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Using Monte Carlo simulation methods in the grand-canonical ensemble, we have studied the phase behavior
of three-dimensional symmetric binary mixtures of Lennard-Jones particles. We have also elucidated the effects
of geometric and energetic nonadditivity on the phase behavior. Phase diagrams for several systems have been
evaluated. We have demonstrated that in completely miscible mixtures the geometrical nonadditivity (negative as
well as positive) stabilizes a liquid phase leading to a gradual increase of the critical temperature. The mechanism
leading to such behavior is different when the system shows negative and positive geometrical nonadditivity. In
the case of systems with negative energetic nonadditivity, which may exhibit demixing transition in the liquid
phase, their phase behavior is also strongly affected by the geometric non-additivity. The systems with negative
geometric nonadditivity have been demonstrated to show reentrant miscibility, while those with positive geometric
nonadditivity show enhanced tendency toward mixing at sufficiently high temperatures. We have evaluated phase
diagrams for several systems.
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I. INTRODUCTION

Binary mixtures are known to exhibit a complex phase
behavior [1–3]. Even a very simple model of symmetric
binary mixture (SBM) has been found to show demixing
transitions in the liquid and solid phases [3–6] and reentrant
miscibility [7,8]. One recalls that a symmetric mixture consists
of two identical components, A and B. The interaction between
the like particles, A-A and B-B, are the same, and only the A-B
interaction differs. Generally speaking, one can assume that the
pair interaction potential depends on two parameters. One of
them (ε) specifies the strength of interaction and the other (σ )
determines the range of the interaction. In binary mixtures,
one has to include the interactions between different pairs,
A-A, B-B, and A-B, resulting in six parameters specifying
the interactions: εAA, εAB , εBB , σAAσAB , and σBB . In additive
mixtures, one usually uses Berthelot mixing rules and assumes
that εAB = √

εAAεBB and σAB = (σAA + σBB)/2. In the case
of symmetrical mixtures, εAA = εBB and σAA = σBB , so the
additivity principle leads to a rather uninteresting case of an
ideal mixture. Therefore, one can assume that symmetrical
mixtures are nonadditive, so εAB and σAB can take on some
arbitrarily chosen values.

A vast majority of the previously published results for
SBMs [3,9–12] has been devoted to the understanding of
the demixing transition in the liquid phase resulting from
the weakening of the interaction strength between the unlike
particles, i.e., εAB < εAA, while σAB has been assumed to
be equal to σAA. It has been demonstrated that different phase
diagram topologies are possible [3,4]. In particular, theoretical
studies based on the mean-field and the Ginsburg-Landau
approaches as well as Monte Carlo simulation [3] have allowed
us to single out four types of phase diagrams within the
temperature and density regions over which only fluid phases
(vapor and liquids) are present. When the interactions in the
system are such that the liquid phase is mixed over the entire
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range of temperatures, the phase diagram is qualitatively the
same as in the case of one-component systems. Thus, the
gas-liquid coexistence terminates in the critical point. The
situation becomes more complex when the interaction between
the unlike particles is weaker than the interaction between the
like particles. In such cases, the liquid phase may undergo a
demixing transition. When εAB is only slightly lower than εAA,
the demixing transition occurs only at the temperatures below
the triple point, in the solid phase, while the liquid is mixed
over the entire range of temperatures between the triple point
and the critical point. On further lowering of εAB , the demixing
transition occurs in the liquid phase, and three different types
of phase diagram topologies may appear.

The first (cf. part a of Fig. 1 in Ref. [3]) occurs when the
vapor condenses into a demixed liquid only at temperatures
up to the critical end point, Tcep, located below the critical
point. At higher temperatures, the condensation leads to the
formation of a mixed liquid, which undergoes a continuous
demixing transition along a so-called λ line on the increase
of density. The λ line originates at the critical end point, at
which the critical liquids (A-rich and B-rich) coexist with a
noncritical vapor. On the gradual decrease of the interaction
strength between the unlike particles, the second case occurs.
The vapor condenses into the demixed fluid at the temperatures
up to the triple-point temperature, Ttr(v−ml−dl), at which the
vapor coexists with the mixed (ml) and the demixed (dl)
liquid phases (cf. part b of Fig. 1 in Ref. [3]). At the higher
temperatures, the vapor condenses into a mixed liquid, which
undergoes a demixing transition. This transition is of the
first order, as long as the temperature is lower than the
tricritical-point temperature, Ttrc, at which the mixed and two
demixed (A-rich and B-rich) liquid phases become critical.
At higher temperatures, the demixing transition is continuous
and takes place along the λ line. The vapor liquid coexistence
terminates at the critical point again. For the sufficiently
weak interaction between the unlike particles, another situation
occurs. The vapor condenses into the demixed liquid all along
the coexistence line, and this causes the λ line to intersect the
vapor liquid coexistence right at the critical point. Therefore,
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the critical point is replaced by the tricritial point, in which the
vapor and A-rich and B-rich liquid phases all become critical
(cf. part c of Fig. 1 in Ref. [3]).

