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Density of states from mode expansion of the self-dynamic structure factor of a liquid metal
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We show that by exploiting multi-Lorentzian fits of the self-dynamic structure factor at various wave vectors it
is possible to carefully perform the Q → 0 extrapolation required to determine the spectrum Z(ω) of the velocity
autocorrelation function of a liquid. The smooth Q dependence of the fit parameters makes their extrapolation
to Q = 0 a simple procedure from which Z(ω) becomes computable, with the great advantage of solving the
problems related to resolution broadening of either experimental or simulated self-spectra. Determination of
a single-particle property like the spectrum of the velocity autocorrelation function turns out to be crucial to
understanding the whole dynamics of the liquid. In fact, we demonstrate a clear link between the collective
mode frequencies and the shape of the frequency distribution Z(ω). In the specific case considered in this
work, i.e., liquid Au, analysis of Z(ω) revealed the presence, along with propagating sound waves, of lower
frequency modes that were not observed before by means of dynamic structure factor measurements. By exploiting
ab initio simulations for this liquid metal we could also calculate the transverse current-current correlation spectra
and clearly identify the transverse nature of the above mentioned less energetic modes. Evidence of propagating
transverse excitations has actually been reported in various works in the recent literature. However, in some
cases, like the present one, these modes are difficult to detect in density fluctuation spectra. We show here that
the analysis of the single-particle dynamics is able to unveil their presence in a very effective way. The properties
here shown to characterize Z(ω), and the information in it contained therefore allow us to identify it with the
density of states (DoS) of the liquid. We demonstrate that only nonhydrodynamic modes contribute to the DoS,
thus establishing its purely microscopic origin. Finally, as a by-product of this work, we provide our estimate of
the self-diffusion coefficient of liquid gold just above melting.
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I. INTRODUCTION

In the last two decades the interpretation of the dynamical
properties of simple and complex fluids has undergone an
enormous evolution. The paradigmatic case of water and
its puzzling dynamics, as revealed from the first spectro-
scopic and simulation studies comprehensively summarized in
Refs. [1,2], has opened the way to general progress in the field
and to a more complex picture about the longitudinal and shear
collective modes that can be sustained (and detected) in a real
liquid. In particular, a paper about water by Sampoli et al. [3]
was the first to suggest a richer dynamical behavior of liquids,
with transverse and longitudinal vibrational components both
present and visible in nominally “pure” longitudinal and
transverse current correlation spectra. At that time, and even
afterwards, the explanation about the apparently peculiar
dynamics of water and of other molecular liquids, with respect
to other simpler fluids, was often attempted in terms of the most
striking difference between water (or water-like liquids) and
noble gas or metallic liquids: hydrogen bonding. For instance,
the onset of shear wave propagation was initially associated
with the bending of three hydrogen-bonded molecules [3–6],
and, more recently, it has been related to the existence of
a structural relaxation process driven by the forming and
breaking of hydrogen bonds [2]. Thus, hydrogen bonding
has usually been invoked to account for the experimental
observation of a second low-frequency branch in the dispersion
curve of water, which appears as the counterpart of a transverse

acoustic excitation in a solid, as well as the high-frequency
one being typically (and more confidently) assigned to the
propagation of a longitudinal acoustic wave in the medium.

The presence of shear waves in simpler liquids, such as
liquid Rb [7] and Na and Ar [8,9], had, however, been hy-
pothesized and supported by molecular dynamics simulations
of the velocity autocorrelation function (VAF) well before
the direct experimental observation of transverse modes from
the total dynamic structure factor S(Q,ω) of water. Actually,
experimental access to the VAF frequency spectrum Z(ω) is
in principle possible through neutron incoherent scattering,
which is the only spectroscopic technique able to probe
the single-particle dynamic structure factor Sself (Q,ω) at the
inverse picosecond ω scale. Sself (Q,ω), in the limit of vanishing
wave vector Q → 0, is related to the VAF spectrum [10],
which has a few times been referred to as the density of states
(DoS) [11,12], generalizing a solid-state concept. However,
the physical implications of such an identification, exploited in
Ref. [12], were not, to our knowledge, pursued further in liquid
dynamics studies. It was very recently shown that the way in
which collective modes produce their signature on the Z(ω)
of a Lennard-Jones (LJ) fluid indeed permits interpretation of
the VAF spectrum as the global DoS of a liquid [13], with the
difference from the solid case that it has a nonzero ω = 0 value
due to diffusion. With this in mind, and identifying Z(ω) with
the liquid DoS, it is clear why the analysis of this quantity
becomes of invaluable help as well in investigations of the
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collective dynamics of condensed systems. However, Z(ω)
cannot be reliably determined from Sself (Q,ω) data affected
by resolution effects, as recognized in the experimental papers
devoted to such an attempt [11,14,16]. In particular, the Q → 0
extrapolation, to be performed at fixed ω, of spectra measured
at finite Q, becomes critical in the presence of a resolution
broadening that grows in importance as Q is decreased [since
the width of Sself (Q,ω) spectra reduces as Q2]. On the other
hand, it is very difficult to perform a deconvolution. Finally,
another problem discussed in Refs. [11,14–16] concerned the
appropriate functional form of the Q dependence to be used
for extrapolation. So, on the one hand, accurate extraction of
the VAF spectrum from Sself (Q,ω) determinations turned out
not to be a simple task at all. On the other hand, the interest in
this function was, at that time, focused on the detection of the
long-time tail phenomenon (see Ref. [17] for a recent review),
so that the great potential of Z(ω) determination for more
general dynamical considerations remained partly obscure and
was not pursued further.

