The equilibrium state of our system approaches
an orientationally ordered state as the density increases. The
origin of order is entropic, as follows from the fact that
arrowheads may never overlap, implying that every allowed
configuration is equally likely. For a fixed total length, it
is evident that the entropy of translation is largest in an
orientationally ordered state, as then there is no constraint
on the locations of arrowhead vertices other than that they
must maintain a sequence. This contribution to the entropy
dominates at high density; at moderate values of ρ, it must
compete with the configurational entropy of the locations
of interfaces. The spatial extent of the order is quantified
by the correlation length and the persistence length, and the
calculations in Sec. III show that both diverge as eρ as ρ → ∞.

In the high-density limit, understanding the dynamics of
approach to the ordered state is greatly facilitated by the
observation that there are two types, A (><) and B (<>),
of arrowhead interfaces obeying A + B → 0 dynamics. Our
study has a bearing on a couple of interconnected issues in
this two-species annihilation problem. In this problem, the
influence of initial conditions on long-time decays has long
been recognized. Initial conditions in which the sequence of
A’s and B’s is random give rise to long-lived concentration
fluctuations in the number of A and B particles, which in
turn give rise to multiple length scales and slow down the

012147-8



COARSENING AND PERSISTENCE IN A ONE- . . . PHYSICAL REVIEW E 95, 012147 (2017)

dynamics greatly [20]. By contrast, under initial conditions
in which the imbalance between A and B particle numbers
remains of the order of unity in every stretch, the two
species are well mixed, and the decay exponent δ = 1

2 . Recent
work [25] has shown that when alternation follows the pattern
AnBnAnBn . . . there are multiplicative logarithms for even
n. Such initial conditions have been studied in the context
of conserved lattice gas models, on identifying pairs of sites
with A and B particles [26–28]. In the arrowhead model,
even a random placement of arrowheads results in strict
alternation of A and B interfaces; thus our result δ = 1

2 (Sec. V)
with no evidence of logarithms is fully consistent with the
above.

Another important issue concerns the fact that in our
problem, the diffusion constants for A and B particles are not
equal; in fact the B particles do not diffuse at all in the limit of
infinite arrowhead density. How pertinent is this for long-time
decays of survival probabilities under A + B → 0 dynamics?
With a finite number N of walkers, we showed that the
all-walker survival probability decreases exponentially rapidly
in time, with the decay time being inversely proportional to
N . This contrasts strongly with the power-law decay with
power N (N − 1)/4 found with equal diffusion constants, as
appropriate for A + A → 0. In the thermodynamically large
system, we found that the persistence probability decreases
as a power law for both A + B → 0 and A + A → 0, but

importantly, the powers differ, being close to 1
4 in the former

case and 3
8 in the latter. We conclude with some comments

on universality. The studies in [9] on a generalized model
with ASEP-like moves together with annihilation indicate a
violation of universality, for example, in the power laws for
the domain-wall density, as the ASEP rates are changed. In the
reorienting arrowhead model, there is no ASEP move. We find
that upon varying the diffusion constant for B particles from
0 to the value for A particles, globally averaged properties,
such as the number of domain walls and global persistence,
remain universal. But more delicate properties such as single-
site persistence are found to exhibit a continuous variation of
power laws as the ratio of diffusion constants is varied. This
indicates a violation of universality, but at a weaker level than
in the studies in [9].
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