The scenarios presented above may change considerably
when geometrical nonadditivity (σAB �= σAA) is taken into
account. In the systems with εAB = εAA, only the packing
effects matter, when σAB is varied. When σAB < σAA, the
formation of AB pairs is favored, and leads to a local ordering
that enhances the stability of the liquid with respect to the
ideal mixture. In the case when σAB > σAA, one expects the
pairs of the like particles to be preferentially formed and
observes clustering of the like particles in the liquid [13,14].
The isothermal-isobaric (NPT) Monte Carlo studies have
demonstrated [13,15] that, on the increase of σAB , the boiling
point of such mixtures increases. This suggests that the liquid
stability increases as well. However, the clustering of the
like particles may lead to a microphase separation when σAB

becomes large enough [14]. This phenomenon has also been
observed in nonadditive hard-sphere mixtures [16].

In the mixtures with εAB < εAA, geometrical nonadditivity
leads to important changes in the phases behavior of SBMs.
Our Monte Carlo study of two-dimensional SBMs [4,8] has
shown that geometrical nonadditivity considerably affects the
properties of the λ line. When σAB > σAA, the liquid density
along the λ line is nearly independent of temperature. Only the
point at which the λ line intersects the vapor-liquid boundary
changes with εAB (see Fig. 1 in Ref. [4]). In the case of
σAB < σAA, the location of the demixing transition strongly
depends on temperature. Therefore, it may either intersect the
liquid-solid coexistence in the critical end point (see Fig. 4 in
Ref. [4]) or lead to the appearance of closed-loop liquid-liquid
immiscibility (see Fig. 10 in Ref. [8]). The same phenomenon
was found by Almarza et al. [7] in thee-dimensional SBMs.

The goal of this paper is to discuss the interplay between
geometrical and energetic nonadditivity effects in a rather
systematic way. In particular, we discuss the changes in the
phase behavior of SBMs with negative (σAB < σAA) and posi-
tive (σAB > σAA) geometrical nonadditivity and with different
values of εAB � εAA. In this study, the discussion is confined to
the liquid-vapor transition and to the demixing phenomenon in
the liquid phase. Nevertheless, we also present the estimations
of the triple points for some of the systems considered in this
work. In the following Sec. II, we describe the model and
methods used. The Sec. III presents the results and discussion
concerning the behavior of systems characterized by different
parameters describing the interaction between the pairs of the
like and unlike particles. The final Sec. IV includes a short
summary and final remarks.

II. THE MODEL AND MONTE CARLO METHODS

We have considered the symmetrical mixtures consisting of
components A and B, which interact via the truncated (12,6)
Lennard-Jones potential

uij (r) =
{

4εij [(σij /r)12 − (σij /r)6] r � rmax

0 r > rmax
, (1)

where r is the distance between a pair of atoms and i and j mark
the species A and B. In the symmetrical mixtures, the potential
parameters describing interaction between the like particles

are the same, i.e., σAA = σBB = σ and εAA = εBB = ε. The
corresponding potential parameters for a pair of unlike atoms
are given by

σAB = sσ and εAB = eε, (2)

where s and e are constants.
The potential is cut at the distance of rmax = 3.0sσ , and

σ is taken as the unit of length, while ε is used as the unit of
energy. Thus, we use the reduced temperature, T ∗ = kT /ε, and
the reduced chemical potentials of both species, μ∗

i = μi/ε,
i = A, B. The potential energy is expressed in units of ε.

The Hamiltonian of the model reads

H(RA,RB) =
NA∑
i<j

uAA(rij ) +
NB∑
i<j

uBB(rij )

+
NA∑
i=1

NB∑
j=1

uAB(rij ) − μ∗
ANA − μ∗

BNB. (3)

In the above, RA and RB are multidimensional vectors rep-
resenting the positions of all atoms, rki

= (xk,i ,yk,i ,zk,i) of the
components k = A,B in the system [Ri = (r1i

,r2i
, . . . ,rNi

),
i = A or B].

In this work we have considered only the situation where
the chemical potentials of both species are the same (μ∗

A =
μ∗

B = μ∗), so the Hamiltonian (3) becomes

H(RA,RB) =
NA∑
i<j

uAA(rij ) +
NB∑
i<j

uBB(rij )

+
NA∑
i=1

NB∑
j=1

uAB(rij ) − μ∗N, (4)

where N = NA + NB .
We have considered four series of systems. The first series

(E1.0) involves the systems with e = 1.0 and different values
of s ∈ [0.6,1.4]. In this case, one expects a complete mixing
in both liquid and solid phases. The main aim of our study has
been to find out how the geometrical nonadditivity affects the
properties and structure of the dense phases. Then, we have
considered systems which are likely to exhibit a demixing
transition in the liquid phase and assume that e = 0.8 (series
E0.8), 0.7 (series E0.7), and 0.6 (series E0.6). In all these cases,
the parameter s was varied within the range between 0.6 and
1.4. The case with e = 0.9 has not been taken into account,
since we have not found any trace of a demixing transition in
the liquid phase.

The model has been studied using Monte Carlo simulation
methods in the grand-canonical ensemble [17–19]. Simula-
tions have been carried out using cubic cells of the size
L × L × L, with standard periodic boundary conditions. A
vast majority of calculations have been carried out assuming
that L = 10, but we have also used larger cells of L = 12
and 14.