In more recent years, discussion about the transverse
dynamics of liquids strongly came into the foreground due to
experiments revealing the existence of a second low-frequency
branch in the dispersion curve not only of associated liquids
[18], but also of several liquid metals, as probed by x rays
[19–23] and neutron [24] spectroscopy. In one case [24],
the nature of the modes was more confidently assigned by
comparison of the dispersion curve of the liquid with the DoS
of the system in the solid phase, which indeed showed maxima
related to transverse and longitudinal modes in agreement with
the features and frequencies of the two branches measured in
the molten metal. The existence and detectability of shear
modes in these systems have sometimes been attributed to
anisotropic interactions giving rise to particular structural
properties, like the presence of dimers and instantaneous cage
formation [19,22]. It is also believed that the specific structural
features of a metal in the crystalline phase, i.e., the more or
less pronounced anisotropy of the structure in which a system
tends to crystallize, might provide an indication about the
greater or lower visibility of a richer dynamical behavior in
the S(Q,ω) of liquids. In this respect, liquid gold (fcc in the
solid phase) might be expected to show a simpler dynamics,
at the level of S(Q,ω), than liquid zinc (hcp in the solid phase
and with an anomalous c/a ratio) [24]. However, this was not
the case of liquid sodium, which, despite the rather simple
crystal structure (bcc in the solid phase), was claimed to show
shear modes directly in the x-ray spectra [20,21].

Indeed, our study of the dynamics of liquid gold [25]
at a temperature just above melting (T = 1373 K) at room
pressure, performed through the combined analysis of scat-
tering data collected at the neutron Brillouin spectrometer
BRISP (Institut Laue Langevin, Grenoble) [26] and ab initio
simulation results for the dynamic structure factor S(Q,ω),
shows a rather familiar behavior, with a single acoustic mode
perfectly accounting for the inelastic part of the spectrum,
and with a dispersion curve clearly longitudinal in nature.
The viscoelastic analysis (see Ref. [27] for a review) of the
simulated S(Q,ω) provided excellent fits, and later attempts
to include a second possible inelastic mode in the fit function
gave a worse description of the spectra. In addition, a deeper
statistical Bayesian analysis of the experimental data set

recently confirmed that the presence of a second inelastic mode
is not justified on a statistical basis within the accuracy of the
available S(Q,ω) data [28]. These findings are, however, not
conclusive about the absence of transverse modes in liquid
gold because several effects, for instance, a too low intensity,
might hinder their direct detection. Access to the DoS of the
liquid would therefore be extremely useful to better probe
the vibrational dynamics in cases like the one of liquid gold
and could become a powerful method to establish whether the
presence of shear modes is a more general feature of liquids.

Here we show that this is indeed possible by taking
advantage of the progresses made both in the theory of
correlation functions of many-body systems [29–31] and in
computing power, the latter allowing, at present, ab initio
simulations of reasonable accuracy. It is important to stress,
however, that the case of gold is taken here merely as an
example, albeit a significant one, and that the method we
propose in no way requires the use of simulated data, as done
in this work to test our procedure, but opens instead a main
route towards a successful experimental determination of the
DoS of a liquid.

II. THEORETICAL CONSIDERATIONS

As shown in recent papers [29–31], the functionality of time
correlation functions is established on a solid theoretical basis.
The theory states that any time correlation function is exactly
represented by an infinite series of exponentials of generally
complex argument. In formulas, given a normalized autocor-
relation function b(t) of a classical system, its representation
at t � 0 is

b(t) = 〈B(0)B(t)〉
〈B2〉 =

∞∑
k=1

Ike
zkt , (1)

where Ik and zk are amplitude and complex frequency,
respectively, of the kth mode. When Ik and zk are complex
quantities, both the corresponding mode and its conjugate
(Ik+1 = I ∗

k , zk+1 = z∗
k) are present and, summed together,

describe an exponentially damped oscillation. When Ik and
zk are real the mode represents instead a pure exponential
decay. For all modes Rezk is negative, thus the damping is to
be identified with −Rezk .

