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We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a
piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator
of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter
generates transitions between different dynamical equations for the continuous process. We then analyze the
stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching
environments. In particular, we obtain dynamical equations for the moment generating function, averaged with
respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form
of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time
for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an
alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid
systems.
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I. INTRODUCTION

An increasing number of problems in biological physics
involve the coupling between a piecewise deterministic dy-
namical system in Rd and a time-homogeneous Markov chain
on some discrete space � [1], resulting in a type of stochastic
hybrid system known as a piecewise deterministic Markov
process (PDMP) [2,3]. Probably the simplest example of
a PDMP is a velocity jump process where the “velocity”
of some continuous process randomly switches between
different values. This could be the position of a molecular
motor on a filament track [4], the length of a microtubule
undergoing catastrophes [5], or a bacterium displaying run
and tumble [6]. Another example at the single-cell level
concerns membrane voltage fluctuations in a neuron due to
the stochastic opening and closing of ion channels [7–16].
The discrete states of the ion channels evolve according to a
continuous-time Markov process with voltage-dependent tran-
sition rates, whereas the membrane voltage evolves according
to a piecewise deterministic equation that depends on the
current state of the ion channels. In the limit that the number
of ion channels goes to infinity, an application of the law
of large numbers recovers classical Hodgkin-Huxley-type
equations. On the other hand, channel fluctuations in the finite
case can lead to noise-induced neuronal spiking. Another
important example is a gene regulatory network, where the
continuous variable is the concentration of a protein product
and the discrete variable represents the activation state of
the gene [17–21]. Yet another example arises in a stochastic
formulation of synaptically coupled neural networks that has a
mathematical structure analogous to stochastic gene networks
[22].

In many of the above examples, one finds that the transition
rates between the discrete states n ∈ � are much faster than
the relaxation rates of the piecewise deterministic dynamics
for x ∈ Rd . In other words, there is a separation of time scales
between the discrete and continuous processes, so if t/ε is the
characteristic time scale of the Markov chain, then t is the
characteristic time scale of the relaxation dynamics for some
small positive parameter ε. In the limit ε → 0, one obtains

a deterministic dynamical system in which one averages the
piecewise dynamics with respect to the corresponding unique
stationary measure of the Markov chain (assuming it exists).
An important problem is then characterizing how the under-
lying stochastic process approaches this deterministic limit in
the case of weak noise, 0 < ε � 1. A rigorous mathematical
approach to addressing this particular issue has recently been
developed for stochastic hybrid systems using large deviation
theory [23–25]. Such a theory provides a variational or action
principle that can be used to solve first-passage time problems
associated with the escape from a fixed-point attractor of
the underlying deterministic system in the weak noise limit.
This involves finding the most probable paths of escape,
which minimize some action with respect to the set of all
trajectories emanating from the fixed point. In addition, a
variety of complementary techniques in applied mathematics
and mathematical physics have been used to solve first-
passage time problems in biological applications of stochastic
hybrid systems. These include WKB approximations and
matched asymptotics [10,14,15,18–21] and path integrals
[26,27].

In this paper, we address a different aspect of stochastic
hybrid systems, namely how to derive a “Feynman-Kac”
formula for functionals of a continuous variable x(t) ∈ R
evolving according to a piecewise deterministic dynamics.
The original Feynman-Kac formula was derived for Brownian
functionals [28]. Suppose that X(t) ∈ R represents pure
Brownian motion. A Brownian functional over a fixed time
interval [0,t] is formally defined as a random variable T given
by

T =
∫ t

0
U [X(τ )]dτ, (1.1)

where U (x) is some prescribed function or distribution such
that T has positive support. Two common examples are as
follows [29,30]: (i) U (X) = δ(x − a) for the local time density
at x = a, which characterizes the amount of time that a
Brownian particle spends in the neighborhood of a point in
space, and (ii) U (x) = �(x) for the occupation or residence
time in R+. Since X(t), t � 0, is a Wiener process, it follows
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that each realization of a Brownian path will typically yield a
different value of T , which means that T will be distributed
according to some probability density P (T ,t |x0,0) for X(0) =
x0. The statistical properties of a Brownian functional can
be analyzed using path integrals and lead to the following
Feynman-Kac formula [28]: Let Q(s,t |x0,0) be the moment
generating function (or Laplace transform of) P (T ,t |x0,0),

Q(s,t |x0,t0) =
∫ ∞

0
e−sT P (T ,t |x0,0)dT . (1.2)

Then Q satisfies the modified backward Fokker-Planck equa-
tion (FPE)

∂Q

∂t0
= 1

2

∂2Q

∂x2
0

− sU (x0)Q, (1.3)

which is supplemented by the “final” condition Q(s,t |x0,t) =
1. For a general review of Brownian functionals and their
applications, see Ref. [31].

The goal of this paper is to derive the analog of Eq. (1.3)
for the functional T of Eq. (1.1), with X(t) the continuous
component of a stochastic hybrid system rather than Brownian
motion. In Sec. II we define a stochastic hybrid system and
introduce our notation. In Sec. III we carry out the detailed
derivation of the Feynman-Kac formula for a stochastic
hybrid system. We first consider a particular realization σ

of the discrete Markov process n(t) and derive a stochastic
Liouville equation for the moment generator Q. An analogous
result was obtained in a recent study of stochastically gated
Brownian functionals [32]. Following along similar lines
to this previous study, we analyze the stochastic Liouville
equation using methods recently developed for diffusion
processes in randomly switching environments [33]. We thus
obtain a Feynman-Kac formula in the form of a differential
Chapman-Kolmogorov (CK) equation. We illustrate the theory
in Sec. IV by considering the occupation time for a velocity
jump process. Finally, in Sec. V we relate the analysis to our
recent path-integral construction of stochastic hybrid systems
[26,27].

II. ONE-DIMENSIONAL STOCHASTIC
HYBRID SYSTEM

We begin by defining a stochastic hybrid system and, in
particular, a PDMP [2,23,25]. For the sake of illustration,
consider a system whose states are described by a pair
(x,n) ∈ 	 × {0, . . . ,N0 − 1}, where x is a continuous variable
in 	 ⊂ R and n a discrete stochastic variable taking values in
the finite set � ≡ {0, . . . ,N0 − 1}. (Note that one could easily
extend the analysis to higher-dimensions, x ∈ Rd . However,
for notational simplicity, we restrict ourselves to the case
d = 1. It is also possible to have a set of discrete variables, but
one can always relabel the internal states so they are effectively
indexed by a single integer.) When the internal state is n, the
system evolves according to the ordinary differential equation
(ODE)

ẋ = Fn(x), (2.1)

where Fn : R → R is a continuous function. For fixed x, the
discrete stochastic variable evolves according to a homoge-
neous, continuous-time Markov chain with generator A(x).

We make the further assumption that the chain is irreducible
for all x ∈ 	, that is, for fixed x there is a nonzero probability
of transitioning, possibly in more than one step, from any
state to any other state of the Markov chain. This implies the
existence of a unique invariant probability distribution ρ(x) on
� for fixed x ∈ 	, with components ρm(x), such that∑

m∈�

Anm(x)ρm(x) = 0, ∀n ∈ �. (2.2)

The above stochastic model defines a one-dimensional (1D)
PDMP. It is also possible to consider generalizations of the
continuous process, in which the ODE (2.1) is replaced by
a stochastic differential equation (SDE) or even a partial
differential equation (PDE). In order to allow for such
possibilities, we will refer to all of these processes as examples
of a stochastic hybrid system.

The generator A is related to the transition matrix W of the
discrete Markov process according to

Anm = Wnm − δnm

∑
k

Wkn.