The quantities recorded included the average numbers of
particles A (NA) and B (NB), the average potential energy (per
particle), 〈e∗

gg〉, and the radial distribution functions (rdfs),
gij (r), for ij = AA,AB, and BB. In order to locate the
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demixing transition, we have calculated the order parameter

m = (NA − NB)/(NA + NB) (5)

and its susceptibility

χm(L) = L2

kT
[〈m2〉 − 〈m〉2]. (6)

Moreover, we have also recorded the probability distri-
butions of the order parameter [p(m)] and the distributions
of total density [p(ρ)]. Calculations of these distribution
functions have been carried out using hyperparallel tempering
method [19] All distributions p(ρ) and p(m) reported in this
work have been normalized to unity.

Our calculations have been focused on the vapor-liquid part
of the phase diagrams. The transitions leading to the formation
of solid phases, either via the vapor-solid or the liquid-solid
transition, cannot be reliably studied using grand-canonical
Monte Carlo simulation. In the finite systems of constant
volume and periodic boundary conditions, the effects of
metastability are huge and hence it is not possible to estimate
the locations of phase transitions. Besides, the system size is
usually not compatible with the crystal structure, which also
makes the study of solid formation somewhat difficult.

III. RESULTS AND DISCUSSION

A. Series E1.0

The systems belonging to this series are not expected to
exhibit qualitatively different behavior when the parameter
s is varied. As already mentioned in the Introduction, the
changes in the properties of mixtures with a different s can
be attributed entirely to the packing effects. From the earlier
studies of Vlot et al. [20], it follows that the structure of solid
phases depends strongly on the parameter s. In the region
of s between 0.6 and 0.8, the regular cubic crystals of NaCl
structure should be formed on freezing. Then, for s = 0.9,
one can note the occurrence of the body centred cubic (bcc)
structure of the CsCl type. For s = 1.0 and 1.1, the face centred
cubic (fcc) mixed crystals are stable. For still larger s, the fcc
structure with the like particles arranged in alternate (111)
layers is expected to form. The behavior of liquid phases
formed by the systems considered here has also been studied
by Georgoulaki et al. [15] using Gibbs ensemble Monte Carlo
simulation and by Vlot et al. [13] using NPT Monte Carlo
simulation. However, those studies were carried out only at
very few thermodynamic points (determined by pressure and
temperature) and hence did not lead to the evaluation of full
phase diagrams.

Our simulations have allowed us to estimate the phase
diagrams for the systems with different s (see Fig. 1).
Figure 1(a) presents the density-temperature projections of
phase diagrams obtained for the systems with s = 0.6, 0.7, 0.8,
and 0.9. According to the results obtained by Vlot et al. [20,21],
the first three systems (s = 0.6, 0.7, and 0.8) are expected
to crystallize into the cubic crystal of the NaCl type. It has
also been shown that the Gibbs free energy of the solid
attains minimum when s = 0.7. It is thus expected that the
triple-point temperature reaches maximum for s = 0.7. From
our simulations it follows that the triple-point temperature
of the system with s = 0.6 is equal to Ttr = 0.83 ± 0.02,

for s = 0.7 it is higher and equal to 0.97 ± 0.02, while for
s = 0.8 it appears at about 0.68 ± 0.02. The calculations of
radial distribution functions have also confirmed that these
systems crystallize into the NaCl type structure. This has
been illustrated by the results given in the lower panel to
Fig. 2, which shows the radial distribution functions gAA(r) and
gAB(r) obtained for the system with s = 0.7 at T = 0.9 and
the chemical potential μ = −3.0. The locations of subsequent
maxima are consistent with the NaCl-type structure. The upper
panel of Fig. 2 shows the rdfs obtained at the temperature
T = 1.0, i.e., above the triple point. One should notice that
the locations of subsequent maxima show a large tendency
towards the appearance of AB pairs. This effect is larger
(smaller) when the parameter s becomes lower (higher).
Consequently, the density of the liquid gradually lowers with
the increase of parameter s. Figure 1(a) also shows that the
critical temperature gradually decreases, with the increase of
the parameter s from 0.6 to 1.0.

In the case of s = 0.9, our simulation has also shown that
the triple-point temperature seems to be located slightly below
0.65, and the crystal has the bcc structure of the same type,
as occurs for CsCl (see the lower panel of Fig. 3). The radial
distribution functions demonstrate also that the liquid does not
possess such a well-developed structure, as observed in the
systems with lower s.
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s = 0.8
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FIG. 1. Phase diagrams in the temperature-density plane for
the systems characterized by e = 1.0 and different values of the
parameter s, given in the figure. Panels (a) and (b) show the phase
diagrams for s < 1 and s � 1. The vertical dashed lines in (a) denote
the estimated locations of triple points for the systems with s = 0.6
and 0.7.
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FIG. 2. The radial distribution functions gAA(r) and gAB (r) for the
system with e = 1.0 and s = 0.7 at two temperatures, above (upper
panel) and below (lower panel) the triple point and at the chemical
potential μ = −3.0.