The spectrum of b(t), defined as its Fourier transform (FT)
b(ω) = 1

2π

∫ ∞
−∞ b(t)e−iωt dt , is given by

b(ω) =
∞∑

k=1

bk(ω) =
∞∑

k=1

1

π
Re

Ik

iω − zk

, (2)

where bk(ω) is a generalized Lorentzian line. If Ik and zk are
real, then bk(ω) is a true Lorentzian:

bk(ω) = Ik

1

π

(−zk)

ω2 + z2
k

. (3)

If Ik and zk are complex, then the corresponding mode (k) and
its conjugate (k + 1) sum together to give a pair of distorted
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inelastic Lorentzians:

bk(ω) + bk+1(ω)

= 1

π
Re

[
Ik

iω − zk

+ I ∗
k

iω − z∗
k

]

= I ′
k

π

[−z′
k + I ′′

k /I ′
k(ω − z′′

k )

(ω − z′′
k )2 + (z′

k)2
+ −z′

k − I ′′
k /I ′

k(ω + z′′
k )

(ω + z′′
k )2 + (z′

k)2

]
,

(4)

where the prime and double prime are used to indicate the
real and imaginary parts of the complex quantities. We have
adopted here the following convention: if a mode has zk =
−|z′

k| + i|z′′
k |, then its amplitude is written as Ik = I ′

k + iI ′′
k

where I ′
k and I ′′

k have no restriction in sign. Correspondingly,
z∗
k = −|z′

k| − i|z′′
k | and I ∗

k = I ′
k − iI ′′

k .
Exploiting the relation between the p − th time derivative

of b(t) in t = 0 and the pth frequency moment 〈ωp〉 of the
spectrum b(ω), a set of sum rules can be defined as

∞∑
k=1

Ikz
p

k = ip〈ωp〉. (5)

Since we are presently considering a classical system, for
which autocorrelations are even functions of time, all odd
frequency moments are known and equal to zero. Moreover,
with b(t) normalized to unity at t = 0, the p = 0 sum rule is∑∞

k=1 Ik = 1.
An extremely simple result, but of great importance for the

next determination of the liquid DoS, is the one regarding the
correlation function related to the second time derivative of
b(t), that is, the correlation

c(t) = 〈Ḃ(0)Ḃ(t)〉
〈B2〉 = −b̈(t) (6)

whose spectrum is c(ω) = ω2b(ω).
However, direct differentiation of b(t) gives, for t � 0, and

according to Eq. (1)

c(t) =
∞∑

k=1

(−Ikz
2
k

)
ezkt , (7)

so that its spectrum can also be written as

c(ω) =
∞∑

k=1

1

π
Re

(−Ikz
2
k

)
iω − zk

. (8)

Therefore, from Eqs. (2) and (8), it is seen that

c(ω) = ω2
∞∑

k=1

1

π
Re

Ik

iω − zk

=
∞∑

k=1

1

π
Re

(−Ikz
2
k

)
iω − zk

. (9)

Note that the last equality in Eq. (9) is a straightforward
algebraic identity, as it can be seen by taking the differ-
ence between the two sides of the equation, and writing
ω2 + z2

k as (iω − zk)(−iω − zk). The first factor cancels out
the denominator, leaving (1/π )Re

∑∞
k=1 Ik(−iω − zk), which

can be written as (1/π )Re[ − iω(
∑∞

k=1 Ik) − (
∑∞

k=1 Ikzk)].
The last expression equals zero due to the sum rules of Eq. (5)
with p = 0,1.

Despite its simplicity, such a relation carries the important
meaning that the autocorrelation function of a dynamical

variable B(t) and that of its derivatives are characterized by
the same time decays or complex frequencies and therefore
describe essentially the same dynamics. The same generalized
Lorentzians describe the spectra b(ω) and c(ω), with only
different amplitudes, where those of c(ω) are readily obtained
by multiplying the amplitudes of b(ω) by the negative of the
squared “generalized half-width” zk (either real or complex).

While the multiexponential expansion [Eq. (1)] applies
to any correlation function, and the corresponding multi-
Lorentzian representation [Eq. (2)] describes the respective
spectrum, the result expressed by Eq. (8) is of particular
importance in those cases in which two physically mean-
ingful autocorrelation functions are linked by a double time
differentiation. A well-known example is the case of the
intermediate scattering function F (Q,t) and the longitudinal
current autocorrelation CL(Q,t) [10]. Here, however, we are
concerned with the self-intermediate scattering function,

Fself(Q,t) = 〈e−iQ·R(0)eiQ·R(t)〉, (10)

where R(t) is the position of any tagged particle, and with the
VAF:

Z(t) = 〈v(0) · v(t)〉, (11)

where v(t) is the velocity of one particle at time t , and 〈...〉
includes an average over all particles. By performing a double
differentiation of Eq. (10) and exploiting the isotropy of a
liquid, one obtains the exact result

Z(t) = lim
Q→0

[
− 3

Q2
F̈self (Q,t)

]
(12)

[see Eq. (1.54) of Ref. [10]], which relates Z(t) to the
second time derivative of Fself(Q,t). Correspondingly, Fourier
transformation of Eq. (12) provides the link between the
spectrum of the VAF and the self-part Sself (Q,ω) of the
dynamic structure factor. In Sec. III we will exploit this result
and the direct connection that Eq. (9) therefore establishes
between their respective multi-Lorentzian expansions.

The exponential mode expansion method is to be applied
by a suitable truncation of the infinite series depending on
the extension and accuracy of available data, as discussed
in Refs. [13,17]. This was successfully done in the time
domain to interpret the dynamical behavior of a Lennard-
Jones fluid at various densities and temperatures [13,17].
In all analyzed cases it was shown that a limited number
of modes was required to achieve an excellent description
of the simulated VAF, with a suitable number of obeyed
moment sum rules. Here we show that an identical situation
is found in the frequency domain, and by considering the
spectrum (Sself (Q,ω)) of a different autocorrelation function
(Fself (Q,t)).