Suppose that we decompose W by writing

Wnm(x) = Pnm(x)ωm(x),

with
∑

n	=m Pnm(x) = 1 for all x. That is, for a given x, the
jumps times from state m are exponentially distributed with
rate ωm(x) and Pnm(x) is the probability distribution that when
it jumps the new state is n for n 	= m. The hybrid evolution of
the system with respect to x(t) and n(t) can then be described
as follows. Suppose the system starts at time zero in the state
(x0, n0). Call x0(t) the solution of (2.1) with n = n0 such that
x0(0) = x0. Let θ1 be the random variable such that

P(θ1 < t) = 1 − exp

{
−
∫ t

0
ωn0 [x0(t ′)]dt ′

}
.

The exponential is the probability that no jump occurs in the
interval [0,t] so P[θ1 < t] gives the probability that the jump
does occur before time t . Then in the random time interval
s ∈ [0, θ1) the state of the system is (x0(s),n0). We draw a
value of θ1 from P(θ1 < t), choose an internal state n1 ∈ �

with probability Pn1n0 [x0(θ1)], and call x1(t) the solution of
the following Cauchy problem on [θ1,∞):

ẋ1(t) = Fn1 [x1(t)], t � θ1

x1(θ1) = x0(θ1).

Iterating this procedure, we construct a sequence of increasing
jumping times (θk)k�0 (setting θ0 = 0) and a corresponding
sequence of internal states (nk)k�0. The evolution (x(t), n(t))
is then defined as

(x(t),n(t)) = (xk(t),nk) if θk � t < θk+1. (2.3)

Given the above iterative definition of a PDMP, let X(t)
and N (t) denote the stochastic continuous and discrete
variables, respectively, at time t , t > 0, given the initial
conditions X(0) = x0,N (0) = n0. Introduce the probability
density pn(x,t |x0,n0,0) with

P{X(t) ∈ (x,x + dx), N (t) = n|x0,n0} = pn(x,t |x0,n0,0)dx.
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It follows that p evolves according to the forward differential
Chapman-Kolmogorov (CK) equation [1,34]

∂pn

∂t
= Lpn, (2.4)

with the operator L (dropping the explicit dependence on
initial conditions) defined according to

Lpn(x,t) = −∂Fn(x)pn(x,t)

∂x
+
∑
m∈�

Anm(x)pm(x,t). (2.5)

The first term on the right-hand side represents the probability
flow associated with the piecewise deterministic dynamics for
a given n, whereas the second term represents jumps in the
discrete state n. Now define the averaged function F : R → R
by

F (x) =
∑
n∈�

ρn(x)Fn(x).

Intuitively speaking, one would expect the stochastic hybrid
system (2.1) to reduce to the deterministic dynamical system

ẋ(t) = F [x(t)]

x(0) = x0 (2.6)

in the fast switching limit ωn → ∞. For the Markov chain then
undergoes many jumps over a small time interval t during
which x ≈ 0, and thus the relative frequency of each discrete
state n is approximately ρn(x). This can be made precise in
terms of a law of large numbers for stochastic hybrid systems
proven in Refs. [24,25].

In the following we will take either 	 = R or 	 = R+ =
[0,∞). In the latter case we will impose the no-flux boundary
condition J (0,t) = 0 with

J (x,t) =
N0−1∑
n=0

Fn(x)pn(x,t), x ∈ 	. (2.7)

Note, however, that from a PDE perspective, the CK equation
is an N0th-order quasilinear equation on 	. In general, well-
posed boundary conditions for a quasilinear PDE have to be
determined using the theory of characteristics. In particular,
for certain choices of the functions Fn(x) it is necessary
to supplement the no-flux boundary condition at x = 0 by
auxiliary boundary conditions. For example, suppose that the
functions Fn(x) do not change sign within the interval 	. In
particular, there exists an integer m, 1 � m � N0 − 1, such
that for all 0 < x we have Fn(x) < 0 for 0 � n � m − 1 and
Fn(x) > 0 for m � n � N0 − 1. Assume that Fn(0) = 0 for
0 � n � m − 1 and Fn(L) = 0 for m � n � N0 − 1. In that
case, the no-flux boundary condition can only be satisfied if
pn(0,t) = 0 for all m � n � N0 − 1. This issue does not arise
for the velocity jump process considered in Sec. IV.

III. DERIVATION OF FEYNMAN-KAC FORMULA

Let σ (t,t0) = {n(τ ) ∈ �, t0 < τ � t | n(t0) = n0} denote a
particular realization of the discrete Markov process in the
interval [t0,t]. For a given realization σ , Eq. (2.1) reduces
to a deterministic, nonautonomous ODE. Suppose that the
initial state of the continuous variable, x(t0) = y, is randomly

generated from a density p0(y). Let

P (x,t) =
∫

	

P[x(t) = x|x(t0) = y]p0(y)dy

denote the probability density of the state at time t for fixed
σ . The probability density evolves according to the stochastic
Liouville equation

∂

∂t
P (x,t) =

[
− ∂

∂x
Fn(t)(x)

]
P (x,t), (3.1)

with P (x,t0) = p0(x). Note that the density P (x,t) is a random
field with respect to realizations of σ . [For notational simplicity
we drop the explicit dependence on σ from P (x,t).] One could
numerically estimate P (x,t) for a given σ by running multiple
trials with initial conditions generated by p0—the important
point being that each trial has the same fixed realization σ . The
corresponding solution pn(x,t) of the CK equation (2.4) would
then be recovered by setting p0(x) = δ(x − x0) and averaging
over different realizations of the discrete process, that is,

pn(x,t) = Eσ [P (x,t)1n(t)=n], (3.2)

where the subscript σ denotes expectation with respect to σ .
Following our recent analysis of stochastically gated Brow-

nian functionals [32], let Xσ (t) denote a sample trajectory of
the continuous process for a given realization σ and introduce
the analog of the Brownian functional (1.1),

T (t,t0) =
∫ t

t0

U [Xσ (t ′)]dt ′. (3.3)

(For ease of notation, we suppress the explicit dependence of
T on σ .) The process Xσ (t) is not time homogeneous so the
lower limit cannot always be set to zero. Let P (T ,t,t0) be the
corresponding probability density for T . Since T � 0, we can
introduce the analog of the moment generating function (1.2):

Q(s,t,t0) =
∫ ∞

0
e−sT P (T ,t,t0)dT . (3.4)

We will proceed by first deriving a Feynman-Kac formula for
Q and fixed σ , which takes the form of a stochastic Liouville
equation. We will then obtain the corresponding Feynman-
Kac formula averaged with respect to different realizations σ ,
which takes the form of a differential CK equation.

A. Stochastic Liouville equation for fixed σ

The first step is to introduce a path-integral representation
of the sample paths Xσ (t), that is, the solution trajectories of
the Liouville equation (3.1) generated by the distribution of
initial conditions p0. First, discretize time by dividing the
given interval [t0,t] into N equal subintervals of size t

such that t − t0 = Nt and set xj = Xσ (jt),nj = n(jt)
for j = 0, . . . ,N . The probability density for x0,x1, . . . ,xN ,
given a particular realization of the stochastic discrete variables
nj ,j = 0, . . . ,N − 1, is

Pσ (x0,x1, . . . ,xN ) ≡
∫

	

P (x0,x1, . . . ,xN |n0, . . . ,nN−1)

= p0(x0)
N−1∏
j=1

δ
[
xj+1 − xj − Fnj

(xj )t
]
.
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We define corresponding discretized versions of the functional
T and moment generating functional Q according to T =∑N

j=0 U (Xj )t , and

Q(s,t,t0) =
∫ ∞

0
e−sT

∫
	N+1

δ

⎡⎣T −
N∑

j=0

U (Xj )t

⎤⎦
× Pσ (x0,x1, . . . ,xN )

⎡⎣ N∏
j=0

dxj

⎤⎦ dT

=
∫

	N+1
exp

⎡⎣−s

N∑
j=0

U (Xj )t

⎤⎦
× Pσ (x0,x1, . . . ,xN )

⎡⎣ N∏
j=0

dxj

⎤⎦, (3.5)

where 	N+1 denotes the N + 1-dimensional product space
	 × 	 × . . . × 	 ⊂ RN+1. Now taking the continuum limit
t → 0,N → ∞ such that Nt = t − t0 yields the for-
mal path-integral representation of the moment generating
function Q:

Q(s,t,t0) =
∫

	

[ ∫ x(t)=x

x(t0)=x0

exp

(
−s

∫ t

t0

U [x(τ )]dτ

)
× Pσ [x]D[x]

]
p0(x0)dx0 dx, (3.6)

where ∫ x(t)=x

x(t0)=x0

Pσ [x]D[x]

= lim
t→0,N→∞

∫
	N

Pσ (x0,x1, . . . ,xN )
N−1∏
j=1

dxj .