The case of s = 1.0 corresponds to the ideal mixture, and
its behavior should not differ from the one-component system.
In particular, we have found that the critical temperature
occurs at about Tc = 1.18, in agreement with the estimations
of Tc for Lennard-Jones fluid with the truncated interaction
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FIG. 3. The radial distribution functions gAA(r) and gAB (r) for the
system with e = 1.0 and s = 0.9 at two temperatures, above (upper
panel) and below (lower panel) the triple point and at the chemical
potential μ = −3.0.
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FIG. 4. The radial distribution functions gAA(r) and gAB (r) for
the systems with e = 1.0 and s = 1.3 and 1.4 at the temperatures,
above (upper panel) and below (lower panel) the freezing point and
at the chemical potential μ = −4.0.

potential [22]. This system is expected to crystallize into a
fcc structure [20,21], and its triple point is equal to about
Ttr = 0.694 [23].

When the parameter s increases above unity, we have found
that the critical temperature also gradually increases, as has
been shown in the phase diagrams depicted in Fig. 1(b). The
observed increase of the critical temperature is associated with
the gradual increase of the tendency to form aggregates con-
sisting of the like particles. The formation of such aggregates
has been observed in bulk SBMs by Vlot et al. [13], as well as in
two-dimensional SBMs [24,25]. In the range of the parameter
s considered here, the aggregation does not lead to a true
phase separation but only to the formation of clusters of the
like particles. The clustering is reflected in the behavior of
radial distribution functions (see Fig. 4), which demonstrates
that the formation of AB pairs is considerably suppressed in
the liquid as well as in the solid phase. Our calculations have
not allowed us to determine the structure of the solid phases
and to estimate the locations of the triple points. Nevertheless,
the results of Monte Carlo simulation suggest that the freezing
temperature gradually increases with s.

B. Series E0.8

The phase behavior of systems belonging to the second se-
ries (S0.8) considerably differs, since the interaction between
the unlike particles is weaker (e = 0.8), and one expects to
observe a demixing transition in the liquid phase. However,
the systems with sufficiently small values of s = 0.6, 0.7,
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FIG. 5. The phase diagram in the temperature-density (upper
panel) and temperature-chemical potential (lower panel) planes for
the system with e = 0.8 and s = 0.9. Filled circles correspond
to the vapor-liquid transition, filled squares (diamonds) represent
the continuous (discontinuous) transition between the demixed and
mixed liquid phases, while open circles and diamonds are the values of
the order parameter m in the demixed liquid phase along the vapor-
liquid and the demixed liquid-mixed liquid phase boundaries. The
dashed lines are the expected phase boundaries in the low-temperature
region. Ttr(v−dl−s) and Ttr(dl−ml−s) are the expected locations of triple
points.

and 0.8 have been found to form only a mixed liquid phase,
so their phase diagrams are qualitatively the same as those
found for the systems belonging to the series S1.0. This can
be attributed to the fact that for small values of the parameter
s, the formation of AB pairs is strongly favored. Thus, large
packing effects dominate over the energetic effects.

An increase of s to 0.9 diminishes the role of packing
effects, and the demixing transition has been found to occur
over a limited range of sufficiently low temperatures and
densities. The phase diagram for this system is given in Fig. 5.
It shows that at sufficiently low temperatures, below the critical
end point located at about Tcep = 0.91, the vapor condenses
into the demixed liquid. The open circles in the upper panel
of Fig. 5 show the changes of the order parameter m along the
phase boundary at the liquid side of vapor-liquid coexistence,
and it is quite evident that the liquid is mixed above Tcep. On the
increase of density, the demixed liquid undergoes a transition
into the mixed liquid of higher density. This transition is of
the first order at the temperatures lower than the tricritical
temperature, equal to about Ttrc = 0.68 ± 0.02, and becomes
continuous at the temperatures between Ttrc and Tcep. Open
diamonds in the upper panel of Fig. 5 give the values of the
order parameter m in the low-density demixed liquid phase at
the transition points.
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FIG. 6. The phase diagram in the temperature-density (upper
panel) and temperature-chemical potential (lower panel) planes for
the system with e = 0.8 and s = 1.0. Filled circles correspond to
the vapor-liquid transition and filled squares represent the continuous
transition between the demixed and mixed liquid phases.

When the temperature becomes low enough, the line of the
vapor-demixed liquid transition is bound to terminate at the
triple point, Ttr(v−dl−s), in which the demixed liquid (dl), vapor
(v), and solid (s) coexist. Also, the coexistence between the dl
and ml liquids has to terminate in the triple point, Ttr(dl−ml−s), in
which the two liquid phases coexist with a solid. This has been
marked by the dashed lines in the lower panel of Fig. 5. We have
to emphasize that these lines are only a guess, since we have not
been able to determine the locations of liquid-solid transition
points due to the extremely large metastability effects.

One can expect that the freezing of a demixed liquid,
occurring at the temperatures below Ttr(dl−ml−s), leads to the
formation of the demixed solid. On the other hand, the freezing
of a mixed liquid may produce a mixed or demixed solid. Thus,
it is likely that the solid undergoes the transition between
demixed and mixed states as the temperature increases.