III. METHODOLOGY AND RESULTS

Being interested here in the determination of the DoS of
a liquid starting from self-spectra, we investigated the case
of liquid Au, for which ab initio simulations of Sself (Q,ω)
were available to apply the previous concepts. Stored particle
configurations also allowed us to directly evaluate the VAF of
liquid gold, providing in this way the basis of a consistency
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FIG. 1. Self-dynamic structure factor of liquid Au obtained by
ab initio simulations at the Q values reported in the legend. Spectral
intensities at large ω grow monotonically with Q.

check between the two possible routes towards Z(ω). Details
about the simulations are the same as those given in Ref. [25].

Figure 1 shows the gold self-spectra at some example Q

values of the simulations. The use of a semilogarithmic scale
immediately highlights the presence of at least one shoulder
located at ω � 30 ps−1, which is also found at all investigated
Q values.

Despite this rather surprising result for the shape of
Sself (Q,ω), usually not investigated in such a wide ω range, it
will be clear in the following that these shoulders are genuine
features of the spectra which are approximately positioned
at the same frequency where maxima in the longitudinal
dispersion curve take place [see Fig. 7 in Ref. [25]]. This
preliminary observation will find an explanation in the next
discussion of the DoS; however, it is useful to anticipate that
the spectral features of Sself (Q,ω) at large ω are strictly linked
to those of the DoS.

In order to illustrate the relation between the DoS and
Sself (Q,ω), it is useful to introduce ZE(Q,ω), defined as

ZE(Q,ω) = 3ω2

Q2
Sself (Q,ω), (13)

the Q → 0 limit of which is the sought DoS according to the
Fourier transform of Eq. (12), also known as Egelstaff formula
(indicated by the subscript E) [32]:

ZE(ω) = lim
Q→0

ZE(Q,ω) = lim
Q→0

3ω2

Q2
Sself (Q,ω). (14)

However, the above definition of ZE(ω) hides a discontinu-
ity in ω = 0, since different results are obtained for ZE(ω = 0)
depending on the order used to perform the Q → 0 and ω → 0
limits in Eq. (14) [14]. In particular, it is only by performing the
Q → 0 limit before the ω → 0 one that Eq. (14) provides the
correct zero-frequency value Z(0) = 3Ds/π , with Ds the self-
diffusion coefficient. This value is obtained straightforwardly
from the Green-Kubo relation [10] Ds = (1/3)

∫ ∞
0 dt Z(t) and

considering that
∫ ∞

0 dtZ(t) = πZ(ω = 0). By recalling that
in the hydrodynamic Q → 0 regime Sself (Q,ω) reduces to the

one-Lorentzian spectrum predicted by Fick’s law of simple
diffusion:

Sself (Q → 0,ω) = 1

π

DsQ
2

ω2 + D2
s Q

4
, (15)

it is seen that by performing the limits in the reverse order one
obtains the wrong result ZE(ω = 0) = 0.

Morkel and Gronemeyer [14] have shown that the patho-
logical behavior of ZE(ω) in ω = 0 can be corrected, and the
quoted discontinuity removed, by replacing ZE(Q,ω) with

Z(Q,ω) = 3

Q2
Sself (Q,ω)

(
ω2 + D2

s Q
4
)
, (16)

which is continuous also in the origin (Q = 0 and ω = 0) and
provides Z(ω) as

Z(ω) = lim
Q→0

Z(Q,ω). (17)

Note that the above redefinition makes it correspond to the
VAF spectrum as well. In fact, Eq. (16) descends from the
FT of

Z(Q,t) = − 3

Q2
F̈self(Q,t) + 3D2

s Q
2Fself (Q,t), (18)

where in the Q → 0 limit the second term vanishes. Combi-
nation of Eqs. (16) and (17) and analysis of the Sself (Q,ω)
spectra thus allows to determine the DoS as described in the
next subsections.

A. Q behavior of the spectral components of Sself ( Q,ω)

We used the multi-Lorentzian expansion [Eq. (2)] of
Sself (Q,ω),

Sself (Q,ω) =
∞∑

k=1

1

π
Re

Ik(Q)

iω − zk(Q)
, (19)

in order to find, through a fitting procedure, the ampli-
tudes Ik(Q) and complex frequencies zk(Q) of the modes
contributing to the spectra. The convolution of the fitted
model with the resolution function (which is known from the
simulation method or from the instrumental setup in the case
of experimental data) is a very effective way to get rid of
any broadening and to obtain results free of resolution effects.
An excellent representation of the Au self-spectra was actually
obtained by considering six modes: two real modes (labeled as
R1 and R2) and four complex modes (indicated as C1 pair and
C2 pair), the sum of which was forced to obey the zeroth, first,
third, and fifth frequency moment sum rules. These constraints
ensure finite even moments of Sself (Q,ω) up to the sixth one,
with the resulting second moment checked a posteriori to
perfectly agree with the theoretical value kBT Q2/M [10],
with kB the Boltzmann constant, T the temperature, and M

the atomic mass of gold.
Figure 2 shows the very good performance of the fitted

model at two Q values (the second close to Qp, the position
of the main maximum in the static structure factor S(Q)). The
various components of the global fit function are also plotted
to demonstrate the impossibility to reproduce the shape of the
self-spectrum with real modes only.