The next step is to introduce the propagator G according to

Q(s,t,t0) =
∫

	2
G(s,x,t |x0,t0)p0(x0)dx0 dx, (3.7)

with

G(s,x,t |x0,t0)

=
[∫ x(t)=x

x(t0)=x0

exp

(
−s

∫ t

t0

U [x(τ )]dτ

)
Pσ [x]D[x]

]

≡
〈
exp

(
−s

∫ t

t0

U [x(τ )]dτ

)〉x(t)=x

x(t0)=x0

, (3.8)

where 〈· · · 〉 denotes averaging over realizations of Xσ (t). Note
that G satisfies the initial condition G(x,t0|x0,t0) = δ(x − x0).
We can now proceed along analogous lines to the derivation
of the Feynman-Kac formula for Brownian motion. That is,

G(s,x,t + t |x0,t0)

=
〈
exp

(
−s

∫ t+t

t0

U [x(τ )]dτ

)〉x(t+t)=x

x(t0)=x0

≈
〈
exp

(
−s

∫ t

t0

U [x(τ )]dτ

)〉x(t)=x−x

x(t0)=x0

e−sU (x)t

= e−sU (x)tG(s,x − x,t |x0,t0).

We have split the time interval [t0,t + t] into two parts
[t0,t] and [t,t + t] and introduced the intermediate state
x(t) = x − x with x determined by x = Fn(t)(x −
x)t . Expressing x in terms of t and Taylor expanding
with respect to t yields the following PDE in the limit
t → 0:

∂G

∂t
= −∂Fn(t)(x)G

∂x
− sU (x)G. (3.9)

In contrast to the standard Feynman-Kac formula (1.3) for
Brownian motion, Eq. (3.9) is in the form of a stochastic
PDE (SPDE) due to the dependence of F on the discrete state
n(t). More precisely, Eq. (3.9) is a piecewise deterministic
PDE.

Having solved for G, the moment generating function
is obtained from Eq. (3.7). From the definition of Q, see
Eq. (3.4), we can then determine the kth moment of the func-
tional (3.3) averaged with respect to the continuous process
Xσ (t): 〈

T k
〉 ≡ ∫ ∞

0
T kP (T ,t,t − τ )dT

= (−1)k
dk

dsk
Q(s,t,t − τ )

∣∣∣∣
s=0

. (3.10)

(In the case of a PDMP, stochasticity for fixed σ arises from the
random distribution of initial conditions.) However, in order to
determine statistics of the doubly stochastic process, we also
need to take expectations with respect to realizations σ of the
gate:

〈〈T k(τ )〉〉 = Eσ [〈T k〉] = (−1)k
dk

dsk
Eσ [Q(s,t,t − τ )]

∣∣∣∣
s=0

,

(3.11)

assuming we can reverse the order of expectation and
differentiation. Hence, calculating the moments of T with
respect to the doubly stochastic process requires determin-
ing Eσ [Q]. The latter is the generator of moments of T
averaged with respect to realizations of the discrete Markov
process.

For calculational purposes, it will be simpler to fix the initial
state X(0) = x0 by taking p0(y) = δ(y − x0) and working
directly with the corresponding SPDE for Q = Q(s,t |x0,t0).
Setting t0 = t − τ , it is straightforward to show that Q satisfies
the “backward” SPDE

∂Q

∂τ
= Fn(t−τ )(x0)

∂Q

∂x0
− sU (x0)Q, (3.12)

which is supplemented by the “final” condition Q(s,t |x0,t) =
1. That is, from properties of the propagator G we can
write

Q(s,t |x0,t0) =
∫

	

dx

∫
	

dx ′G(s,x,t |x ′,t ′)G(x ′,t ′|x0,t0).
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Differentiating both sides with respect to the intermediate time
t ′ and using the forward equation for G yields

0 =
∫

	

dx

∫
	

dx ′[∂t ′G(s,x,t |x ′,t ′)G(x ′,t ′|x0,t0)

+ G(s,x,t |x ′,t ′)∂t ′G(x ′,t ′|x0,t0)]

=
∫

	

dx

∫
	

dx ′[∂t ′G(s,x,t |x ′,t ′)G(x ′,t ′|x0,t0)

+ G(s,x,t |x ′,t ′)(−∂x ′Fn(t ′)(x
′) − sU (x ′))]G(x ′,t ′|x0,t0).

Integrating by parts with respect to x ′, reversing the order of
integration, and using the relationship between Q and G shows
that∫

	

dx ′G(x ′,t ′|x0,t0)[∂t ′ + Fn(t ′)(x
′)∂x ′ − sU (x ′)]Q(s,t |x ′,t ′).

Finally, setting t ′ = t0 = t − τ and using G(x ′,t ′|x0,t
′) =

δ(x ′ − x0) yields the backward equation for Q.
The next step is to average over different realizations σ . As

in our study of stochastically gated Brownian functionals [32],
we will proceed by adapting our recent work on stochastic
diffusion equations in randomly switching environments [33].
Since Q is a random field with respect to realizations of
the discrete Markov process n(t), there exists a probability
density functional � that determines the distribution of
the densities q(x0,τ ) = Q(s,t |x0,t − τ ) for fixed s,t . The
expectation Eσ [Q] then corresponds to the first moment
of this density functional. (This is distinct from the first
moment of T generated by Q.) Rather than dealing with the
probability density functional directly, we spatially discretize
the piecewise deterministic backward FPE (3.12) using a
finite-difference scheme and use this to derive corresponding
differential equations for Eσ [Q]. More precisely, we will
derive equations for Eσ [Q] conditioned on the initial state
n(t0) = n.

B. Dynamical equations for Eσ [ Q]

Introduce the lattice spacing � and set xj = j�,� ∈ Z. Let
Qj (τ ) = Q(s,t |j�,t − τ ), Uj = U (j�), and Fj,n = F (j�,n),
j ∈ Z. (For the moment, we take 	 = R. If 	 is a proper
subset of R, then j will be restricted to some subset of the
integers. Also note that here we are discretizing the continuous
variable x rather than time.) Equation (3.12) then reduces to
the piecewise deterministic ODE (for fixed s,t)

dQi

dτ
= Fi,n

∑
j∈Z

KijQj − sUiQi, if n(t − τ ) = n (3.13)

with

Kij = 1

�
[δi,j−1 − δi,j ]. (3.14)

Let Q(τ ) = {Qj (τ ), j ∈ Z} and introduce the probability
density

Prob{Q(τ ) ∈ (Q,Q + dQ),n(t − τ ) = n} = �n(Q,τ )dQ,

(3.15)

where we have dropped the explicit dependence on initial
conditions. The resulting CK equation for the discretized

piecewise deterministic PDE is [1,34]

∂�n

∂τ
= −

∑
i∈Z

∂

∂Qi

⎡⎣Fi,n

⎛⎝∑
j∈Z

KijQj

⎞⎠�n(Q,τ )

⎤⎦
+
∑
m∈�

A�
nm�m(Q,τ ). (3.16)

Since the Liouville term in the CK equation is linear in Q,
we can derive a closed set of equations for the first-order (and
higher-order) moments of the density �n.

