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Stochastically gated local and occupation times of a Brownian particle
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We generalize the Feynman-Kac formula to analyze the local and occupation times of a Brownian particle
moving in a stochastically gated one-dimensional domain. (i) The gated local time is defined as the amount of
time spent by the particle in the neighborhood of a point in space where there is some target that only receives
resources from (or detects) the particle when the gate is open; the target does not interfere with the motion of
the Brownian particle. (ii) The gated occupation time is defined as the amount of time spent by the particle in
the positive half of the real line, given that it can only cross the origin when a gate placed at the origin is open;
in the closed state the particle is reflected. In both scenarios, the gate randomly switches between the open and
closed states according to a two-state Markov process. We derive a stochastic, backward Fokker-Planck equation
(FPE) for the moment-generating function of the two types of gated Brownian functional, given a particular
realization of the stochastic gate, and analyze the resulting stochastic FPE using a moments method recently
developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical
equations for the moment-generating function, averaged with respect to realizations of the stochastic gate.
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I. INTRODUCTION

An important quantity in the mathematical theory of
stochastic processes is the occupation time [1], which is the
time spent by a Brownian motion above the origin within a
time window of size t . That is, given the Brownian motion
X(t) ∈ R, the occupation time T is

T =
∫ t

0
�(X(τ ))dτ, (1.1)

where �(X) denotes the Heaviside function. In addition to
being a fundamental quantity in the mathematical theory of
random walks [2], occupation times have figured prominently
in a variety of physical applications under the alternative
name of residence times. Examples include the nonequilibrium
dynamics of coarsening systems [3,4], ergodicity properties of
anomalous diffusion [5,6], simple models of blinking quantum
dots [7], fluorescent imaging [8], and branching processes [9].
The penultimate example involves a single fluorescent particle
diffusing under the objective of a confocal microscope. Every
time it enters the focus of the laser beam it is excited and
emits photons, so that the total number of emitted photons is
proportional to the mean residence time of the molecule in the
laser beam’s cross section. If V denotes the volume occupied
by the beam, then the residence time is defined according to

T =
∫ t

0
IV (X(τ ))dτ, (1.2)

where X(t) ∈ R3 is now three-dimensional Brownian motion,
IV (x) denotes the indicator function of the set V ⊂ R3, that
is, IV (x) = 1 if x ∈ V and is zero otherwise. [Note that for
one-dimensional (1D) motion, �(x) = IR+(x).]

A related quantity is the local time [1], which characterizes
the amount of time that a diffusion process such as Brownian
motion spends in the neighborhood of a point in space. In
probability theory, it plays an important role in the pathwise
formulation of reflected Brownian motion [10]. Given the
Brownian motion X(t) ∈ R, let T (A,t) denote the occupation

time of the set A ⊂ R during the time interval [0,t]:

T (A,t) =
∫ t

0
IA(X(τ ))dτ. (1.3)

From this definition, the local time density T (a,t) at a point
a ∈ R is defined by setting A = [a − ε,a + ε] and taking

T (a,t) = lim
ε→0+

1

2ε

∫ t

0
I[a−ε,a+ε](X(s))ds. (1.4)

We thus have the following formal representation of the local
time density:

T (a,t) =
∫ t

0
δ(X(τ ) − a)dτ, (1.5)

where T (a,t)da is the amount of time the Brownian particle
spends in the infinitesimal interval [a,a + da].

Occupation and local times are two examples of a Brownian
functional. Suppose that X(t) ∈ R represents pure Brownian
motion. A Brownian functional over a fixed time interval [0,t]
is formally defined as a random variable T given by

T =
∫ t

0
U (X(τ ))dτ, (1.6)

where U (x) is some prescribed function or distribution such
that T has positive support. Thus, U (X) = δ(x − a) for
the local time density at x = a and U (x) = �(x) for the
occupation time in R+. Since X(t),t � 0, is a Wiener process,
it follows that each realization of a Brownian path will
typically yield a different value of T , which means that
T will be distributed according to some probability density
P (T ,t |x0,0) for X(0) = x0. The statistical properties of a
Brownian functional can be analyzed using path integrals, and
leads to the well-known Feynman-Kac formula [11]. For a
general review of Brownian functionals and their applications,
see Ref. [12].

In this paper, we extend the notions of local and occupation
times by considering 1D Brownian motion in a stochastically
gated domain. In the case of local time, suppose that a
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FIG. 1. Schematic diagram of Brownian motion for (a) no gate
and (b) a switching gate at x = a. In the latter case the open (closed)
state of the gate is indicated by black (gray) vertical bars. In (a) the
local time density T characterizes the amount of time the particle
spends in a neighborhood of the point x = a, whereas in (b) the
stochastically gated local time T only counts the time around x = a

when the gate is open. Note that the gate does not affect the motion
of the Brownian particle.

stochastically gated target is located at the point a. Let n(t)
be the state of the gate at time t with n(t) ∈ {0,1}. The gate is
said to be open at time t if n(t) = 1 and closed if n(t) = 0. The
gate switches between the two states according to a two-state
Markov process with rates α and β, that is,

0
β
�
α

1.

We then define the stochastically gated local time density
according to

T (a,t,t0) =
∫ t

t0

n(τ )δ(X(τ ) − a)dτ. (1.7)

Now T (a,t,t0)da is the amount of time the Brownian particle
spends in the interval [a,a + da] when the gate is open during
the time interval [t0,t]. (The presence of the dynamic gate
means that the system is time inhomogeneous.) We thus have a
doubly stochastic process driven by both the Brownian motion
and the switching gate, see Fig. 1. One possible physical
interpretation of this process is that each time the Brownian
particle is in a small neighborhood of the gate, the target
receives resources from the particle at a constant rate κ , but
only when the gate is open. Hence the total amount of resources
received by the target during the interval [t0,t] is κT (a,t,t0),
where κ has units of velocity. Note, however, that in this
example the gate does not affect the Brownian motion, that
is, the two processes are independent.

Turning to the example of occupation time, since the latter
concerns the amount of time that a Brownian particle spends
in some bounded or partially bounded domain, it is natural
to extend the notion of occupation time to the case of a
stochastically gated boundary. This type of scenario is common
in cell biology, where a macromolecule diffuses in some
bounded intracellular domain that contains one or more narrow
channels within the boundary of the domain; each channel
is controlled by a stochastic gate that switches between an
open and closed state [13]. Applications in biological physics

X(t) n = 1

n = 0

(b)

(a)

FIG. 2. Schematic diagram of two possible trajectories for gated
Brownian motion. (a) The gate is open when the Brownian particle
reaches the origin and the trajectory crosses over from the left to right
domains. (b) The gate is closed when the particle reaches the origin
resulting in the particle being reflected.

include diffusion-limited reactions [14], neurotransmission
[15], insect physiology [16], stochastically gated gap junctions
[17], and lateral membrane diffusion [18]. In our previous
studies of diffusion in domains with randomly switching
boundaries, we have focused on calculating mean first passage
times and related quantities using a method of moments
[19,20]. In this paper, we turn to a different type of problem,
namely, calculating the occupation time of a Brownian particle
moving in a stochastically gated one-dimensional domain. The
occupation time determines the amount of time spent by the
particle in the positive half of the real line, given that it can
only cross the origin when a gate placed at the origin is open;
in the closed state the particle is reflected. This is illustrated
in Fig. 2. As in the case of local time, the gate randomly
switches between the open and closed states according to a
two-state Markov process. One major difference, however, is
now the presence of the gate affects the Brownian motion. The
stochastically gated occupation time is thus