In order to construct Z(ω) via Eqs. (16) and (17), an
analysis of the Q dependence of the various parameters
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FIG. 2. Self-dynamic structure factor of liquid Au (black circles)
at two Q values. The real (dashed blue and dotted orange curves) and
complex (solid magenta and dash-dotted green curves) components
that give rise to the overall fit curve (red solid curve) are shown along
with the simulation data on a semilogarithmic scale. Note that the
high-frequency negative wings of the complex pairs cannot appear in
the plot.

and a final Q → 0 extrapolation of all of them is required.
As Fig. 3 shows, the real and complex eigenfrequencies
zk(Q) and amplitudes Ik(Q) have all very smooth trends
that enable a reliable Q → 0 extrapolation by means of
polynomials. However, before commenting on an appropriate
form for such polynomials, several useful observations are
worth anticipating by looking at Fig. 3. In particular, in
compliance with the exact hydrodynamic limit, only one mode
(R1) is seen from Fig. 3(d) to survive in Sself (Q,ω) as Q → 0,
since the amplitudes Ik(Q) of all other modes in Figs. 3(d)–3(f)
vanish. Consistently, also the damping −zR1 can be recognized
at glance to follow the parabolic behavior typical of Fick’s
simple diffusion, which we find to hold up to the rather high

value Q � 18 nm−1. Thus, in Fig. 2 R1 can be confidently
identified with the pure Lorentzian line predicted by Fick’s law.

The other real component (R2), necessary, together with R1,
to properly describe the central peak of Sself (Q,ω), displays a
nonhydrodynamic behavior witnessed by the almost constant
width and by an amplitude that grows with Q to the detriment
of the R1 one. It is useful to compare the decay time constant
τR2 = −1/zR2 with the Enskog mean collision time τE of liquid
gold at the number density of melting ρ = 53.03 nm−3:

τE = 1

4ρσ 2g(σ )

√
M

πkBT
, (20)

with σ the hard spheres (HS) diameter for liquid gold at melting
[33] and g(σ ) the radial distribution function at contact, taken
from the Carnahan-Starling HS equation of state as [34]

g(σ ) = 1 − πρσ 3/12

(1 − πρσ 3/6)3
. (21)

The result for τE turns out to be 0.03 ps, that is approx-
imately 10 times smaller than τR2. This classifies R2 as a
rather slow relaxation process that involves quite a number
of collisions, but which is, even so, much faster than the
hydrodynamic mode R1, for which τR1 = −1/zR1 ≈ 2 ps at
our highest Q.

The complex contribution C2 is seen to account for the pre-
viously commented inelastic feature in Sself (Q,ω) (see Fig. 1),
with a frequency in very close agreement with the maximum
of the observed dispersion [25] of purely longitudinal prop-
agating sound waves. A similar identification was recently
fully justified by a multiexponential analysis of the VAF and
its spectra for a LJ high-density fluid [13]. This means that
self-correlation functions clearly carry the fingerprints of the
underlying collective dynamics, and that these are reflected by
the need of including at least one complex mode in the model if
a proper description of self-spectra is to be obtained. However,
the physical origin of the other complex component (C1) and
of the nonhydrodynamic real mode (R2) will be clarified after
the next determination of Z(ω) (see Sec. IV).

The self-intermediate scattering function Fself(Q,t) of clas-
sical systems is known [35] to be a function of Q2, and Fourier
transformation to Sself (Q,ω) does not alter this property. This
suggests that the low-Q dependence of Ik(Q) and zk(Q) is
properly described by Q2 polynomials of the general form
a + bQ2 + cQ4 + · · · (where the first term may be missing
for some of the parameters) and that the Q → 0 behavior
can be determined by fitting such polynomials. In the used fit
range (7 nm−1 < Q < 20 nm−1) it turns out to be sufficient to
limit oneself to Q4 terms for all parameters Ik(Q) and zk(Q).
In more detail, and recalling that R1 can be identified with
Fick’s mode, it is seen from Fig. 3 that the Q behavior of
the parameters is very well accounted for by the following
expansions, without the need to include odd powers of Q:

IR1(Q) = 1 + O(Q2)
zR1(Q) = −DsQ

2 + O(Q4) (22)

for the first real mode R1 (k = 1), and

Ik(Q) = pkQ
2 + O(Q4)

zk(Q) = zk(0) + O(Q2) (23)
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FIG. 3. Q dependence of the parameters zk (top frames) and Ik (bottom frames), fitted to Sself (Q,ω) data. In each row, the left panel refers
to the two real exponential modes (labeled R1 and R2, and displayed as dots and open circles, respectively), the center and right panels display
the real and imaginary parts of the parameters of the two pairs of complex modes (labeled C1 and C2, and displayed as filled and empty squares,
respectively). In all frames, the colors are those indicated in the top labels. Black solid lines represent the best fitting polynomials in powers of
Q2 up to the Q4 term. In (a) and (b) the absolute values of the negative quantities zk and Rezk are plotted. For each complex pair we chose to
plot the amplitude (with its own sign) of the mode in the pair having Imzk > 0.