Let

Qk,n(s,τ ) = E[Qk(s,τ )1n(t−τ )=n] =
∫

�n(Q,τ )QkdQ,

(3.17)

where ∫
F(Q)dQ =

⎡⎣∏
j

∫ ∞

0
dQj

⎤⎦F(Q)

for any F . Multiplying both sides of Eq. (3.16) by Qk and
integrating with respect to Q gives [after integrating by parts
the right-hand side and assuming that �n(Q,τ )→0 as Q→∞]

dQj,n

dτ
= Fj,n

∑
l∈Z

KjlQl,n − sUjQj,n +
∑
m∈�

A�
nmQm,k.

(3.18)

If we now retake the continuum limit � → 0 and set

Qn(x; s,τ ) = Eσ [Q(s,t |x,t − τ )1n(t−τ )=n] (3.19)

for fixed t , then we obtain the system of equations

∂Qn

∂τ
= Fn(x)

∂Qn

∂x
− sU (x)Qn +

∑
m∈�

A�
mn(x)Qm. (3.20)

We have dropped the subscript on the initial position x0. Also
note that taking expectation with respect to realizations σ

eliminates the dependence on the final time t . Equation (3.20)
is the desired Feynman-Kac formula. In the above derivation,
we have assumed that integrating with respect to Q and taking
the continuum limit commute. (One can also avoid the issue
that Q is an infinite-dimensional vector by carrying out the
discretization over the finite domain [−L,L] and taking the
limit L → ∞ once the moment equations have been derived.)
Finally, applying the final condition Q(s,t |x,t) = 1 implies
that Qn(x; s,0) = 1.

IV. OCCUPATION TIME OF A TWO-STATE VELOCITY
JUMP PROCESS

As an illustration of the above analysis, consider the
velocity jump process

dx

dt
= ξ (t) ≡ [v+ + v−]n(t) − v−, n(t) ∈ {0,1}. (4.1)

The term ξ (t) is often referred to in the physics literature
as dichotomous noise [35]. The discrete state n(t) evolves
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according to a two-state Markov chain with matrix generator

A =
(−β α

β −α

)
. (4.2)

If Pnn0 (t) = P[N (t) = n|N (0) = n0], then the master equation
for n(t) takes the form

dPnn0

dt
=
∑

m=0,1

AnmPmn0 .

Using the fact that P0n0 (t) + P1n0 (t) = 1, we can solve this
pair of equations to give

P0n0 (t) = δ0,n0e
−t/τc + τck−(1 − e−t/τc ), τc = 1

α + β
.

We deduce that τc is the relaxation time of the Markov chain
with Pmn0 (t) → ρm in the limit t → ∞ and

ρ0 = α

α + β
, ρ1 = β

α + β
. (4.3)

Suppose that the dichotomous noise term ξ (t) is unbiased
so in the stationary state 〈ξ (t)〉 = 0. One then finds that the
stationary autocorrelation function is

〈ξ (t)ξ (t ′)〉 = D

τc

e−|t−t ′ |/τc , (4.4)

with noise amplitude D = αβτ 3
c (v+ + v−)2. This shows that

dichotomous noise is a form of colored noise.
In terms of the piecewise deterministic ODE (2.1), we

have F1(x) = v+ and F0(x) = −v−. The corresponding CK
equation (2.4) reduces to

∂p0

∂t
= v−

∂p0

∂x
+ αp1 − βp0, (4.5a)

∂p1

∂t
= −v+

∂p1

∂x
+ βp0 − αp1. (4.5b)

Similarly, the backwards CK equation (3.12) for Qn reduces
to the pair of equations

∂Q0

∂τ
= −v−

∂Q0

∂x
− sU (x)Q0 − βQ0 + βQ1, (4.6a)

∂Q1

∂τ
= v+

∂Q1

∂x
− sU (x)Q1 + αQ0 − αQ1. (4.6b)

Laplace transforming these equation with respect to τ by
setting

Q̃n(x; s,z) =
∫ ∞

0
e−zτQn(x,s,τ )dτ

=
∫ ∞

0

∫ ∞

0
e−zτ−sT

× Eσ [P (T ,t |x,t − τ )1n(t−τ )=n]dT dτ, (4.7)

we have

−1 = −v−
∂Q̃0

∂x
− sU (x)Q̃0 − (z + β)Q̃0 + βQ̃1, (4.8a)

−1 = v+
∂Q̃1

∂x
− sU (x)Q̃1 + αQ̃0 − (z + α)Q̃1. (4.8b)

A. Infinite line

Suppose that x(t) ∈ R and consider the occupation time
T defined by Eq. (3.3) with U (x) = �(x). For the given
choice of U (x), we have to solve Eqs. (4.8) separately in
the two regions x > 0 and x < 0 and then impose continuity
of the solutions at the interface x = 0. In order to determine
the far-field boundary conditions for x → ±∞, we note that
if the system starts at x = ±∞, then it will never cross the
origin a finite time τ in the future, that is,

P (T ,t |∞,t − τ ) = δ(t − T ), P (T ,t | − ∞,t − τ ) = δ(T ).

Substituting this into the definition of Q̃n shows that

Q̃n(∞; s,z) = 1

z + s
, Q̃n(−∞; s,z) = 1

z
. (4.9)

Therefore, setting

Q̃n(x; s,z) = u+
n (x; s,z) + 1

z + s
, x > 0,

Q̃n(x; s,z) = u−
n (x; s,z) + 1

z
, x < 0,

we have

0 = −v−
∂u+

0

∂x
− (z + s + β)u+

0 + βu+
1 , (4.10a)

0 = v+
∂u+

1

∂x
+ αu+

0 − (z + s + α)u+
1 , (4.10b)

and

0 = −v−
∂u−

0

∂x
− (z + β)u−

0 + βu−
1 , (4.10c)

0 = v+
∂u−

1

∂x
+ αu−

0 − (z + α)u−
1 , (4.10d)

with corresponding boundary conditions u±
n (±∞; s,z) = 0.

Equations (4.10) can be rewritten in the matrix forms

∂

∂x

(
u+

0
u+

1

)
+ M(z + s)

(
u+

0
u+

1

)
= 0, x ∈ (0,∞) (4.11)

and

∂

∂x

(
u−

0
u−

1

)
+ M(z)

(
u+

0
u+

1

)
= 0, x ∈ (−∞,0), (4.12)

with

M(z) =
(

z+β

v−
− β

v−
α
v+

− z+α
v+

)
. (4.13)

The matrix M(z) has eigenvalues

λ±(z) = −� ±
√

�2 + z2 + (α + β)z

v−v+
, (4.14)

where

� = (z + α)v− − (z + β)v+
2v−v+

. (4.15)

The corresponding eigenvectors are

w±(z) =
(

z+α
v+

+ λ±(z)
α
v+

)
. (4.16)
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In order that the solutions u±
n vanish in the limits x → ±∞,

they have to take the form

u+
n (x; s,z) = Aw+

n (z + s)e−λ+(z+s)x, x ∈ (0,∞), (4.17a)

u−
n (x; s,z) = Bw−

n (z)e−λ−(z)x, x ∈ (−∞,0). (4.17b)

We thus have two unknown coefficients A,B, which are
determined by imposing continuity of the solutions Q̃±

n ,
n = 0,1, at x = 0. This yields the two conditions (n = 0,1)

Aw+
0 (z + s) + 1

z + s
= Bw−

0 (z) + 1

z
, (4.18a)

Aw+
1 (z + s) + 1

z + s
= Bw−

1 (z) + 1

z
. (4.18b)

Adding and subtracting these equations gives

AD+(z + s) = BD−(z)

AS+(z + s) = BS−(z) + 2

z
− 2

z + s
,

where

S±(z) = w±
0 (z) + w±

1 (z), D±(z) = w±
0 (z) − w±

1 (z).