T (t,t0) =
∫ t

t0

�(Xσ (τ ))dτ, (1.8)

where Xσ denotes that the Brownian motion is gated.
In Sec. II we derive a generalized Feynman-Kac formula for

the moment generating function Q of the local time density
or the occupation time, given a particular realization of the
stochastic gate. This yields a stochastic, backward Fokker-
Planck equation (FPE), which is then analyzed in Sec. III
using the moments method of Refs. [19]. In particular, we
derive dynamical equations for Eσ [Q] with expectation taken
respect to different realizations σ of the stochastic gate. These
equations are then solved in Secs. IV and V for the local time
density and occupation time, respectively. We obtain a number
of specific results. First, we show that the expected local time
density, averaged with respect to realizations of the Brownian
motion and the stochastic gate, is given by the product of
the local time density without switching and the fraction of
time that the gate is open. This is a natural consequence
of the fact that the two processes are independent. However, the
stochastic gate has a nontrivial affect on higher-order moments
of the local time density due to temporal correlations in the
dynamics of the gate. Second, we use asymptotic analysis to
show that the averaged probability density of the occupation
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time in the large time limit reduces to the same density as the
nonswitching case. Finally, in Sec. VI we briefly discuss the
interpretation of higher-order moments of the distribution of
the moment generating function Q with respect to different
realizations of the stochastic gate.

II. GENERALIZED FEYNMAN-KAC FORMULA

In this section we develop a mathematical framework
for investigating the effects of a stochastic gate on local
and occupation times based on generalized Feynman-Kac
formulas. However, before proceeding, it is useful to consider
the stochastic dynamics of the gate itself, which evolves
independently of the Brownian motion. The discrete state n(t)
evolves according to a two-state Markov chain with matrix
generator

W =
[−β β

α −α

]
. (2.1)

The right null space of the matrix W is spanned by the vector
ψ = (1,1)� and the left null space is spanned by the stationary
density

ρ ≡
(

ρ0

ρ1

)
= 1

α + β

(
α

β

)
. (2.2)

If Pnn0 (t) = P[N (t) = n|N (0) = n0] then the corresponding
master equation takes the form

dPnn0

dt
=

∑
m=0,1

Pmn0Wmn

Using the fact that P0n0 (t) + P1n0 (t) = 1 we can solve this pair
of equations to give

P0n0 (t) = δ0,n0e
−t/τc + ατc(1 − e−t/τc ), τc = 1

α + β
.

It follows that τc is the relaxation time of the Markov
process with Pmn0 (t) → ρm in the limit t → ∞. The stationary
autocorrelation function is then given by

〈n(t)n(t ′)〉 = D

τc

e−|t−t ′ |/τc , (2.3)

with noise amplitude D = αβτ 3
c . This shows that the two-state

Markov process, also known as dichotomous noise [21], is a
form of colored noise.

A. Gated local time density

Since the gate does not affect the Brownian motion in our
definition of local time density, see Eq. (1.7) and Fig. 1, we
could simply take expectations of Eq. (1.7) with respect to the
Markov process n(τ ) to give

T =
∫ t

t0

〈n(τ )〉δ(X(τ ) − a)dτ = ρ1T ,

where T is the ungated local time density (1.5). [This would
not be possible in the case of the occupation time (1.8), since

the gate affects the Brownian motion.] On the other hand,
averaging T 2 with respect to the gate yields

T 2 =
∫ t

t0

∫ t

t0

〈n(τ )n(τ ′)〉δ(X(τ ) − a)δ(X(τ ′) − a)dτ ′dτ

= D

τc

∫ t

t0

∫ t

t0

e−|τ−τ ′|/τc〉δ(X(τ ) − a)δ(X(τ ′) − a)dτ ′dτ.

We thus see that the colored noise process has a nontrivial
affect on second-order (and higher-order) moments of the
local time density averaged with respect to realizations of
the gate. Hence, averaging T 2 with respect to the Brownian
motion is nontrivial, and we cannot simply use results from
the classical ungated case. Therefore, we will proceed by
first averaging with respect to the Brownian motion given
a particular realization of the stochastic gate on [t0,t],σ =
{n(s),t0 � s � t}. This will yield a Feynman-Kac formula in
the form of a stochastic Fokker-Planck equation (FPE), which
we will then analyze in Sec. III A.

Suppose that the initial state of the Brownian particle is
X(t0) = x0. Let P (T ,t |x0,t0) be the corresponding probability
density for T (a,t,t0) = T . (For ease of notation, we suppress
the explicit dependence on σ .) Since T � 0, we can introduce
the moment-generating function (or Laplace transform with
respect to T )

Q(s,t |x0,t0) =
∫ ∞

0
e−sT P (T ,t |x0,t0)dT . (2.4)

Using the classical path-integral representation of pure Brow-
nian motion, we have

Q(s,t |x0,t0) =
∫ ∞

0
e−sT

∫ ∞

−∞

[ ∫ x(t)=x

x(t0)=x0

δ

(
T −

∫ t

t0

n(τ )

× δ(x(τ ) − a)dτ

)
P [x]D[x]

]
dxdT

=
∫ ∞

−∞

[ ∫ x(t)=x

x(t0)=x0

exp

(
−s

∫ t

t0

n(τ )

× δ(x(τ ) − a)dτ

)
P [x]D[x]

]
dx. (2.5)

Since only the initial point x0 is fixed, we are also integrating
with respect to the final position x. Hence,

Q(s,t |x0,t0) =
∫ ∞

−∞
G(s,x,t |x0,t0)dx, (2.6)

with

G(s,x,t |x0,t0) =
〈
exp

(
−s

∫ t

t0

n(τ )δ(x(τ ) − a)dτ

)〉x(t)=x

x(t0)=x0

=
∫ x(t)=x

x(t0)=x0

exp

(
−

∫ t

t0

[
1

2

(
dx

dτ

)2

+ sn(τ )δ(x(τ ) − a)
]
dτ

)
D[x], (2.7)

where 〈· · · 〉 denotes averaging over realizations of the Brow-
nian motion.
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The next step is to note that

G(s,x,t + �t |x0,t0)

=
〈
exp

(
−s

∫ t+�t

t0

n(τ )δ(x(τ ) − a)dτ

)〉x(t+�t)=x

x(t0)=x0

≈
∫

p(�x)

〈
exp

(
−s

∫ t

t0

n(τ )δ(x(τ ) − a)dτ

)〉x(t)=x−�x

x(t0)=x0

× exp [−sn(t)δ(x − a)�t]d�x.

We have split the time interval [t0,t + �t] into two parts [t0,t]
and [t,t + �t] and introduced the intermediate state x(t) =
x − �x with �x distributed according to an infinitesimal
Wiener process. It follows that

G(s,x,t + �t |x0,t0)

= e−sn(t)δ(x−a)�t

∫
p(�x)G(s,x − �x,t |x0,t0)d�x

= e−sn(t)δ(x−a)�t

(
G(s,x,t |x0,t0) − 〈�x〉 ∂

∂x
G(s,x,t |x0,t0)

+〈�x2〉 ∂2

∂x2
G(s,x,t |x0,t0) + · · ·

)
.