for all the other modes (k � 2), with the parameters pk

independent of Q.
We stress that the Q2 coefficient in the fit function of

zR1(Q), i.e., −Ds , was left as a free parameter. In fact, no exper-
imental determination of Ds for liquid gold appears to be avail-
able, and calculated or simulated estimates often disagree, with
a range of variability between 0.6 and 3.5 × 10−3 nm2 ps−1

[36–38]. Our fit provides Ds = 1.5×10−3 nm2 ps−1, in good
agreement with the calculation of Ref. [36] and with one of
the values of Ref. [38].

B. Q behavior of the mode expansion of Z( Q,ω)
and determination of Z(ω)

The previous analysis of Sself (Q,ω) allows us, through the
general relations of Eqs. (2), (9), (16), and (19), to derive

Z(Q,ω) as

Z(Q,ω) =
∞∑

k=1

1

π
Re

Ak(Q)

iω − zk(Q)
, (24)

with amplitudes of the modes given by

Ak(Q) = − 3

Q2
z2
k(Q)Ik(Q) + 3D2

s Q
2Ik(Q). (25)

Using Eqs. (17) and (24), the DoS is therefore obtained as

Z(ω) = lim
Q→0

Z(Q,ω) =
∞∑

k=1

1

π
Re

Ak(Q → 0)

iω − zk(Q → 0)
, (26)

which requires the determination of the Q → 0 limit of the
various Ak(Q). Before discussing the extrapolation, important
insight is provided by the analysis of Fig. 4 where we report,
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FIG. 4. As in Fig. 3 for the amplitudes Ak of the modes contributing to Z(Q,ω).
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for all real and complex modes, the amplitudes of Eq. (25) as
a function of Q. From Fig. 4 it is immediately evident that one
component [R1, panel (a)] has a vanishing amplitude at low
Q. This actually means that the Fick’s mode R1, so important
in the description of Sself (Q,ω) at small Q and which gives,
in addition, the only surviving Lorentzian in Sself (Q,ω) as
Q → 0, actually does not contribute to the DoS [Eq. (26)] at
any frequency. Thus, the presence of mass diffusion, witnessed
by one of the modes of Sself (Q,ω), is accounted for in Z(ω)
by all modes but R1. It is straightforward to show that it is
the combination of the other three modes that provides the
correct nonzero Z(0) starting value of the DoS. To this aim
we insert Eq. (26) into the Green-Kubo relation that yields Ds

and perform the integration, obtaining

D = 1

3

∑
k

lim
Q→0

(
−Ak

zk

)
, (27)

and using Eqs. (22) and (23) it is easy to find that the R1 mode
gives a null contribution to the sum. The other terms together
provide the value

∑
k�2pkzk(0), which can be evaluated using

the p = 1 sum rule, as follows:

0 =
∑

k

Ik(Q)zk(Q) = −DsQ
2 +

∑
k�2

pkzk(0)Q2 + O(Q4)

= Q2

⎡
⎣−Ds +

∑
k�2

pkzk(0)

⎤
⎦ + O(Q4), (28)

which shows that ∑
k�2

pkzk(0) = Ds. (29)

Therefore, the contribution of the various modes of
Sself (Q,ω) to the diffusion coefficient satisfies a null sum rule,
which in the Q → 0 limit entrusts the value of the Green-Kubo
integral to the remaining microscopic (nonhydrodynamic)
modes R2, C1, and C2, which together yield the expected
macroscopic transport coefficient related to the ω = 0 value
of the DoS.

We now turn to the final evaluation of Eq. (26). Given the
quality of the Q fits to the various Ik(Q) and zk(Q) of Fig. 3
and recalling Eq. (25), Ak(Q) is also of course well described
by polynomials of the form a + bQ2 + cQ4 + · · · , as shown
in Fig. 4. In order to reach a better numerical accuracy we
preferred to fit the polynomials to the Ak(Q) themselves to
obtain their limit values Ak(Q → 0), rather than deriving them
from Eq. (25) using the previously determined Ik(Q → 0) and
zk(Q → 0). In this way we determined the amplitudes of the
various terms of Eq. (26), and we finally calculated the DoS
reported in Fig. 5, along with its components.

In order to better validate such an experimentally applicable
method to access the Z(ω) of a liquid via possible incoherent
neutron-scattering experiments, we also directly computed
the liquid gold VAF and the transverse current correlation
spectra CT(Q,ω) [39] from the available ab initio simulations.
Figure 6 shows the comparison of the just described DoS
determination with the one obtained by direct Fourier trans-
formation of the simulated VAF. It is evident from Fig. 6 that
agreement is remarkable, suggesting that the multi-Lorentzian
fit to Sself (Q,ω) and subsequent extrapolation of the related
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3
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R2
C1 pair
C2 pair
DoS

FIG. 5. Density of states Z(ω) of liquid Au as obtained from
the analysis of Sself (Q,ω) spectra with the method described in
Sec. III. The DoS (black circles) is shown along with its Lorentzian
components specified in the legend.

parameters provides indeed the true limit Z(ω) curve. This
strong consistency between very different ways of determining
the DoS (the second possible only if simulation data are
available) has a great significance per se and represents an
important result of the proposed method. Obviously the two
routes also provide the same Ds value.