Hence

A =
[
S+(z + s) − S−(z)D+(z + s)

D−(z)

]−1[2

z
− 2

z + s

]
,

(4.19a)

B =
[
S+(z + s)D−(z)

D+(z + s)
− S−(z)

]−1[2

z
− 2

z + s

]
. (4.19b)

In general it is not possible to derive an exact analyti-
cal expression for the double-inverse Laplace transform of
Q̃(x0; s,z). However, we can determine the behavior of the
averaged probability density Eσ [P (T ,t |x,t − τ )] in the large-
time limits T ,τ → ∞; this corresponds to taking the limits
s,z → 0 in Laplace space. [Note that a natural time scale is
τc = 1/α (for α < β) so the large-time regime is characterized
by τ � τc.] For example, suppose that the mean-field version
of Eq. (4.1),

dx

dt
= (v+ + v−)ρ1 − v− = ρ1v+ − ρ0v−,

represents unbiased motion. That is, βv+ − αv− = 0. In
particular, take v+ = v− = v and α = β so � = 0 and λ±(z) =
±λ(z) with

λ(z) =
√

z2 + 2αz

v2
.

In the asymptotic limit s,z → 0 we then find that λ(z) →√
2αz/v, S±(z) → 2α/v, and D±(z) → ±λ(z). Therefore, the

leading-order approximation of the coefficients is

A ∼ v

α

√
z

(
√

z + s + √
z)

[
1

z
− 1

z + s

]
. (4.20)

The corresponding asymptotic solution for Q̃n(0; s,z) becomes

Q̃n(0; s,z) ∼
√

z

(
√

z + s + √
z)

1

z
+

√
z + s

(
√

z + s + √
z)

1

z + s

= 1√
z(z + s)

. (4.21)

Finally, inverting the double Laplace transform with respect to
s and then z gives

Eσ [P (T ,t |x,t − τ )] ∼ 1

π
√
T (τ − T )

, 0 � T < τ,

(4.22)

which is independent of x,t . This is identical to the well-known
“arcsine” law [29] for the probability density of the occupation
time for pure Brownian motion starting at the origin (see also
Sec. V C).

The asymptotic connection to Brownian motion is not
surprising, given the relationship of the two-state velocity
jump process to the telegrapher’s equation. Setting v± = v

and α = β and adding Eqs. (4.5a) and (4.5b) shows that
the marginal probability density p(x,t) = p0(x,t) + p1(x,t)
satisfies the telegrapher’s equation [36,37][

∂2

∂t2
+ 2α

∂

∂t
− v2 ∂2

∂x2

]
p(x,t) = 0. (4.23)

(The individual densities p0,1 satisfy the same equation.)
One finds that the short-time behavior (for t � τc = 1/2α) is
characterized by wavelike propagation with 〈x(t)〉2 ∼ (vt)2,
whereas the long-time behavior (t � τc) is diffusive with
〈x2(t)〉 ∼ 2Dt,D = v2/2α. For certain initial conditions, one
can solve the telegrapher’s equation explicitly. In particular, if
p(x,0) = δ(x) and ∂tp(x,0) = 0, then

p(x,t) = e−αt

2
[δ(x − vt) + δ(x + vt)]

+ αe−αt

2v

[
I0(α

√
t2 − x2/v2)

+ t√
t2 − x2/v2

I0(α
√

t2 − x2/v2)

]
× [�(x + vt) − �(x − vt)],

where In is the modified Bessel function of nth order and �

is the Heaviside function. The first two terms represent the
ballistic propagation of the initial data along characteristics
x = ±vt , whereas the Bessel function terms asymptotically
approach Gaussians in the large time limit. In particular,
p(x,t) → 0 pointwise when t → 0.

Using similar arguments, we can also determine what
happens in the case of a biased velocity jump process for
x(0) = 0. If βv+ > αv−, then we expect the system to be
located in R+ at large times t and so T ≈ t , whereas if
βv+ < αv− then we expect the system to be located in R−
at large times t and so T ≈ 0. In order to construct a nontrivial
example of biased motion, we consider a velocity jump process
on the semi-infinite line R+.
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B. Semi-infinite line

One well-known example of a two-state velocity jump
process on the semi-infinite line is the Dogterom-Leibler
model of microtubule catastrophes [5,38]. This is a prob-
abilistic model of the length x(t) of a microtubule, which
switches between growth and shrinkage phases according
to a two-state Markov process with generator (4.2), and
v± represent the corresponding elongation and shrinkage
velocities. A nontrivial steady-state solution can be ob-
tained on the semi-infinite line, x > 0, for v+ 	= v−. This
can be established by adding equations (4.5a) and (4.5b)
and setting ∂tp0,1 = 0. This gives v+p′

1(x) − v−p′
0(x) = 0,

and thus v+p1(x) − v−p0(x) = const. Integrability of p0,1(x)
means that the constant must be zero and, hence, p1(x) =
P (x)/v+,p0(x) = P (x)/v− with P satisfying the equation

dP (x)

dx
=
[

β

v−
− α

v+

]
P (x) = −V

κ
P (x),

where

V = ρ0v− − ρ1v+, κ = v+v−
α + β

.

Here −V is the mean velocity and κ has the units of diffusivity.
It immediately follows that there exists a steady-state solution,
P (x) = P (0)e−V x/κ , 0 < x < ∞, if and only if V > 0. In
the regime V < 0, catastrophe events are relatively rare and
the microtubule continuously grows with mean speed |V |,
whereas, for V > 0, the catastrophe events occur much more
frequently so there is a balance between growth and shrinkage
that results in a steady-state distribution of microtubule
lengths.

Let us now introduce an occupation time for the interval
[L,∞), L > 0, given by

T (t) =
∫ t

0
�(Xσ (τ ) − L)dτ. (4.24)

Here T (t) is the amount of time up to time t that the continuous
variable Xσ (τ ) spends in the region x > L, given a particular
realization σ of the discrete Markov process n(t) ∈ {0,1}.
Following a similar argument to the analysis of Brownian
functionals in Ref. [39], we assume that in the large time limit
we can replace averaging over different realizations of the
stochastic process by averaging with respect to the stationary
density pn(x). That is, for large τ ,

E[�(Xσ (τ ) − L)], (4.25)

→ Z(L) ≡
∫ ∞

L

[p0(x) + p1(x)]dx = e−V L/κ . (4.26)

Therefore, the average occupation time 〈〈T (t)〉〉 scales linearly
with time t for t → ∞:

〈〈T (t)〉〉 ≡
∫ t

0
T P(T ,t)dT → Z(L)t, (4.27)

where

P(T ,t) = Eσ [P (T ,t |x0,t0)].