Using the fact that for a Wiener process

lim
�t→0

〈�X〉
�t

= 0, lim
�t→0

〈(�X)2〉
�t

= 1

2
, (2.8)

we obtain the following forward FPE in the limit �t → 0:

∂G

∂t
= 1

2

∂2G

∂x2
− sn(t)δ(x − a)G. (2.9)

Note that G satisfies the initial condition

G(x,t0|x0,t0) = δ(x − x0).

In contrast to the standard Feynman-Kac formula, Eq. (2.9) is
in the form of a stochastic FPE due to the presence of the gating
term n(t). More precisely, Eq. (2.9) is a piecewise deterministic
FPE. From a practical perspective, it will be simpler to work
with the corresponding backward FPE for Q(s,t |x0,t − τ ).
This takes the form

∂Q

∂τ
= 1

2

∂2Q

∂x2
0

− sn(t − τ )δ(x0 − a)Q, (2.10)

which is supplemented by the final condition Q(s,t |x0,t) = 1.

B. Gated occupation time

Now suppose that the stochastic gate is placed at the origin
x = 0 and physically affects the motion of the Brownian
particle. When the gate is closed [n(t) = 0] the particle
cannot cross between the domains x < 0 and x > 0 and
is reflected if it hits the gate, whereas the particle passes
freely between the two domains when the gate is open
[n(t) = 1]. Given a particular realization of the gate over
the time interval on [t0,t],σ = {n(s),t0 � s � t}, let Pσ [X]
denote the corresponding probability density functional of the
stochastically gated Brownian trajectories. Let P (T ,t |x0,t0)
be the corresponding probability density for the occupation
time T defined by Eq. (1.8). As in the analysis of local

time, we introduce the moment-generating function or Laplace
transform (2.4) with

Q(s,t |x0,t0) =
∫ ∞

0
e−sT

∫ ∞

−∞

[∫ x(t)=x

x(t0)=x0

δ

×
(
T −

∫ t

t0

�(x(τ ))dτ

)
Pσ [x]D[x]

]
dxdT

=
∫ ∞

−∞

[ ∫ x(t)=x

x(t0)=x0

exp

(
−s

∫ t

t0

�(x(τ ))dτ

)

×Pσ [x]D[x]

]
dx. (2.11)

We are using a path-integral representation of the gated
Brownian motion. Introducing the function G according to
Eq. (2.6), we have

G(s,x,t |x0,t0) =
∫ x(t)=x

x(t0)=x0

exp

(
−s

∫ t

t0

�(x(τ ))dτ

)
Pσ [x]D[x]

≡
〈
exp

(
−s

∫ t

t0

�(x(τ ))dτ

)〉x(t)=x

x(t0)=x0

(2.12)

where 〈· · · 〉 denotes averaging over realizations of the gated
Brownian motion. G changes over an infinitesimal time
interval �t as

G(s,x,t + �t |x0,t0)

=
〈
exp

(
−s

∫ t+�t

t0

�(x(τ ))dτ

)〉x(t+�t)=x

x(t0)=x0

≈
∫

p(�x)

〈
exp

(
−s

∫ t

t0

�(x(τ ))dτ

)〉x(t)=x−�x

x(t0)=x0

× exp[−s�(x(t))�t]d�x.

Again we have split the time interval [t0,t + �t] into two
parts [t0,t] and [t,t + �t] and introduced the intermediate
state x(t) = x − �x with �x distributed according to an
infinitesimal Wiener process with density p(�x), at least
outside a neighborhood of the switching gate at x = 0. It
follows that

G(s,x,t + �t |x0,t0)

= e−s�(x(t))�t

∫
p(�x)G(s,x − �x,t |x0,t0)d�x

= e−s�(x(t))�t

(
G(s,x,t |x0,t0) − 〈�x〉 ∂

∂x
G(s,x,t |x0,t0)

+〈�x2〉 ∂2

∂x2
G(s,x,t |x0,t0) + · · ·

)
.

First suppose that the gate is open at time t,n(t) = 1, so
that Eq. (2.8) holds for all x ∈ R. We thus obtain the following
forward Fokker-Planck equation (FPE) in the limit �t → 0:

∂G

∂t
= 1

2

∂2G

∂x2
− s�(x)G, x ∈ R, t > t0 (2.13)

provided that n(t) = 1. On the other hand, if n(t) = 0, then the
infinitesimal Wiener process will be reflected at x = 0 so that

012130-4



STOCHASTICALLY GATED LOCAL AND OCCUPATION . . . PHYSICAL REVIEW E 95, 012130 (2017)

in the limit �t → 0 we have

∂G

∂t
= 1

2

∂2G

∂x2
− s�(x)G, x �= 0, t > t0 (2.14)

for n(t) = 0, supplemented by the nonflux boundary condition

∂G(s,x,t |x0,t0)

∂x

∣∣∣∣
x=0+

= 0 = ∂G(s,x,t |x0,t0)

∂x

∣∣∣∣
x=0−

. (2.15)

In both cases G satisfies the initial condition

G(s,x,t0|x0,t0) = δ(x − x0).

Just like Eq. (2.9), we see that Eqs. (2.13) and (2.14) represent
a stochastic FPE due to the dependence on the gating term n(t).

Finally, the corresponding backward FPE for Q(s,t |x0,

t − τ ) takes the form

∂Q

∂τ
= 1

2

∂2Q

∂x2
0

− s�(x(t − τ ))Q, (2.16)

with n-dependent boundary conditions at x = 0:

Q(s,t |0+,t − τ ) = Q(s,t |0−,t − τ ), (2.17a)

∂Q(s,t |x0,t − τ )

∂x0

∣∣∣∣
x=0+

= ∂Q(s,t |x0,t − τ )

∂x0

∣∣∣∣
x=0−

(2.17b)

for n(t − τ ) = 1 and

∂Q(s,t |x0,t − τ )

∂x0

∣∣∣∣
x=0+

= 0 = ∂Q(s,t |x0,t − τ )

∂x0

∣∣∣∣
x=0−

(2.18)

for n(t − τ ) = 0. That is, when the gate is open there is
continuity of the concentration and the flux across x = 0,
whereas when the gate is closed the right-hand boundary
of (−∞,0) and the left-hand boundary of (0,∞) are re-
flecting. We also have the final condition Q(s,t |x0,t) = 1.
Equation (2.16) will be analyzed in Sec. III B.