The phase diagram topology changes completely, when the
parameter s increases to unity (see Fig. 6). In this case, the
vapor-liquid condensation leads to the formation of demixed
liquid at the temperatures up to the critical end point at
Tcep = 0.83. At higher temperatures, the continuous demixing
transition takes place in the liquid phase along the λ line.
Although we have estimated only a very few points along the
λ line, it seems quite possible that it may meet the liquid-solid
coexistence at the upper critical end point. This prediction
is based on the observation that the λ line exhibits a strong
dependence on temperature. We should recall that in the case
of two-dimensional SBMs, the systems with s = 1 were found
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FIG. 7. The phase diagram in the temperature-density (upper
panel) and temperature-chemical potential (lower panel) planes for
the system with e = 0.8 and s = 1.1. Filled circles correspond to
the vapor-liquid transition and filled squares represent the continuous
transition between the demixed and mixed liquid phases.

to exhibit the presence of the lower and upper critical end
points [5].

When the parameter s exceeds unity, one expects the
mixtures to show the enhanced tendency towards demixing
in the liquid phase. In the case of e = 1.0, the liquid phase in
systems with s > 1 exhibits agglomeration of the like particles.
When the interaction between the unlike particles becomes
weaker than the interaction between the like particles, as in
the presently discussed systems, the aggregation of the like
particles should be stronger and favor demixing. The situation
appears to be more complex, however. Already for s = 1.1,
the phase diagram topology (see Fig. 7) differs than in the case
of s = 1 (cf. Fig. 6). The vapor condenses into a mixed liquid,
even at quite low temperatures, and the vapor-liquid transition
terminates in a critical point located at Tc = 1.08 ± 0.01. The
liquid undergoes a continuous demixing transition but only at
sufficiently high densities. From our results it seems plausible
that the onset of the λ line occurs at the liquid side of the
liquid-solid coexistence. At this point, we should mention
again that our earlier study of two-dimensional SBMs [4,5]
has demonstrated that the magnitude of the parameter s has a
big influence on the behavior of λ line. In particular, it has been
shown that for sufficiently large s > 1, the density at which
the demixing transition takes place is nearly independent of
temperature. Moreover, in the systems that do not show a
sufficiently strong tendency towards demixing, the onset of the
λ line is shifted to lower temperatures and higher densities.
It is then possible that the λ line begins at the liquid-solid

coexistence [5]. It seems to be the case when e = 0.8 and
s = 1.1. Although we have not estimated the location of the
triple point and the liquid-solid coexistence, nevertheless the
obtained data have demonstrated that the triple point and the
onset of the λ line appear below T = 0.65.

Qualitatively similar behavior has been established for the
system with s = 1.2 but with the onset of the λ line shifted
to still higher temperatures. The simulation performed at T =
0.75 and 0.80 has shown that the mixed liquid freezes into the
also mixed solid. Thus, the onset of the demixing transition
has to occur at still higher temperatures. For still larger values
of s = 1.3 and 1.4, we have not found the demixing transition
at all. It seems that the onset of λ line is either located at
the liquid side of the liquid-solid coexistence at very high
temperatures or the demixing transition in the liquid does not
occur at all. Namely, it is possible that the demixing occurs
at the densities higher than the densities along the liquid side
of the liquid-solid coexistence. If that is the case, then the
demixing should occur in the solid phase only.

C. Series E0.7

The next series of systems, with e = 0.7, should exhibit
still higher tendency towards phase separation. From the
earlier studies of Wilding et al. [3], it is known that when
s = 1 the demixing transition accompanies the vapor-liquid
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FIG. 8. The phase diagram in the temperature-density (upper
panel) and temperature-chemical potential (lower panel) planes for
the system with e = 0.7 and s = 0.8. Filled circles correspond to
the vapor-liquid transition, and filled squares (diamonds) represent
the continuous (discontinuous) transition between the demixed and
mixed liquid phases. Open circles and diamonds are the values of the
order parameter m in the demixed liquid phase along the vapor-liquid
and the demixed liquid-mixed liquid phase boundaries.
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condensation up to the critical end-point temperature of about
Tcep = 0.96 [3]. At higher temperatures, the demixing transi-
tion is continuous and occurs along the λ line. Our calculations
have confirmed this behavior very well. In particular, the
critical point of the vapor-liquid condensation has been found
to be located at Tc = 1.045 ± 0.005, in good agreement with
the results given in Ref. [3]. Also, the estimated temperature
of the critical end point (Tcep = 0.96 ± 0.05) conforms with
the results of Wilding et al. [3].

The systems with large negative geometrical nonadditivity
(s = 0.6 and 0.7) have not been found to undergo a demixing
transition in the liquid phase, but this transition takes place
when s = 0.8. In this case, the phase diagram (see Fig. 8)
is qualitatively similar to the previously discussed case of
e = 0.8 and s = 0.9 (cf. Fig. 6). However, the critical end point
as well as the tricritical point exhibit a shift towards higher
temperatures, and Tcep = 1.125 and Ttrc = 0.99. Figure 9(a)
presents the probability distribution functions p(ρ) and p(m)
at the temperature T = 1.13 just below the critical point
(Tc ≈ 1.14) and shows that the liquid phase is not demixed.
On the other hand, the probability distribution p(m) recorded
at the vapor-liquid coexistence at a slightly lower temperature
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μ = −3.630