From the central limit theorem, we expect that in the large time
limit the probability density P will take the form of a Gaussian

distribution of T around the mean value 〈T 〉:

P(T ,t) ∼ exp

(
− [T − 〈〈T (t)〉〉]2

2	2(t)

)
, (4.28)

with the variance 	2 = 〈〈T 2〉〉 − 〈〈T 〉〉2.
One can calculate the variance using Eq. (3.11) for k = 2,

with the Laplace transforms of Q0,1 satisfying Eqs. (4.8) on
x ∈ R+ for U (x) = �(x − L). Modifying the analysis of the
infinite line case accordingly, we find that

Q̃n(x; s,z) = A+w+
n (z + s)e−λ+(z+s)x + 1

z + s
, L < x < ∞,

(4.29a)

Q̃n(x; s,z) = B+w+
n (z)e−λ+(z)x + B−w−

n (z)e−λ−(z)x + 1

z
,

(4.29b)

for 0 < x < L. Conditions on the coefficients A+,B± are
obtained by a reflecting boundary condition at x = 0,

B+w+
0 (z) + B−w−

0 (z) = B+w+
1 (z) + B−w−

1 (z), (4.30a)

and the two matching conditions at x = L for n = 0,1:

A+w+
n (z + s)e−λ+(z+s)L + 1

z + s

= B+w+
n (z)e−λ+(z)L + B−w−

n (z)e−λ−(z)L + 1

z
. (4.30b)

In the asymptotic limit z → 0, we have

�(z) ∼ V

2κ
, λ+(z) ∼ z

V
, λ−(z) ∼ −V

κ
,

and

w+
0 (z) ∼ α

v+
+ z

V
, w−

0 ∼ β

v−
,

while w±
1 (z) = α/v+ for all z, see Eqs. (4.14) and (4.16).

Hence, taking s,z → 0 in Eq. (4.30a) shows that

B− ∼ κz

V 2
B+, (4.31)

whereas subtracting the pair of Eqs. (4.30b) for n = 0,1 shows
that

B− ∼ κz

V 2
e−V L/κ (B+ − A+). (4.32)

Comparing Eqs. (4.31) and (4.32) yields the asymptotic
relationship

B+ ∼ − e−V L/κA+
1 − e−V L/κ

.

Finally, substituting for B+ in Eq. (4.30b) gives to leading
order

α

v+
A+ ∼ (1 − e−V L/κ )

(
1

z
− 1

z + s

)
, s,z → 0

α

v+
B+ ∼ −e−V L/κ

(
1

z
− 1

z + s

)
, s,z → 0.
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Combining these various results establishes that the
leading-order asymptotic behavior of the solution Q̃n(x; s,z)
is

Q̃n(x; s,z) ∼ 1 − e−V L/κ

z
+ e−V L/κ

z + s
(4.33)

for all x ∈ R+ and n = 0,1. It follows that

∂Q̃n(x; s,z)

∂s

∣∣∣∣∣
s=0

∼ −Z(L)

z2
,

∂2Q̃n(x; s,z)

∂s2

∣∣∣∣∣
s=0

∼ 2Z(L)

z3
,

and hence

〈〈T 〉〉 ∼ Z(L)τ, 〈〈T 2〉〉 ∼ Z(L)τ 2. (4.34)

Therefore, the leading-order form of the variance is

	2 ∼ Z(L)(1 − Z(L))τ 2. (4.35)

Note that this result differs from an analogous result obtained
for the occupation time of Brownian motion in an attractive or
stable potential [39]. In the latter case, one finds that both the
mean and variance of the occupation time vary linearly with τ .

V. PATH-INTEGRAL REPRESENTATION OF Eσ [Q]

In our derivation of the Feynman-Kac formula for a
stochastic hybrid system, see Sec. III, we considered a
particular realization of the discrete Markov process n(t) and
obtained a stochastic Liouville equation for the continuous
process x(t). We then averaged over different realizations
of the discrete process by adapting the moments method of
Ref. [33]. Here we explore an alternative approach to the
analysis of functionals of stochastic hybrid system based on
our recent path-integral representation of PDMPs [26,27].

A. Construction of path integral

In order to derive the Feynman-Kac formula and introduce
notation, we first briefly recap the construction of the path-
integral representation of stochastic hybrid systems [26,27].
The first step is to discretize time and write down the path-
integral representation of Q(s,t,t0) given by Eq. (3.5). We now
note that the joint probability distribution Pσ (x0,x1, . . . ,xN )
for a fixed realization σ can be written as

Pσ (x0,x1, . . . ,xN ) =
N−1∏
j=0

δ
(
xj+1 − xj − Fnj

(xj )t
)
.

Inserting the Fourier representation of the Dirac δ function
gives

Pσ (x0,x1, . . . ,xN ) =
N−1∏
j=0

[∫ ∞

−∞
e−ipj (xj+1−xj −Fnj

(xj )t) dpj

2π

]
.

In contrast to our previous approach, Sec. III, we now average
with respect to the intermediate states nj ,j = 1,N − 1 and fix
nN . This gives

P (x0,x1, . . . ,xN ; n0,nN )

=
∑

n1,...,nN −1

⎛⎝N−1∏
j=0

Tnj+1,nj
(xj )

⎞⎠Pσ (x0,x1, . . . ,xN ), (5.1)

where

Tnj+1,nj
(xj )

∼ Anj+1,nj
(xj )t + δnj+1,nj

[
1 −

∑
m

Am,nj
(xj )t

]
+ o(t) = [δnj+1,nj

+ Anj+1,nj
(xj )t

]
.

For a fixed x, we introduce the matrix operator Q(x,φ) with
φ a parameter and [26,27]

Qnm(x,φ) = Anm(x) + φδn,mFm(x). (5.2)

Let �r (x,φ), r ∈ �, denote the set of eigenvalues of Q with
corresponding eigenvectors R(r)(x,φ) and adjoint eigenvectors
ξ (r)(x,φ). That is,∑
m∈�

[Anm(x) + φδn,mFm(x)]R(r)
m (x,φ) = �r (x,φ)R(r)

n (x,φ),

(5.3)

for fixed x,φ and∑
r

ξ (r)
m (x,φ)R(r)

n (x,φ) = δm,n∑
m

ξ (r)
m (x,φ)R(s)

m (x,φ) = δr,s .

Inserting multiple copies of the above completeness relation
with (x,φ) = (xj ,φj ) at the j th time step, we have

P (x0,x1, . . . ,xN ; nN,n0)

=
∑

n1,...,nN−1

N−1∏
j=0

∫ ∞

−∞
Gnj+1,nj

(xj+1,xj ,qj ,φj )
dqj

2π

with [26,27]

Gnj+1,nj
(xj+1,xj ,qj ,φj ) ∼

∑
rj ,m

R
(rj )
nj+1 (xj ,φj )ξ

(rj )
m (xj ,φj )Tm,nj

(xj )e−iqj [xj+1−xj −Fnj
(xj )t]

∼
∑
rj

exp

{[
�rj

(xj ,φj ) − iqj

xj+1 − xj

t

]
t

}
exp
{[

iqjFnj
(xj ) − φjFnj

(xj )
]
t
}

×R
(rj )
nj+1 (xj ,φj )ξ

(rj )
nj

(xj ,φj ),
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to leading order in O(x,t). Now integrating over intermediate states xj leads to

P (xN,nN |x0,n0) =
⎡⎣N−1∏

j=1

∫ ∞

−∞
dxj

⎤⎦P (x0,x1, . . . ,xN ; n0,nN )

=
⎡⎣N−1∏

j=1

∫ ∞

−∞
dxj

⎤⎦⎡⎣N−1∏
j=0

∫ ∞

−∞

dqj

2π

⎤⎦ ∑
n1,...,nN−1

∑
r0,...,rN−1

⎡⎣N−1∏
j=0

R
(rj )
nj+1 (xj ,φj )ξ

(rj )
nj

(xj ,φj )

⎤⎦

× exp

⎧⎨⎩∑
j

[
�rj

(xj ,φj ) − iqj

xj+1 − xj

t

]
t

⎫⎬⎭ exp
{
[iqjFnj

(xj ) − φjFnj
(xj )]t

}
. (5.4)

By inserting the eigenfunction products and using the
Fourier representation of the Dirac δ function, we have
introduced sums over the discrete labels rj and new phase
variables qj . Suppose that we can perform a so-called Wick
rotation in the complex q plane so qj becomes pure imaginary
and then perform the change of variables iqj → qj [40,41].
Noting that the discretized path integral is independent of the
φj , we are free to set φj = qj for all j , thus eliminating the final
exponential factor. This choice means that we can perform the
summations with respect to the intermediate discrete states nj

using the orthogonality relation∑
n

R(r)
n (xj ,φj−1)ξ (r ′)

n (xj+1,φj ) = δr,r ′ + O(x,φ).