III. DYNAMICAL EQUATIONS FOR Eσ [ Q]

From the definition of Q, see Eq. (2.4), it is clear that solving
Eq. (2.10) or Eq. (2.16) for fixed σ allows us to determine the
kth moment of the local time density (1.7) or occupation time
(1.8) averaged with respect to the gated Brownian motion X(t):

〈T k〉 ≡
∫ ∞

0
T kP (T ,t |x0,t − τ )dT

= (−1)k
dk

dsk
Q(s,t |x0,t − τ )

∣∣∣∣
s=0

. (3.1)

However, in order to determine statistics of the doubly
stochastic process, we also need to take expectations with
respect to realizations σ of the gate:

〈〈T k(τ )〉〉 = Eσ [〈T k〉] = (−1)k
dk

dsk
Eσ [Q(s,t |x0,t − τ )]

∣∣∣∣
s=0

,

(3.2)

assuming we can reverse the order of expectation and
differentiation. Hence, calculating the moments of T with

respect to the doubly stochastic process, requires determining
Eσ [Q]. The latter is the generator of moments of T averaged
with respect to realizations of the stochastic gate. We will
proceed by adapting our recent work on stochastic diffusion
equations in randomly switching environments [19]. The basic
idea of our approach is to note that since Q is a random
field with respect to realizations of the stochastic gate, there
exists a probability density functional � that determines the
distribution of the densities q(x0,τ ) = Q(s,t |x0,t − τ ) for
fixed s,t . The expectation Eσ [Q] then corresponds to the
first moment of this density functional. (This is distinct from
the first moment of T generated by Q.) Rather than dealing
with the probability density functional directly, we spatially
discretize the piecewise deterministic backward FPE (2.10)
or (2.16) using a finite-difference scheme and use this to
derive corresponding differential equations for Eσ [Q]. More
precisely, we will derive equations for Eσ [Q] conditioned on
the initial state of the gate.

A. Gated local time density

We begin by discretizing the backward FPE (2.10) for local
time. Introduce the lattice spacing � and set x0 = j�,� ∈ Z.
Let Qj (τ ) = Q(s,t |t − τ,j�),j ∈ Z, and a = J�. This yields
the piecewise deterministic ODE (for fixed s,t)

dQi

dτ
=

∑
j∈Z

�ijQj − sn(t − τ )δi,J Qi, (3.3)

with Qj (s,0) = 1. Here

�ij = 1

2�2
[δi,j+1 + δi,j−1 − 2δi,j ] (3.4)

is the discrete Laplacian. Let Q(τ ) = [Qj (τ ), j ∈ Z] and
introduce the probability density

Prob{Q(τ ) ∈ (Q,Q + dQ),n(t − τ ) = n} = �n(Q,τ )dQ,

(3.5)

The probability density evolves according to the follow-
ing infinite-dimensional differential Chapman-Kolmogorov
(dCK) equation:

∂�n

∂τ
= −

∑
i∈Z

∂

∂Qi

⎡
⎣

⎛
⎝∑

j∈Z
�ijQj − s

�
nδi,J Qi

⎞
⎠�n(Q,t)

⎤
⎦

+
∑

m=0,1

Wnm�m(Q,τ ), (3.6)

where W is the generator of the two-state Markov process
underlying the stochastic gate, see Eq. (2.1). Since the dCK
equation (3.6) is linear in the Qj , it follows that we can obtain
a closed set of equations for the first-order (and higher-order)
moments of the density �n.

Let

Qn,k(s,τ ) = E[Qk(s,τ )1n(t−τ )=n] =
∫

�n(Q,τ )QkdQ,

(3.7)
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where ∫
F (Q)dQ =

⎡
⎣∏

j

∫ ∞

0
dQj

⎤
⎦F (Q).

Multiplying both sides of Eq. (3.6) by Qk and integrating with
respect to Q gives [after integrating by parts and assuming that
�n(Q,τ ) → 0 as Q → ∞]

dQn,k

dt
=

∑
j∈Z

�kjQn,j − s

�
nδk,JQn,k +

∑
m=0,1

WnmQm,k.

(3.8)

We have assumed that the final discrete state n(t) is distributed
according to the stationary distribution ρn so that∫

�n(Q,0)dQ = ρn. (3.9)

If we now retake the continuum limit � → 0 and set

Qn(x; s,τ ) = Eσ [Q(s,t |x,t − τ )1n(t−τ )=n] (3.10)

for fixed t , then we obtain the system of equations

∂Q0

∂τ
= 1

2

∂2Q0

∂x2
− βQ0 + βQ1 (3.11a)

∂Q1

∂τ
= 1

2

∂2Q1

∂x2
− sδ(x − a)Q1 + αQ0 − αQ1. (3.11b)

We have dropped the subscript on the initial position x0. In
the above derivation, we have assumed that integrating with
respect to Q and taking the continuum limit commute. (One
can also avoid the issue that Q is an infinite-dimensional vector
by carrying out the discretization over a finite domain [−L,L],
and taking the limit L → ∞ once the moment equations
have been derived.) Finally, applying the final condition
Q(s,t |x0,t) = 1 implies that Qn(x; s,0) = 1.

Note that in the remainder of the paper, we will modify
the definition of the moments of T given by Eq. (3.2) under
the assumption that the initial state of the gate, n(t − τ ), is
determined by the stationary distribution ρn:

〈〈T k(τ )〉〉 = (−1)k
dk

dsk
Eσ [Q(s,t |x0,t − τ )01n(t−τ )=0]ρ0

+ (−1)k
dk

dsk
Eσ [Q(s,t |x0,t − τ )01n(t−τ )=1]ρ1

= (−1)k
dk

dsk
[ρ0Q0(x0; s,τ ) + ρ1Q1(x0; s,τ )]s=0.

(3.12)

B. Gated occupation time

We proceed in a similar fashion for the occupation time (1.8)
by spatially discretizing the piecewise deterministic backward
FPE (2.16). The resulting piecewise deterministic ODE (for
fixed s,t) now takes the form

dQi

dτ
=

∑
j∈Z

�n
ijQj − sQi, i > 0 (3.13a)

dQi

dτ
=

∑
j∈Z

�n
ijQj i < 0 (3.13b)

for n(t − τ ) = n. Away from the origin (i �= ±1), �n
ij = �ij

where �ij is the discrete Laplacian (3.4). If the gate is open
then the particle can freely hop across the origin so �1

±1,j =
�±1,j , whereas if the gate is closed then the particle is reflected
at the origin, which means

�0
1,j = 1

�2
[δj,2 − δj,1], �0

−1,j = 1

�2
[δj,−2 − δj,−1].

The probability density of Eq. (3.5) evolves according
to the following infinite-dimensional differential Chapman-
Kolmogorov (dCK) equation:

∂�n

∂τ
= −

∑
i �=0

∂

∂Qi

⎡
⎣

⎛
⎝∑

j �=0

�n
ijQj − s�iQi

⎞
⎠�n(Q,t)

⎤
⎦

+
∑

m=0,1

Wnm�m(Q,τ ), (3.14)

where �i = 1 if i > 0 and zero otherwise, and W is the
generator (2.1). Again the dCK equation (3.14) is linear in
the Qj , so we can obtain a closed set of equations for the
first-order (and higher-order) moments of the distribution �n.

Multiplying both sides of Eq. (3.14) by Qk and integrating
with respect to Q gives [after integrating by parts and assuming
that �n(Q,τ ) → 0 as Q → ∞]

dQn,k

dt
=

∑
j �=0

�n
kjQn,j − s�kQn,k +

∑
m=0,1

WnmQm,k (3.15)

with Q defined by Eq. (3.7). We have again assumed that the
final discrete state n(t) is distributed according to the stationary
distribution ρn so that Eq. (3.9) holds. If we now retake the
continuum limit � → 0, then we obtain the following system
of equations for Qn(x; s,τ ) defined by Eq. (3.10):

∂Q0

∂τ
= 1

2

∂2Q0

∂x2
− s�(x)Q0 − βQ0 + βQ1, x ∈ R\0

(3.16a)

∂Q1

∂τ
= 1

2

∂2Q1

∂x2
− s�(x)Q1 + αQ0 − αQ1, x ∈ R\0

(3.16b)

supplemented by the boundary conditions

Q1(s,t |0+,t − τ ) = Q1(s,t |0−,t − τ ), (3.17a)

∂Q1(s,t |x0,t − τ )

∂x

∣∣∣∣
x=0+

= ∂Q1(s,t |x0,t − τ )

∂x

∣∣∣∣
x=0−

(3.17b)

and

∂Q0(s,t |x0,t − τ )

∂x

∣∣∣∣
x=0+

= 0 = ∂Q0(s,t |x0,t − τ )

∂x

∣∣∣∣
x=0−

.