(a)
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μ = −3.52
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FIG. 9. The probability distribution functions p(m) and p(ρ) for
the system with e = 0.7 and s = 0.8. Panel (a) shows the p(m)
distributions at T = 1.12 and 1.13 along the vapor liquid coexistence
and the distribution p(ρ) at T = 1.13 (the solid line). Panel (b) shows
the distributions p(m) recorded at T = 0.95 at three different values
of the chemical potential below at and above the first-order demixing
transition in the liquid and the distribution p(ρ) at the coexistence
between the demixed and mixed liquids at T = 0.95 (the solid line).

of T = 1.12 [also shown in Fig. 9(a)] demonstrates that the
vapor condenses into the demixed liquid. Figure 9(b) shows
the probability distribution functions p(ρ) and p(m) recorded
at T = 0.95 in the region of the transition between the demixed
and mixed liquid phases. The density distribution is bimodal,
indicating that the demixing transition is of the first order.
One readily notes that the liquid at μ below the transition
point is demixed, while the high-density liquid at μ above the
transition point is mixed. The only qualitatively new feature
is the appearance of the triple point, located at Tv,ml,dl =
0.78 ± 0.01, at which the vapor coexists with mixed and
demixed liquids. At the temperatures below the triple point,
the vapor condenses into the mixed liquid. Large metastability
effects have not allowed, however, for the estimation of the
triple point at which the vapor, the mixed liquid, and the solid
phases coexist.

An increase of the parameter s to 0.9 changes the phase
behavior, and the phase diagram (see Fig. 10) is similar to
the one obtained for e = 0.8 and s = 0.9. The difference is
that the vapor to liquid condensation is accompanied by the
demixing transition at all temperatures from the triple point up
to the tricritical point, which replaces the critical point. On the
increase of density, the demixed liquid undergoes the transition
to the mixed liquid. At low temperatures, this transition starts at
the triple point [Ttr(dl−ml−s)], in which the demixed and mixed

0.6 0.7 0.8 0.9 1.0 1.1
T

-5.0

-4.0

-3.0

-2.0

-1.0

μ

e=0.7 s=0.9

0

0.2

0.4

0.6

0.8

1

ρ

FIG. 10. The phase diagram in the temperature-density (upper
panel) and temperature-chemical potential (lower panel) planes for
the system with e = 0.7 and s = 0.9. Filled circles correspond to
the vapor-liquid transition, and filled squares (diamonds) represent
the continuous (discontinuous) transition between the demixed and
mixed liquid phases. Open circles and diamonds are the values of the
order parameter m in the demixed liquid phase along the vapor-liquid
and the demixed liquid-mixed liquid phase boundaries.
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FIG. 11. The radial distribution functions gAA(r) and gAB (r) for
the system with e = 0.7 and s = 0.9 at two temperatures, above and
below the freezing point and at the chemical potential μ = −1.2 (a)
and −0.8 (b).

liquid phases coexist with the solid. The demixed-to-mixed
transition in the liquid is of the first order at the temperatures
up to the lower tricritical point, located at about Tl,trc = 0.76,
being the onset of the λ line. The λ line exhibits a loop and
terminates at the upper tricritical point at the temperature of
about Tu,trc = 1.075 ± 0.005. Although we have not been able
to locate the vapor-liquid-solid and the demixed liquid-mixed
liquid-solid triple points, nevertheless we could evaluate the
radial distribution functions for the solid phases formed due to
freezing of the demixed and mixed liquid phases. Figure 11(a)
shows the rdfs obtained at two different temperatures above
and below the freezing at μ = −1.2, i.e., in the region in which
the liquid is demixed. It appears that the solid phase is also
demixed. Therefore, the radial distribution functions gAB(r) do
not provide any meaningful information, since there are only
very few AB pairs. On the other hand, the freezing of the mixed
liquid results in a mixed solid, and the corresponding rdfs cal-
culated at μ = −0.8 are given in Fig. 11(b). From the locations
of subsequent maxima, we can state that the demixed solid has
the fcc structure, while the mixed solid has the bcc structure.

When the geometrical nonadditivity becomes positive
(s > 1), the phase behavior is different than in the previously
discussed case of e = 0.8. When s = 1.1, the system behaves
similarly as in the case of s = 1, i.e., the continuous demixing
occurs along the λ line originating at the critical end point
located at the vapor-liquid coexistence at the temperature of
about Tcep = 0.84. One should note that the critical end point
is considerably lower than in the case of s = 1 (Tcep = 0.96).
This demonstrates that entropic effects are strong and lower the
stability of the demixed phase. Our calculations suggest that
the critical point of the vapor-liquid condensation occurs at the
temperature Tc = 1.025 ± 0.01, i.e., slightly lower than in the
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FIG. 12. The phase diagram in the temperature-density (upper
panel) and temperature-chemical potential (lower panel) planes for
the system with e = 0.7 and s = 1.2. Filled circles correspond to
the vapor-liquid transition, and filled squares (diamonds) represent
the continuous (discontinuous) transition between the demixed and
mixed liquid phases.
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FIG. 13. The phase diagram in the temperature-density (upper
panels) and temperature-chemical potential (lower panels) planes
for the system with e = 0.6 and s = 0.7. Filled circles correspond
to the vapor-liquid transition, filled squares (diamonds) represent
the continuous (discontinuous) transition between the demixed and
mixed liquid phases, and filled triangles show the vapor-mixed solid
coexistence points. The vertical doted line in the left upper panel
shows the location of the triple point at which the vapor coexists with
the demixed and mixed liquid phases.
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FIG. 14. The probability distribution functions p(ρ) [(a) and (c)]
and p(m) [(b) and (d)] for the system with e = 0.6 and s = 0.7.