We thus obtain the result that rj = r for all j . Finally, taking
the continuum limit of equation (5.4), we obtain the following
path integral from x(0) = x0 to x(τ ) = x,

P (x,n,τ |x0,n0,0)

=
∑

r

∫ x(τ )=x

x(t0)=x0

exp

{
−
∫ τ

0
[qẋ − �r (x,q)]dt

}
×R(r)

n (x,q(τ ))ξ (r)
n0

(x0,q(t0))D[q]D[x]. (5.5)

Finally, since the generator A of the Markov chain is assumed
to be irreducible, we can apply the Perron-Frobenius theorem
[42] to the linear operator on the left-hand side of Eq. (5.3).
That is, there exists a real, simple Perron eigenvalue labeled by
r = 0, say, such that �0 > Re(�r ) for all r > 0. Moreover, ξ (0)

is the only positive eigenvector so it can be taken to determine
the initial distribution of n0 and thus we restrict the sum over
r in Eq. (5.5) to r = 0. [Setting φ = 0 in Eq. (5.3), it can be
seen that R(r)

n (x,0) and ξ (r)
n (x,0) correspond to the right and left

eigenvectors of A. Hence, R(r)
n (x,0) = ρn(x) and ξ (r)

n (x,0) = 1
for all n ∈ �.] We thus obtain the following path integral for a

1D stochastic hybrid system [26,27]:

P (x,n,τ |x0,n0,0) =
∫ x(τ )=x

x(0)=x0

D[x]D[q]e−S[x,q]

× R(0)
n (x,q(τ ))ξ (0)

n0
(x0,q(t0)), (5.6)

with the action

S[x,q] =
∫ t

t0

[qẋ − �0(x,q)]dt ′. (5.7)

Although the above derivation uses formal path-integral
methods, it generates the same action S obtained rigorously
using large deviation theory, as detailed in the monograph by
Kifer [25]. Equation (5.6) is the starting point for obtaining
a variational principle that can be used to solve first-passage
time problems associated with the escape from a fixed-point
attractor of the underlying deterministic system (2.6) in the
weak noise (fast switching) limit (see also Sec. V C). This
involves finding the most probable paths of escape, which
minimize the action S with respect to the set of all trajectories
emanating from the fixed point. We now have a classical
variational problem, in which the Perron eigenvalue �0(x,q)
is identified as a Hamiltonian and the most probable paths are
the zero-energy solutions to Hamilton’s equations [26,27]

ẋ = ∂H
∂q

, q̇ = −∂H
∂x

, H(x,q) = �0(x,q). (5.8)

B. Derivation of Feynman-Kac formula

Let us now return to the representation of Q(s,t |x0,t0)
given by Eqs. (3.7) and (3.8) with p0(y) = δ(y − x0). Taking
expectations with respect to the realizations σ of the discrete
Markov process now yields a path-integral representation of
Qn(x0; s,τ ) given by

Qn0 (x0; s,τ ) =
∑
n∈�

∫
	

Gnn0 (s,x,q,t |x0,q0,t0)dx dq dq0, (5.9)

with τ = t − t0 and

Gnn0 (s,x,q,t |x0,q0,t0) = R(0)
n (x,q)

[∫ x(t)=x,q(t)=q

x(t0)=x0,q(t0)=q0

exp

{
−S[x,q] − s

∫ t

t0

U [x(τ )]dτ

}
D[q]D[x]

]
ξ (0)
n0

(x0,q0). (5.10)

012138-10



FEYNMAN-KAC FORMULA FOR STOCHASTIC HYBRID SYSTEMS PHYSICAL REVIEW E 95, 012138 (2017)

We can now proceed along analogous lines to the derivation of the Feynman-Kac formula in Sec. III. That is,

Gnn0 (s,x,q,t + t |x0,q0,t0) = e−qx+�0(x,q)t−sU (x)tGnn0 (s,x − x,t |x0,q0,t0)

≈ Gnn0 (s,x − x,t |x0,q0,t0) + [�0(x,q) − q(x) − sU (x)t]Gnn0 (s,x,t |x0,q0,t0)

= Gnn0 (s,x − x,t |x0,q0,t0) − [q(t)x + sU (x)t]Gnn0 (s,x,q,t |x0,q0,t0)

+
∑
m∈�

[
Anm(x) + qδn,mFm(x)

]
Gmn0 (s,x,q,t |x0,q0,t0)t,

where we have used Eq. (5.3). Again, we have split the time
interval [t0,t + t] into two parts [t0,t] and [t,t + t] and
introduced the intermediate state x(t) = x − x with x

determined by x = x − x + Fn(x − x)t . Expressing x

in terms of t and Taylor expanding with respect to t , we
find that the two multiplicative terms in q cancel. Hence, we
obtain the following CK equation in the limit t → 0:

∂Gnn0

∂t
= −∂Fn(x)Gnn0

∂x
− sU (x)Gnn0 +

∑
m∈�

Anm(x)Gmn0 .

(5.11)

After integrating with respect to q and q0, this is precisely the
forward version of the CK equation forQn, see Eq. (3.20). Thus
our analysis of Sec. III is equivalent to deriving the Feynman-
Kac formula directly from the path-integral representation of
stochastic hybrid systems constructed in Refs. [26,27].

C. Gaussian approximation

In Sec. IV, we analyzed the occupation time for a simple
two-state velocity jump process. A major simplifying feature

of this model is that the functions Fn and transition rates α,β

are independent of x. Solving the Feynman-Kac formula given
by Eq. (3.20) or (5.11) for more general two-state stochastic
hybrid system is nontrivial. However, progress can be made
by carrying out a Gaussian approximation of the stochastic
hybrid system in the so-called fast switching regime.

In the case of the unbounded domain 	 = R, there is no
natural scale for the continuous variable x [except possibly
from the particular structure of the functions Fn(x)]. Therefore,
we are free to fix the units of x by introducing a quantity
X0 such that the transition rates of the discrete Markov
process are much faster than v/X0, where v is a typical
value of the “velocity” ẋ. (For the velocity jump process in
Sec. IV, we would have v±/X0 � α,β.) We can interpret the
choice of X0 as defining a fast-switching regime, such that
X/X0 � 1 over a time interval t for which αt � 1. The
fast switching regime can be implemented by setting X0 = 1
and introducing the rescaling A → A/ε with 0 < ε � 1 [26].
Repeating the derivation of the propagator (5.10), we obtain the
same expression except that S[x,q] → S[x,q]/ε. Introduce
the modified propagator

G(s,x,q,t |x0,q0,t0) =
∑
n,n0

ξ (0)
n (x,q)Gnn0 (s,x,q,t |x0,q0,t0)R(0)

n0
(x0,q0). (5.12)

After performing the rescaling q → −iq/ε, Eqs. (5.10) and (5.7) yield the path integral

G(s,x,q,t |x0,q0,t0) =
∫ x(t)=x,q(t)=q

x(t0)=x0,q(t0)=q0

D[q]D[x] exp

{
−1

ε

∫ t

t0

[iεqẋ − �0(x,iεq)]dτ − s

∫ t

t0

U (x)dτ

}
. (5.13)

The Gaussian approximation involves Taylor expanding the Perron eigenvalue �0 to second order in ε, which yields a quadratic
in q:

G(s,x,q,t |x0,q0,t0) ∼
∫ x(t)=x,q(t)=q

x(t0)=x0,q(t0)=q0

D[q]D[x] exp

(
−
∫ t

t0

{
iq[ẋ − A(x)] + εq2B(x)

}
dτ − s

∫ t

t0

U (x)dτ

)
,

where

A(x) = ∂

∂p
�0(x,p)

∣∣∣∣
p=0

, B(x) = 1

2

∂2

∂p2
�0(x,p)

∣∣∣∣
p=0

.