We note from Figs. 4(a) and 5 that the real mode R2 has a
negative amplitude AR2, in agreement with Eq. (25) where the
first term is negative and the second becomes negligible for
small Q values. This can be understood on physical grounds
by recalling the behaviors of the amplitude IR2 and damping
−zR2 in Figs. 3(a) and 3(d), which induce us to relate this mode
to a trapping mechanism that tends to confine the particle,
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FIG. 6. Z(ω) as obtained with the procedure leading to Fig. 5
(black circles) and by direct time FT of the simulation-derived VAF
(red solid curve).
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FIG. 7. Dispersion curve of longitudinal modes of liquid gold as obtained in Ref. [25], compared with the shape of Z(ω). The maxima in
the dispersion curve occur at frequencies in agreement with the shoulder in the DoS (the dashed pink line is a guide to the eye). Conversely
S(Q,ω) determinations miss the second branch accounting for the maximum in Z(ω). The last right panel is the same as that of Fig. 3(c) and
shows how the frequency of the C2 modes of Z(ω) agrees with the features of the longitudinal dispersion curve.

hindering diffusion in high-density liquids. In this picture,
τR2 = −1/zR2, which is almost constant with Q, assumes
the meaning of a residence time, after which the particle is
able to diffuse again under the global effect of shear and
acoustic waves traveling in the medium. Actually, such a sort of
diffusion-hindering phenomena can show up only as negative
Lorentzians in the spectrum of the VAF, not only because of
the mathematical relation of Eq. (25), but also because con-
finement physically corresponds to mechanisms that reduce
the diffusion coefficient and the low-frequency part of Z(ω).

IV. Z(ω) AND COLLECTIVE DYNAMICS

These overall results indicate that, albeit its fully single-
particle character, Z(ω) is a very fruitful quantity also for
the understanding of the collective dynamics at a microscopic
level. As mentioned, the C2 component can be ascribed to
the collective longitudinal excitations present in the liquid.
As regards the C1 pair, we are induced to identify it as
due to transverse acoustic modes contributing to the overall
cooperative motions that the single-particle behavior cannot
avoid to mirror. Such a preliminary identification of C1 with the
collective transverse contribution to the DoS is also in agree-
ment with the typical behavior in the solid state case, where dis-
persion curves of transverse phonons involve typically lower
frequencies and have a flatter Q dependence than longitudinal
ones [giving rise to a visible peak in Z(ω) at low frequency].

The direct connection between the shape of Z(ω) and the
presence of longitudinal and transverse modes in a dense liquid
is clarified in Figs. 7 and 8. Figure 7 shows how maxima in
the dispersion curve, derived by determinations of the S(Q,ω)
of liquid Au [25], find their evidence in the Z(ω) considered
in the present work. We recall that the analysis of neutron
and simulation data of S(Q,ω) for this specific liquid did not
justify (even on a statistical basis [28]) the inclusion of more
than one (longitudinal) excitation in the model fit function.
However, as Fig. 7 shows, deep investigation of the overall
dynamics requires more than considering S(Q,ω) only.

In the case of liquid gold, transverse low-frequency modes,
though likely weak in intensity and undetectable from S(Q,ω)

data, emerge neatly at the level of the VAF spectrum and
of CT(Q,ω). The peak around 10 ps−1 in Z(ω) is indeed
consistent with the behavior of the transverse current corre-
lation spectra shown in Fig. 8. The maximum developing at
nonzero frequency above Q � 6 nm−1 in CT(Q,ω) indicates
the onset of transverse modes propagation in liquid gold at our
thermodynamic conditions. The frequency of the maximum
increases with Q, but, after about 17 nm−1, it stabilizes around
10 ps−1. This means that, correspondingly, the transverse
dispersion curve tends to flatten above this Q value, producing
a maximum in Z(ω). Finally, as observed in other cases, the
first of which represented to our knowledge by the paper
of Sampoli et al. [3], the CT(Q,ω) of liquid Au also shows
evidence of a longitudinal contribution (an increasing bump
around 25–30 ps−1).