case of s = 1. Similarly to the case of e = 0.8 and s > 1, the
density along the λ line exhibits only a very weak dependence
on temperature. One expects that a further increase of the
parameter s should cause a shift of the onset of the demixing
transition to still lower temperatures. Indeed, when s = 1.2,
the onset of demixing transitions occurs at the temperature of
about 0.67 (see Fig. 12) but at the triple point rather than
at the critical end point. At the triple point, the demixed
and mixed liquids are in equilibrium with the vapor. Above
the triple point, the demixing transition is discontinuous up
to the tricritical point located at Ttrc = 1.03 ± 0.02. At still
higher temperatures, we find a λ line. A further increase of
the parameter s value to 1.3 and 1.4 causes the onset of the
demixing to occur also at the triple point but at the liquid
solid coexistence. Thus, at the triple point, the demixed and
mixed liquids coexist with a solid. In all these systems, the
vapor-mixed liquid coexistence terminates at the critical points
that occur at slightly increasing temperatures, when the value
of the parameter s increases from 1.1 to 1.4.

D. Series E0.6

The systems with e = 0.6 exhibit a very strong tendency
towards demixing. However, we have not found any trace of
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FIG. 15. The phase diagrams in the temperature-density [(a) and
(c)] and temperature-chemical potential [(b) and (d)] planes for the
systems with e = 0.6 and s = 0.8 [(a) and (b)] and e = 0.6 and
s = 0.9 [(c) and (d)]. Filled circles correspond to the vapor-liquid
transition, and filled squares (diamonds) represent the continuous
(discontinuous) transition between the demixed and mixed liquid
phases.

demixing in the liquid phase for s = 0.6. The vapor-liquid
coexistence starts at the triple point, at which both the
liquid and solid phases are mixed [Ttr(v−ml,ms) ≈ 0.80] and
ends at the critical point at Tc = 1.23 ± 0.01. The mixed
solid forms crystals of the NACl structure [20]. This has
been confirmed by the calculations of the radial distribution
functions. Although the emerging from the rdfs ordering is
not perfect, the locations of subsequent maxima are consistent
with the assumed structure.

When the parameter s = 0.7, the phase diagram topology
changes and becomes qualitatively the same as in the case
of e = 0.7 and s = 0.8. However, the demixing transition
occurs only over a very narrow range of temperatures, as
shown in Fig. 13. The presence of demixing transition
has been found due to calculations of probability distri-
bution functions p(ρ) and p(m), which are presented in
Fig. 14. Figures 14(a) and 14(b) demonstrate the first-order
demixing transition, which takes place between the triple-
point temperature Ttr(v−ml−dl) = 1.11 ± 0.005 and the lower
tricritical-point temperature Tl,trc = 1.135 ± 0.005. Then, in
Figs. 14(c) and 14(d), we have presented the examples of
the probability distribution functions characteristic of the
continuous demixing transition at the temperature above Tl,trc.
It should be also noted that the solid phase structure is the
same as in the case of s = 0.6, and the triple point occurs at
Ttr(v−ml−ms) = 0.90 ± 0.01.

The systems with s = 0.8 and 0.9 exhibit qualitatively
similar behavior as the system with e = 0.7 and s = 0.9, and
the corresponding phase diagrams are presented in Fig. 15.
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FIG. 16. The phase diagram in the temperature-density (upper
panel) and temperature-chemical potential (lower panel) planes for
the system with e = 0.6 and s = 1.0. Filled circles correspond to
the vapor-liquid transition and filled squares represent the continuous
transition between the mixed and demixed liquid phases.

There is, however, a qualitative difference in the phase behavior
of these two systems. Namely, in the case of s = 0.8, the solid
phase appears to be mixed and exhibits the NaCl structure.
On the other hand, the system with s = 0.9 has been found to
freeze into the demixed solid phase of the fcc structure.

A high tendency towards demixing causes, in the system
with s = 1.0, the vapor to condense into a demixed liquid at
all temperatures up to the tricritical point. The phase diagram
for this system has been presented in Fig. 16.

In the case of s � 1.1, the phase behavior seems to be
qualitatively the same as the one observed for e = 0.7 and
s = 1.2. However, when s = 1.1, we have not been able to
observe the first-order demixing transition. Therefore, the
temperature difference between the triple point, in which the
vapor coexists with the mixed and demixed liquid phases,
and the tricritical point is either very small or the demixing
transition starts in the critical end point. We have performed
some additional calculations for the systems with s = 1.05 and
1.15 and have not been able to find any trace of the first-order
demixing transition. The evaluated phase diagrams for the
systems characterized by different values of the parameter
s have allowed us to construct some sort of a global phase
diagram (see Fig. 17), which shows the changes of different
characteristic temperatures occurring alongside the changes of
the geometric nonadditivity changes. Taking into account the
results given in Fig. 17, we can assume that the systems with
s = 1.05, 1.1, and 1.15 do not exhibit the first-order demixing
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FIG. 17. The global phase diagram for the systems with e = 0.6
and different values of the parameter s. Here we have presented the
locations of critical points (Tc), the upper and lower tricritical points
(Tu,trc and Tl,trc), the critical end points (Tcep), different triple points
(Tt,v−dl−ml, Tt,v−dl−ms, Tt,v−dl−ds, Tt,v−ml−ms, Tt,v−ml−ds, and Tt,dl−ml−ms),
and the maximum temperature, at which the demixing transition
occurs in systems exhibiting the lower and upper tricritical points
(Tmax). The lines are only a guide to the eye.