(5.14)

We can now perform the integration over the “momenta” by
defining

G(s,x,t |x0,t0) =
∫

dq dq0

∫
D(q)G(s,x,q,t |x0,q0,t0)

either directly or by returning to the discretized path integral,
Taylor expanding to second order in qj , and then performing

the Gaussian integration with respect to qj before taking the
continuum limit:

G(s,x,t |x0,t0) =
∫ x(τ )=x

x(0)=x0

D[x] exp

{
−
∫ t

t0

[ẋ − A(x)]2

4εB(x)
dτ

}
× exp

[
−s

∫ t

t0

U (x)dτ

]
. (5.15)

Finally, noting that ξ (0)
n (x,0) = 1 and R(0)

n (x,0) = ρn(x), and
using Eqs. (5.9) and (5.12), we can make the following
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identification under the Gaussian approximation:

Q(x0; s,τ ) ≡
∑
n0

Qn0 (x0; s,τ )ρn0 (x0)

≈
∫

	

G(s,x,t |x0,t − τ )dx. (5.16)

The path integral in Eq. (5.15) is identical in form to the one
obtained in the derivation of the Feynman-Kac formula for
the Brownian functional (1.1) of a particle with position X(t)
satisfying the Ito SDE [28,31],

dX = A(X)dt +
√

2εB(X)dW (t). (5.17)

Hence, we deduce that in the fast switching regime, the
moment generating function Q of the stochastic hybrid system
satisfies the Feynman-Kac formula

∂Q(x; s,τ )

∂τ
= A(x)

∂Q(x; s,τ )

∂x
+ εB(x)

∂2Q(x; s,τ )

∂x2

− sU (x)Q(x; s,τ ). (5.18)

Let us apply the above analysis to a two-state version of the
stochastic hybrid system (2.1) for which N0 = 2 and the matrix
A is given by Eq. (4.2), with possibly x-dependent transition
rates α,β. The eigenvalue equation (5.3) can be written as the
two-dimensional system[−β(x) + pF0(x) α(x)

β(x) −α(x) + pF1(x)

](
R0

R1

)
= λ

(
R0

R1

)
.

(5.19)

It follows that the Perron eigenvalue [satisfying �0(x,0) = 0]
is given by

�0(x,p) = 1
2 [	(x,p) +

√
	(x,p)2 − 4γ (x,p)], (5.20)

where

	(x,p) = p[F0(x) + F1(x)] − [α(x) + β(x)]

and

γ (x,p) = [pF1(x) − α(x)][pF0(x) − β(x)] − α(x)β(x).

A little algebra shows that

Z(x,p) ≡ 	(x,p)2 − 4γ (x,p)

= [p(F0 − F1) − (β − α)]2 + 4αβ > 0

so, as expected, �0 is real. In order to calculate the terms
A(x) and B(x) appearing in the SDE (5.17), we differentiate
�0(x,p) with respect to p. First,

∂�0

∂p
= F0 + F1

2
+ ∂Z

∂p

1

4
√

Z

= F0 + F1

2
+ F0 − F1

2

× p(F0 − F1) − (β − α)√
[p(F0 − F1) − (β − α)]2 + 4αβ

.

On setting p = 0, we have

A(x) = ρ0(x)F0(x) + ρ1(x)F1(x), (5.21)

as expected. Similarly,

∂2�0

∂p2
= [F0 − F1]2

2
√

[p(F0 − F1) − (β − α)]2 + 4αβ

− [F0 − F1]2

2

[p(F0 − F1) − (β − α)]2

{[p(F0 − F1) − (β − α)]2 + 4αβ}3/2
,

so

B(x) = [F0(x) − F1(x)]2α(x)β(x)

[α(x) + β(x)]3
. (5.22)

In the special case of the unbiased velocity jump process
considered in Sec. IV, with α = β independent of x and
F1(x) = v = −F0(x), we recover a diffusion process with
effective diffusivity D = εv2/2α and zero drift.

It is important to note that the fast switching regime is
distinct from the large-time regime t � τc = 1/2α considered
in Sec. IV. In the former case, we fix the scale of the continuous
variable x by setting X0 = 1. This means that any important
features of the functions Fn(x) at finer spatial scales will be
lost. With this caveat, the usefulness of working in the fast
switching regime is that we have replaced a system of PDES
(3.20) by a scalar PDE (5.18). Such a reduction becomes even
more significant when the number of discrete states satisfies
N0 > 2. However, solving the scalar equation (5.18) is still a
nontrivial problem for general functions A(x) and B(x). On
the other hand, it might be possible to adapt recent work on
Brownian functionals [39] when B(x) is independent of x.
This would occur in the two-state model, for example, if α,β

are independent of x and F0(x) − F1(x) is a nonzero constant.

VI. DISCUSSION

In this paper we derived a Feynman-Kac formula for
functionals T of a stochastic hybrid system evolving according
to a piecewise deterministic Markov process. We considered
two complementary approaches. The first involved fixing
a particular realization σ of the discrete process, deriving
a stochastic Liouville equation for the moment generating
function Q of T and then averaging with respect to σ .
This generated a differential CK equation for the σ -averaged
moment generating function Q. The second method derived
the CK equation directly by constructing the Feynman-Kac
formula for a path-integral representation of the full stochastic
hybrid system.

One immediate extension of our theory would be to develop
analytical and numerical tools for solving more complicated
examples of stochastic hybrid systems than the velocity jump
process of Sec. IV. Two simplifying aspects of the latter
were the small number of discrete states (n = 0,1) and the
x independence of the generator A and functions Fn. As
highlighted in Sec, VC, one possible approach would be
to perform a Gaussian approximation in the fast switching
regime. In addition to considering more complicated 1D ex-
amples, other possible extensions include higher-dimensional
piecewise deterministic dynamics (x ∈ Rd ) and stochastic
versions of the continuous process. In the last case, the
piecewise deterministic ODE (2.1) is replaced by the piecewise
SDE,

dX = Fn(X)dt +
√

2Bn(X)dW (t),
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where W (t) is a Wiener process and Bn(X) is an n-dependent
noise amplitude. The corresponding CK equation (2.5) be-
comes (assuming Ito calculus, say)

Lpn(x,t) = −∂Fn(x)pn(x,t)

∂x
+ ∂2Bn(x)pn(x,t)

∂x2

+
∑
m∈�

Anm(x)pm(x,t).

It is straightforward to extend the derivation of the Feynman-
Kac formula in Secs. III or V to include the intrinsic noise term.
For example, the stochastic Liouville equation (3.9) becomes
a stochastic Fokker-Planck equation, which after averaging
with respect to realizations of the discrete Markov process,
yields a generalization of the Feynman-Kac formula (3.20)
that includes diffusion terms.

A final issue concerns identifying concrete applications
where functionals other than those associated with first-
passage time problems might be relevant. One important appli-
cation area of stochastic hybrid systems is to gene regulatory
networks. Hybrid models arise when a partial thermodynamic
limit of a biochemical master equation is taken. This yields a
piecewise deterministic or stochastic differential equation for
the concentrations of proteins and messenger ribonucleic acid,
while the remaining discrete variables represent the activation
states of one or more genes [17–21]. One quantity of interest
is the amount of time that a protein concentration remains
above some threshold, which can be formulated in terms of
the occupation time of a stochastic hybrid system on R+.
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