0 10 20 30 40 50 60
0

0.4

0.8

1.2

1.6

2

FIG. 8. Transverse current correlation spectra calculated from the
ab initio simulations and normalized to their ω = 0 values. Several
Q values are displayed in order to follow the onset of visible shear
modes propagation above 6 nm−1. The shapeless curves correspond
to the lower Q values, while those developing a shoulder around
25 ps−1 correspond to the highest Q. The vertical dashed black line
gives the frequency position of the main maximum in Z(ω), either
from Fig. 5 or from Fig. 6.
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Some comments are also worth making about another,
implicit but significant, result of this work. In Refs. [13,17]
the multi-exponential analysis was applied directly in the
time domain to the simulated VAF of a LJ fluid in various
thermodynamical states. For one of them, that nearest to the
triple point (at least in density), the mode expansion was
found to include three complex pairs and two real modes.
One of the complex modes, of negligible intensity, represents
a very fast oscillation of Z(t) which, in the present case,
is not detected in Sself (Q,ω) because it would contribute to
the farthest spectral wings. The other two complex modes
correspond precisely, and with the same physical origin, to
those denoted here as C1 and C2. A very slowly decaying
real exponential, found in the LJ case to be the remnant of
the long-time tail in the VAF, does not appear in the gold
case, in agreement with the absence of a tiny peak at ω � 0
in the spectrum of the liquid gold VAF (Fig. 5), which is
instead the typical spectral fingerprint of the presence of a
very slow process [see, for instance, Fig. 5(d) of Ref. [13]].
This indicates that in dense liquids much closer to the triple
point (both in density and temperature), as in the present case,
such a very slow real mode becomes undetectable due to a
too short recurrence time of the simulations, a well-known
problem related to the simulation box length (see, for instance,
Ref. [17] and references there reported), which limits the time
range of reliability of the calculations. The only remaining
real mode found in the mentioned LJ-fluid high-density state
corresponds to R2 here, and in both the LJ and liquid gold case
this contributes with a negative central Lorentzian to Z(ω). As
explained, some modes of the LJ fluid cannot be observed
in the gold case; however, no modes different from those here
labeled as R2, C1, and C2 are found. Therefore, considering the
different thermodynamic states, the self-dynamics undergoes
the same mode expansion, and with the same physical
meaning of each mode, for systems as different as a model
LJ fluid and a real liquid metal. In other words identical
representations and identifications hold for the two mentioned
cases.

V. CONCLUSIONS

We have clearly shown the following in this work:
(1) A reliable access to the Z(ω) of a liquid is possible.

The method here proposed proves extremely accurate and
provides resolution-free results. It is a merit of the multi-

exponential expansion of time correlation functions, applied
also in this work, to render the Q → 0 extrapolation of the
data easy, with a consequently very precise determination
of the limit curve Z(ω) on an absolute scale. In addition,
when the directly simulated VAF spectrum is compared to our
determination of Z(ω), the two spectra are found to coincide
perfectly.

(2) Single-particle correlation functions and their spectra
carry precious information about the collective dynamics of
liquids and reflect faithfully the whole atomic motion. The
VAF and its spectrum are therefore indispensable quantities
to analyze if the whole dynamics is to be understood and
disclosed in its various contributions. In particular, this work
confirms the findings of Ref. [13] and reinforces the conceptual
identification of Z(ω) with the density of states of a liquid.
It is also clearly shown here that the macroscopic diffusion
coefficient related to Z(0) comes from the composition
of nonhydrodynamic modes, and that the Fick’s mode in
Sself (Q,ω) does not determine any feature of the DoS of a
liquid. Although Z(ω) is obtained in the Q → 0 limit, this
means that the DoS is built up by microscopic modes. This
is consistent with the results of the LJ case, where no Fick’s
mode was found from fits performed directly on the VAF, and
the diffusion coefficient was given by the time integral of other
modes.

(3) Transverse propagating modes appear in liquid Au as in
other systems, but only the analysis of the DoS could clearly
confirm, also for this liquid, what is starting to be accepted as
a general property of dense fluids.

(4) Models of the self-dynamics based on the multiexpo-
nential expansion or on its time FT lead to the same real and
complex mode decomposition for dense liquids of disparate
nature, with a total correspondence in the modes’ physical
meaning.

This last point suggests that the exponential expansion
method might provide an innovative tool for interpreting
other physical phenomena in the microscopic dynamics of
disordered systems, among which, for instance, the long
debated issue about the well-known anomaly in the DoS of
many glasses, namely, the Boson peak.

ACKNOWLEDGMENT

We thank Daniele Colognesi for extremely clarifying
discussions.

[1] G. Ruocco and F. Sette, J. Phys.: Condens. Matter 11, R259
(1999).

[2] A. Cunsolo, Adv. Condens. Matter Phys. 2015, 137435 (2015),
and references therein.

[3] M. Sampoli, G. Ruocco, and F. Sette, Phys. Rev. Lett. 79, 1678
(1997).

[4] S. Krishnamurthy, R. Bansil, and J. Wiafe-Akenten, J. Chem.
Phys. 79, 5863 (1983).

[5] G. E. Walrafen, J. Phys. Chem. 94, 2237 (1990).
[6] F. Formisano and S. De Panfilis, Phys. Rev. Lett. 115, 149801

(2015), and references therein.

[7] T. Gaskell and S. Miller, J. Phys. C 11, 3749 (1978).
[8] T. Gaskell and S. Miller, J. Phys. C 11, 4839 (1978).
[9] T. Gaskell and S. Miller, J. Phys. C 12, 2705 (1979).

[10] U. Balucani and M. Zoppi, Dynamics of the Liquid State
(Clarendon Press, Oxford, 1994).

[11] C. Morkel, C. Gronemeyer, W. Gläser, and J. Bosse, Phys. Rev.
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