transition at all, and the λ line starts at the critical end point.
Figure 17 also shows that in the systems with s ∈ [0.7,0.9], in
which the λ line exhibits a close loop, the range of temperatures
over which the demixing transition occurs rapidly increases,
with the parameter s approaching unity.

IV. SUMMARY AND FINAL REMARKS

We have performed extensive Monte Carlo simulations
for three-dimensional symmetrical mixtures characterized by
different parameters representing the interaction between the
unlike species. We have focused on the systems with e � 1.0,
and s ∈ [0.6,1.4].

The systems with e = 1.0 do not phase separate and
the evaluated phase diagrams have shown that the critical
temperature of the vapor-liquid condensation exhibits the
minimum, when s = 1.0. In the case of negative nonadditivity
(s < 1), the increase of the critical point with the decrease of
the parameter s can be attributed to growing tendency towards
the formation of AB pairs. This causes the liquid to exhibit a
partial short-ranged ordering, which increases the liquid phase
stability and leads to a higher density of the liquid phase. The
appearance of the short-ranged ordering is also enhanced by
the fact that the potential well of the AB interaction becomes
narrower, when the value of the parameter s becomes lower.
The systems with positive nonadditivity (s > 1) also show a
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gradual increase of the critical temperature with the increase
of the parameter s, but the mechanism leading to a higher
stability of the liquid phase differs. An increasing value of the
parameter s widens the potential well of the AB interactions so
rather large deviations from the optimum distance are possible
without much energy loss. Since the potential well of the AA
(BB) interaction is narrower, the formation of pairs of like
particles is favored. As a consequence, such systems show an
increasing tendency towards the clustering of the like particles
in the liquid phase, when the value of the parameter s increases.
This clustering allows the system to attain a larger density than
it would appear, if AB pairs were dominating.

When the interaction between A and B particles is suffi-
ciently lower than the interaction between a pair of the like
particles (e < 1), one can observe the demixing transition in
the liquid phase. We have demonstrated that the geometric
nonadditivity considerably influences the tendency towards
demixing. Taking into account the results obtained for the
systems with e = 1, one can expect that the lowering of s

should suppress the tendency towards demixing in the systems
with e < 1. The results presented in this work support that
prediction quite well. When e = 0.8, the systems with s < 0.9
do not show a demixing transition in the liquid at all. On
lowering e to 0.7, such limiting value of the parameter s

decreases to about 0.8, while in the case of e = 0.6, it remains
slightly below 0.7. We have demonstrated that the mixtures
with e < 1 and negative geometrical nonadditivity show a
rather complex phase behavior. In particular, it appears that
the demixing transition occurs only over a certain range of
temperatures between the triple-point temperature Ttr(v−ml−dl),
at which the vapor coexists with a mixed and demixed liquid
and the critical end point located at the liquid side of the

vapor-liquid coexistence, as it has been found for the systems
with e = 0.8 and s = 0.9 and with e = 0.7 and s = 0.8. It
may also happen that the λ line exhibits a close loop behavior
and terminates at the tricritical point which replaces the
vapor-liquid critical point. This has been found to be the case is
in several systems, e.g., characterized by e = 0.6 and s = 0.7,
0.8, or 0.9 as well as e = 0.7 and s = 0.9. In all these cases,
the demixed liquid of lower density undergoes a transition to
a denser mixed liquid phase on the increase of the chemical
potential.

On the other hand, the systems with the positive geometrical
nonadditivity (s > 1) might have been expected to show a
higher tendency towards demixing than the systems with
s = 1. However, our calculations have demonstrated that it is
not the case. For example, in the case of e = 0.8 and s = 1.1,
the vapor-liquid transition is not accompanied by the phase
separation at the temperatures down to the triple point. The λ

line starts at the critical end point located at the liquid side of
the liquid-solid coexistence. In the system with e = 0.7 and
s = 1.1, the onset of the λ line is located along the vapor-
liquid coexistence at the critical end point, but Tcep = 0.84
is considerably lower than Tcep = 0.96 of the system with
e = 0.7 and s = 1. The systems with s � 1.2 and e = 0.8, 0.7
and 0.6 do not show the demixing transition along the vapor-
liquid coexistence. The demixing transition occurs, but only
when the liquid density becomes high enough. Demixed liquid
is the phase of higher density due to the already-mentioned
properties of the interaction potentials for AA and AB
pairs.

In conclusion, we should mention that the present results
agree quite well with our earlier studies of the two-dimensional
symmetrical mixtures [4,5,8,24].
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