(3.18)
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IV. ANALYSIS OF Q0 AND Q1: LOCAL TIME

A. No switching

In the following we will take the location of the gate to be
at a = 0. In the absence of a switching gate [n(t) = 1 for all
t], we have Q0 = 0 and α = 0 so that Eqs. (3.11) reduce to

∂Q

∂τ
= 1

2

∂2Q

∂x2
− sδ(x)Q (4.1)

for Q1 = Q, where

Q(x; s,τ ) =
∫ ∞

0
e−sT P (T ,t |x,t − τ )dT . (4.2)

with

T = T (τ ) =
∫ t

t−τ

δ(X(t ′))dt ′ =
∫ τ

0
δ(X(t ′))dt ′.

Since the process is now time homogeneous, the solutions are
independent of t , that is, P (T ,t |x,t − τ ) = P (T ,τ |x,0).

The case of no switching has been analyzed in Ref. [23],
both for pure Brownian motion and for Brownian motion in
the presence of ordered and spatially disordered potentials. We
focus on pure Brownian motion here. Laplace transforming the
backward FPE (4.1) with respect to time τ yields the ODE

zQ̃(x; s,z) − 1 = 1
2Q̃′′(x; s,z) − sδ(x)Q̃(x; s,z), (4.3)

with Q̃′ = dQ̃/dx and

Q̃(x; s,z) =
∫ ∞

0
e−zτQ(x,s,τ )dτ

=
∫ ∞

0

∫ ∞

0
e−zτ−sT P (T ,τ |x,0)dT dτ.

If a particle starts at x = ±∞ then it will never cross the
origin a finite time τ in the future, that is, P (T ,τ | ± ∞,0) =
δ(T ). Substituting this into the definition of Q̃ shows that
Q̃(±∞; s,z) = z−1. Following the standard analysis of 1D
Green’s functions, we have to solve Eq. (4.3) separately for
Q̃ = u+(x; s,z) + z−1 in x ∈ (0,∞) and Q̃ = u−(x; s,z) +
z−1 in x ∈ (−∞,0), and then match the solutions at x = 0.
(We have performed a uniform shift of the solutions for
convenience.) That is, u± satisfy the equations

1
2u′′

±(x; s,z) − zu±(x; s,z) = 0, (4.4)

with corresponding boundary conditions u±(±∞; s,z) = 0.
Note that these equations are independent of the Laplace
variable s. The s dependence emerges from the matching
conditions, which are obtained by (i) imposing continuity of
the solution at x = 0 and (ii) integrating Eq. (4.3) across x = 0:

u+(0; s,z) = u−(0; s,z) = U (s,z) − z−1, (4.5a)

u′
+(0; s,z) − u′

−(0; s,z) = 2sU (s,z), (4.5b)

for some unknown U . Rearranging this pair of equations
shows that

U = U (s,z) = λ(z)

z(s + λ(z))
, (4.6)

where

λ(z) = u′
−(0; s,z)/u−(0; s,z) − u′

+(0; s,z)/u+(0; s,z)

2
. (4.7)

Using the fact that λ(z) is independent of s, we can perform
the inverse Laplace transform L−1 with respect to s, which
shows that

L−1[U ](T ,z) = λ(z)

z
e−λ(z)T .

Noting that

L−1[U ](T ,z) = L−1[Q̂](0; T ,z) =
∫ ∞

0
e−zτP (T ,τ |0,0)dτ,

we conclude that

F (T ,z) ≡
∫ ∞

0
e−zτP (T ,τ |0,0)dτ = λ(z)

z
e−λ(z)T . (4.8)

The function F (T ,z) can be calculated explicitly in the
case of pure Brownian motion. In particular, Eqs. (4.4) have
the solutions

u±(x; s,z) = − sU (s,z)√
2z

e∓√
2zx . (4.9)

Substituting into the continuity condition (4.5a) implies

U (s,z) − z−1 = − sU (s,z)√
2z

,

that is,

U (s,z) = 1

z

√
2z

s + √
2z

.

Comparison with Eq. (4.6) establishes that λ(z) = √
2z and

hence

F (T ,z) =
√

2

z
e−√

2zT .

Inverting the inverse Laplace transform with respect to z then
shows that the distribution of local times around the origin is
a Gaussian,

P (T ,t |0,t − τ ) =
√

2

πτ
e−T 2/2τ . (4.10)

It follows that the first and second moments of the local time
density (starting at x = 0) are

〈T (τ )〉 =
∫ ∞

0
T P (T ,τ |0,0)dT =

√
2τ

π
, (4.11)

and

〈T 2(τ )〉 =
∫ ∞

0
T 2P (T ,τ |0,0)dT = τ. (4.12)

B. Stochastically gated local time

Let us now turn to the full switching model given by
Eqs. (3.11). Laplace transforming these equation with respect
to τ gives

−1 = 1

2

∂2Q̃0

∂x2
− (z + β)Q̃0 + βQ̃1 (4.13a)

−1 = 1

2

∂2Q̃1

∂x2
− sδ(x)Q̃1 + αQ̃0 − (z + α)Q̃1. (4.13b)
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Adding the pair of equations, after multiplying the first by ρ0

and the second by ρ1, and setting Q̃ = ρ0Q̃0 + ρ1Q̃1 yields

−1 = 1

2

∂2Q̃
∂x2

− zQ̃ − sρ1δ(x)Q̃1. (4.14)

Equation (4.14) can be analyzed along similar lines to
Eq. (4.3). In particular, we solve Eq. (4.14) separately for Q̃ =
u+(x; s,z) + z−1 in x ∈ (0,∞) and Q̃ = u−(x; s.z) + z−1 in
x ∈ (−∞,0) using the boundary conditions u±(±∞; s,z) = 0,
and then match the solutions at x = 0. The matching condi-
tions now take the form

u+(0; s,z) = u−(0; s,z) = ρ0U0(s,z) + ρ1U1(s,z) − z−1,

u′
+(0; s,z) − u′

−(0; s,z) = 2ρ1sU1(s,z),

with Q̃n = Un at x = 0. Rearranging this pair of equations
shows that

ρ1U1(s,z) = λ(z)[1 − zρ0U0(s,z)]

z(s + λ(z))
, (4.15)

where λ(z) is again given by Eq. (4.7) so that λ(z) = √
2z.

Equation (4.15) determines U1 in terms of U0. It remains
to find U0, which can be achieved by substituting βQ̃1 =
(α + β)Q̃ − αQ̃0 in Eq. (4.13a):

1

2

∂2Q̃0

∂x2
− (z + α + β)Q̃0 = −1 − (α + β)Q̃ (4.16)

This equation can be solved in terms of the Green’s function
H (x,x ′; z) defined according to

1

2

∂2H

∂x2
− (z + α + β)H = −δ(x − x ′), (4.17)

which yields

H (x,x ′; z) = 1

λ(z + α + β)
e−λ(z+α+β)|x−x ′ |. (4.18)

Having obtained H , it follows that

Q̃0(x; s,z) =
∫ ∞

−∞
H (x,x ′; z)[1 + (α + β)Q̃(x ′; s,z)]dx ′.

(4.19)

Now setting x = 0 in Eq. (4.19) gives

U0(s,z) = 1

λ(z + α + β)

∫ ∞

−∞
e−λ(z+α+β)|x ′ |

[
1 + (α + β)

×
(

1

z
− sρ1U1(s,z)

λ(z)
e−λ(z)|x ′ |

)]
dx ′

= 2

λ(z + α + β)

∫ ∞

0
e−λ(z+α+β)x ′

×
[

1 + (α + β)

(
1

z
− sρ1U1(s,z)

λ(z)
e−λ(z)x ′

)]
dx ′

= 2

λ(z + α + β)

[
z + α + β

zλ(z + α + β)

− sβU1(s,z)

λ(z)[λ(z + α + β) + λ(z)]

]
. (4.20)

Equations (4.15) and (4.20) yield a pair of equations for the
two unknowns U0(s,z) and U1(s,z).

Rather than obtaining the distribution of the local time, it
is simpler to focus on the moments of the local time defined
according to (3.12). Laplace transforming with respect to τ

gives

〈〈T̃ k(z)〉〉 = (−1)k
dk

dsk
[ρ0U0(s,z) + ρ1U1(s,z)]s=0. (4.21)

Let us first consider the mean local time density 〈〈T (τ )〉〉.
Differentiating Eq. (4.15) with respect to s shows that

ρ1[s + λ(z)]∂sU1(s,z) + ρ1U1(s,z) = −ρ0λ(z)∂sU0(s,z).

(4.22)

Now setting s = 0 in Eqs. (4.15) and (4.20) gives

ρ1U1(0,z) = z−1 − ρ0U0(0,z)

U0(0,z) = 1

z
,

where we have used the result λ(z + α + β) =√
2[z + α + β]. Equation (4.22) thus shows that

〈〈T̃ (z)〉〉 = ρ1

z
√

2z
. (4.23)

Therefore, in the presence of a switching gate

〈〈T (τ )〉〉 = ρ1

√
2τ

π
, τ > 0. (4.24)

This agrees with the result obtained by taking the expectation
of Eq. (1.7) with respect to realizations of the stochastic gate
directly, see Sec. II A. It reflects the fact that since the switching
gate and the Brownian motion are independent stochastic
processes, the expected local time is a product of the local
time without switching multiplied by the fraction of time that
the gate is open.

However, the presence of the stochastic gate has a nontrivial
affect on higher-order moments of the local time due to
temporal correlations between the state of the gate at different
times. In order to illustrate this, we consider the second-order
moment 〈〈T 2(τ )〉〉. Differentiating Eq. (4.22) with respect to s

gives

ρ1[s + λ(z)]∂2
s U1(s,z) + 2ρ1∂sU1(s,z) = −ρ0λ(z)∂2

s U0(s,z).

(4.25)

Hence, in Laplace space

〈〈T̃ 2(z)〉〉 = − 2ρ1

λ(z)
∂sU1(0,z) = 2ρ1

zλ2(z)
+ 2ρ0

λ(z)
∂sU0(0,z),

(4.26)

where we have used Eq. (4.22). Differentiating Eq. (4.20) with
respect to s and setting s = 0 gives

∂sU0(0,z) = −βλ(z)F (z)

z2
,

F (z) = 1

λ(z + α + β)[λ(z + α + β) + λ(z)]
.

Therefore,

〈〈T̃ 2(z)〉〉 = ρ1

z2
− 2βρ0F (z)

z2
. (4.27)
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Finally, setting λ(z) = √
2z and inverting the Laplace trans-

forms using the convolution theorem,

〈〈T 2(τ )〉〉 = ρ1τ − 2βρ0

∫ τ

0
f (τ − t)tdt, (4.28)

where

f (τ ) =
∫ τ

0
F(τ − τ ′)G(τ ′)dτ ′

and

F(τ ) = 1√
2πτ

e−(α+β)τ ,

G(τ ) = 1√
2(α + β)

1

2τ
e−(α+β)τ/2I1/2

(
(α + β)τ

2

)
.

Here Iν(x) denotes the modified Bessel function of order ν. The
first term on the right-hand side of Eq. (4.28) is the product
of the result for no switching and the fraction of time the
gate is open. The second term specifies the reduction in the
second-order moment of the local times due to the effects
of temporal correlations in the gate dynamics. In the limit
z → 0,F (z) ∼ 1/[2(α + β)], which means that

〈〈T̃ 2(z)〉〉 ∼ ρ1

z2
− ρ1ρ0

z2
,

and

〈〈T 2(τ )〉〉 ∼ ρ2
1τ, τ → ∞. (4.29)

Our results are confirmed by numerical plots of the inverse
Laplace transforms in Fig. 3.

V. ANALYSIS OF Q0 AND Q1: OCCUPATION TIME

A. Ungated Brownian motion

In the absence of a switching gate [n(t) = 1 for all t], we
have Q0 = 0 and α = 0 so that Eqs. (3.11) reduce to

∂Q

∂τ
= 1

2

∂2Q

∂x2
− s�(x)Q (5.1)

for Q1 = Q, where Q is given by Eq. (4.2) with

T = T (τ ) =
∫ t

t−τ

�(X(t ′))dt ′ =
∫ τ

0
�(X(t ′))dt ′.

Since the process is now time homogeneous, the solutions are
independent of t , that is, P (T ,t |x,t − τ ) = P (T ,τ |x,0).

The case of no switching was originally analyzed for pure
Brownian motion by Levy [1] and has also been extended
to Brownian motion in the presence of ordered and spatially
disordered potentials, see Ref. [23]. Laplace transforming the
backward FPE (5.1) with respect to time τ yields the ODE

zQ̃(x; s,z) − 1 = 1
2Q̃′′(x; s,z) − s�(x)Q̃(x; s,z), (5.2)

with Q̃′ = dQ̃/dx and

Q̃(x; s,z) =
∫ ∞

0
e−zτQ(x,s,τ )dτ

=
∫ ∞

0

∫ ∞

0
e−zτ−sT P (T ,τ |x,0)dT dτ. (5.3)

Time τ

(b)
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2.5

0
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FIG. 3. Comparison of functions g(τ ) = 2βρ0

∫ τ

0 f (τ − t)tdt

and ρ1τ for α = β = ρ0 = ρ1 = 0.5. (a) g(τ ) � ρ1τ at relatively
short times. (b) On longer time scales g(τ ) → ρ1τ/2.

Following the standard analysis of 1D Green’s functions, we
have to solve Eq. (5.2) separately for Q̃ = u+(x; s,z) in x ∈
(0,∞) and Q̃ = u−(x; s,z) in x ∈ (−∞,0), and then match the
solutions at x = 0. That is, u± satisfy the equations

1
2u′′

+ − (z + s)u+ = −1, x > 0 (5.4a)

1
2u′′

− − zu− = −1, x < 0. (5.4b)

The matching conditions are obtained by (i) imposing continu-
ity of the solution at x = 0 and (ii) integrating Eq. (5.2) across
x = 0:

u+(0; s,z) = u−(0; s,z) = U, u′
+(0; s,z) = u′

−(0; s,z)

for U = Q̃(0; s,z). In order to determine the far-field boundary
conditions for x → ±∞, we note that if a particle starts at
x = ±∞ then it will never cross the origin a finite time τ in
the future, that is,

P (T ,τ |∞,0) = δ(t − T ), P (T ,τ | − ∞,0) = δ(T ).

Substituting this into the definition of Q̃ shows that

u+(∞; s,z) = 1

z + s
, u−(−∞; s,z) = 1

z
. (5.5)
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If we now perform the shifts

u+(x; s,z) = 1

z + s
+ B+y+(x; s,z), (5.6a)

u−(x; s,z) = 1

z
+ B−y−(x; s,z), (5.6b)

then we obtain the homogeneous equations

1
2y ′′

+ − (z + s)y+ = 0, x > 0 (5.7a)

1
2y ′′

− − zy− = 0, x < 0 (5.7b)

with y+(∞; s,z) = 0 and y−(−∞; s,z) = 0. The constants B±
can be found by imposing the matching conditions, which take
the explicit form

1

z + s
+ B+y+(0; s,z) = 1

z
+ B−y−(0; s,z) = U (5.8a)

B+y ′
+(0; s,z) = B−y ′

−(0; s,z). (5.8b)

Equations (5.8) can be used to express U (s,z) in terms of
λ±(s,z) = y ′

±(0; s,z)/y±(0; s,z):

U (s,z) = L1(s,z)

z
+ L2(s,z)

z + s
, (5.9)

where

L1(s,z) = λ−(s,z)

λ−(s,z) − λ+(s,z)
,

L2(s,z) = −λ+(s,z)

λ−(s,z) − λ+(s,z)
. (5.10)

Note that L1(s,z) + L2(s,z) = 1. Finally, explicitly solving
Eqs. (5.7) yields

λ+(s,z) = −
√

2(z + s), λ−(s,z) = √
2z, (5.11)

so that combining Eqs. (5.9) and (5.10), and using the
definition (5.3), we have

U (s,z) ≡
∫ ∞

0

∫ ∞

0
e−zτ−sT P (T ,τ |0,0)dT dτ

= 1√
z(s + z)

. (5.12)

Inverting the double Laplace transform with respect to s

and then z recovers the well-known arcsine law [1] for the
probability density of the occupation time for pure Brownian
motion starting at the origin:

P (T ,τ |0,0) = 1

π
√

T (τ − T )
, 0 < T < τ. (5.13)

B. Stochastically gated Brownian motion

Let us now turn to the occupation time of stochastically
gated Brownian motion and Eqs. (3.11). Laplace transforming
these equation with respect to τ gives

−1 = 1

2

∂2Q̃0

∂x2
− s�(x)Q̃0 − (z + β)Q̃0 + βQ̃1 (5.14a)

−1 = 1

2

∂2Q̃1

∂x2
− s�(x)Q̃1 + αQ̃0 − (z + α)Q̃1 (5.14b)

supplemented by the boundary conditions

Q̃1(0+; s,z) = Q̃1(0−; s,z), (5.15a)

∂Q̃1(x; s,z)

∂x

∣∣∣∣
x=0+

= ∂Q̃1(x; s,z)

∂x

∣∣∣∣
x=0−

(5.15b)

and

∂Q̃0(x; s,z)

∂x

∣∣∣∣
x=0+

= 0 = ∂Q̃0(x; s,z)

∂x

∣∣∣∣
x=0−

. (5.16)

From the boundary conditions (5.15) and (5.16), we set

∂Q̃1(x; s,z)

∂x

∣∣∣∣
x=0+

= ∂Q̃1(x; s,z)

∂x

∣∣∣∣
x=0−

= K1,

with K1 determined later by imposing (5.16).
Adding the pair of equations (5.14), after multiplying the

first by ρ0 and the second by ρ1, and setting Q̃ = ρ0Q̃0 + ρ1Q̃1

yields

−1 = 1

2

∂2Q̃
∂x2

− s�(x)Q̃ − zQ̃, (5.17)

supplemented by the boundary condition

∂Q̃(x; s,z)

∂x

∣∣∣∣
x=0+

= ∂Q̃(x; s,z)

∂x

∣∣∣∣
x=0−

= ρ1K1.

Equation (5.17) can be analyzed along similar lines to
Eq. (5.2). In particular, we solve Eq. (5.17) separately for Q̃ =
u+(x; s,z) in x ∈ (0,∞) and Q̃ = u−(x; s,z) in x ∈ (−∞,0),
and then match the solutions at x = 0 by setting

u′
+(0; s,z) = u′

−(0; s,z) = ρ1K1.

The resulting solution is

u+(x; s,z) = 1

z + s
− ρ1K1√

2(z + s)
e−√

2(z+s)x, (5.18a)

u−(x; s,z) = 1

z
+ ρ1K1√

2z
e
√

2zx . (5.18b)

Since βQ̃1 = (α + β)Q̃ − αQ̃0, we can rewrite equation
(5.14a) as

1

2

∂2Q̃0

∂x2
− s�(x)Q̃0 − (z + α + β)Q̃0 = −1 − (α + β)Q̃

(5.19)

with ∂xQ̃0(0−; s,z) = 0 = ∂xQ̃0(0+; s,z). This equation can be
solved in terms of the Green’s function K(x,x ′; s,z) defined
according to

1

2

∂2K

∂x2
− s�(x)K − (z + α + β)K = −δ(x − x ′), (5.20)

which yields

K(x,x ′; s,z) = 1

μ+(z)
e−μ+(z)|x−x ′ | (5.21)

for x > 0 and

K(x,x ′; s,z) = 1

μ−(z)
e−μ−(z)|x−x ′ | (5.22)
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for x < 0. Here

μ±(z) = |λ±(z + α + β)|. (5.23)

Having obtained K , it follows that

Q̃0(x; s,z) = [Ae−μ+(z)x�(x) + Beμ−(z)x�(−x)]

+
∫ ∞

−∞
K(x,x ′; s,z)[1 + (α + β)Q̃(x ′; s,z)]dx ′.

(5.24)

Substituting for Q̃ using Eqs. (5.18) we obtain a complicated
expression for Q̃0 that involves the unknown constants
A,B,K1. The first two can be expressed in terms of K1 by
imposing ∂xQ̃0(0−; s,z) = 0 = ∂xQ̃0(0+; s,z). Finally, K1 is
determined by imposing the boundary conditions (5.15a). The
details are presented in the Appendix.

The main result we obtain in the Appendix is that if ρ0 < 1
(the gate is open at least some of the time), then

Q̃(0±,s,z) ≈ 1√
z(s + z)

, s,z → 0. (5.25)

Performing a double inverse Laplace transform then implies
that in the limit T ,τ → ∞, we have

ρ0Eσ [P (T ,t |0,t − τ )1n(t−τ )=0]

+ ρ1Eσ [P (T ,t |0,t − τ )1n(t−τ )=1] ≈ 1

π
√
T (τ − T )

(5.26)

for 0 � T < τ. This result has the following interpretation.
Although the closing of the gate reduces the number of times
the particle crosses the origin from left to right, it also reduces
the number of times it crosses from right to left. Hence, in the
large-time limit these two effects cancel out. On the other hand,
if ρ0 = 1 (gate always closed) then either P = δ(T − τ ) when
the particle starts in the positive x axis or P = δ(T ) when the
particle starts in the negative x axis.

VI. HIGHER-ORDER MOMENTS OF Q

So far we have focused on first moments of the generator
Q with respect to realizations of the gate. Here we briefly
discuss the interpretation of higher-order moments of Q. For
the sake of simplicity, we focus on the case of local time,
although similar conclusions hold for the occupation time.
Equations for these higher-order moments can be derived using
the discretization scheme of Sec. III and, in particular, the dCK
equation (3.6). We will illustrate this by considering second-
order moments. Let

Cn,kl(s,τ ) = Eσ [Qk(s,τ )Ql(s,τ )1n(t−τ )=n]

=
∫

�n(Q,t)Qk(s,t)Ql(s,t)dQ.

Multiplying both sides of Eq. (3.6) by Qk(s,τ )Ql(s,τ ) and
integrating with respect to Q gives (after integration by parts)

dCn,kl

dτ
=

∑
j

[�kjCn,jl + �ljCn,jk] − s

�
nδk,J Cn,J l

− s

�
nδl,J Cn,kJ +

∑
m=0,1

WnmCm,kl . (6.1)

If we now retake the continuum limit a → 0, we obtain a
system of parabolic equations for the equal-time two-point
correlations

Cn(x,y; s,τ ) = Eσ [Q(s,t |x,t − τ )Q(s,t |y,t − τ )1n(t−τ )=n],

(6.2)

given by

∂C0

∂τ
= 1

2

∂2C0

∂x2
+ 1

2

∂2C0

∂y2
− βC0 + βC1 (6.3a)

∂C1

∂τ
= 1

2

∂2C1

∂x2
+ 1

2

∂2C1

∂y2
+ αC0 − αC1 − sδ(x − a)

×C1(a,y; s,τ ) − sδ(y − a)C1(x,a; s,τ ). (6.3b)

As we will show below Cn determines statistical correlations
between the local times of two independent Brownian particles
moving in the same switching environment. The existence of
such correlations reflects the fact that, in general, solutions of
Eqs. (6.3) cannot be expressed as the product of first-order
moments.

From the definition of Q in Eq. (2.5), we see that

C(x,y; s,τ ) = Eσ

[∫ ∞

0
e−sT P (T ,t |x,t − τ )dT

×
∫ ∞

0
e−sT ′

P (T ′,t |y,t − τ )dT ′
]

(6.4)

for C = C0 + C1. It follows that

(−1)k
dk

dsk
C(x,y; s,τ )

∣∣∣∣
s=0

= Eσ [Tk(x,y,τ )],

where

Tk(x,y,τ ) =
∫ ∞

0

∫ ∞

0
(T + T ′)kP (T ,t |x,t − τ )

×P (T ′,t |y,t − τ )dT dT ′.

For k = 1, we simply have the sum of the local times averaged
with respect to the Brownian motion and the stochastic gate,

Eσ [T1(x,y,τ )] = 〈〈T (x,τ )〉〉 + 〈〈T (y,τ )〉〉.
whereas for k = 2, we have the expression

Eσ [T2(x,y,τ )] = 〈〈T (x,τ )2〉〉 + 〈〈T (y,τ )2〉〉
+ Eσ [〈T (x,τ )〉〈T (y,τ )〉].

Let us now define

C(x,y; s,τ ) = Eσ [Q(s,t |x,t − τ )]Eσ [Q(s,t |y,t − τ )]

and set

(−1)k
dk

dsk
C(x,y; s,τ )

∣∣∣∣
s=0

= Sk(x,y,τ ).

It is straightforward to show that

Eσ [T1(x,y,τ )] − S1(x,y,τ ) 0 = 0,

Eσ [T2(x,y,τ )] − S2(x,y,τ ) = Eσ [〈T (x,τ )〉〈T (y,τ )〉]
−〈〈T (x,τ )〉〉〈〈T (y,τ )〉〉.
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Since C(x,y; s,τ ) �= C(x,y; s,τ ), it follows that

Eσ [〈T (x,τ )〉〈T (y,τ )〉] �= 〈〈T (x,τ )〉〉〈〈T (y,τ )〉〉.
In other words, C − C is a generator for statistical correlations
between the expected local times of two independent Brownian
particles moving in the same switching environment but
starting from different points x,y. A similar argument shows
that rth order moments of � generate statistical correlations
between r independent Brownian particles with initial posi-
tions x1, . . . ,xr all moving in the same randomly switching
environment.

VII. DISCUSSION

In this paper we have shown how to extend the probabilistic
notions of local and occupation times to the case of a
1D Brownian particle moving in a stochastically switching
environment. We derived a generalized Feynman-Kac formula
for the moment-generating function of the local time density or
occupation time in the form of a stochastic, backward Fokker-
Planck equation (FPE). We then analyzed the stochastic FPE
using a moments method recently developed for diffusion
processes in randomly switching environments. In addition
to constructing the general mathematical framework, we
also illustrated the theory with two simple examples. First,
we showed that the expected local time density, averaged
with respect to realizations of the Brownian motion and the
stochastic gate, is given by the product of the local time density
without switching and the fraction of time that the gate is open.
On the other hand, temporal correlations of the stochastic gate
generate nontrivial corrections to second-order moments of the
local time density. Second, we showed that in the large-time
limit the presence of a gate does not affect the asymptotic form
of the averaged occupation time probability density. This latter
result would have been difficult to establish a priori.

Although we have focused on a relatively simple model
of Brownian motion with a stochastic gate, the mathematical
framework for analyzing stochastically gated Brownian func-
tionals can be applied to a much wider range of problems.
One natural extension is to consider the occupation time
of a Brownian particle in a bounded domain � ⊂ Rd for
d = 1,2,3, with parts of the boundary ∂� consisting of
stochastically gated channels. We have recently analyzed
such systems in the case of first-passage time problems [22].
Another obvious extension is to consider a Brownian particle
moving in some external potential (conservative force). This
has been investigated extensively in one dimension for both
ordered and spatially disordered potentials, but in the absence
of a switching gate [23]. It would also be interesting to explore
other examples of Brownian functionals as highlighted in the
review [12].

As we briefly indicated in the introduction, the general
problem of stochastically gated Brownian functionals is
strongly motivated by an important class of problems in
cellular biophysics. These involve the exchange of macro-
molecules such as proteins between subcellular compartments
and the cytoplasm via small pores in the membrane of the
compartments [13]. If each pore acts as a stochastic gate,
then one has the problem of analyzing Brownian motion

(a) confinement domain

anchored proteins

(b)

FIG. 4. Examples of gated diffusion. (a) The nuclear envelope
with inset showing components of a single nuclear pore. 1, Nuclear
envelope, 2, outer ring; 3, spokes; 4, basket; 5, filaments. Each of
the eight protein subunits surrounding the actual pore (the outer
ring) projects a spoke-shaped protein into the pore channel. (Public
domain figure from Wikimedia). (b) Picket-fence model of membrane
diffusion. The plasma membrane is parceled up into compartments
whereby both transmembrane proteins and lipids undergo short-term
confined diffusion within a compartment and long-term hop diffusion
between compartments. Transmembrane proteins are confined either
by the actin-based membrane skeleton or anchored-proteins.

in a finite domain with a randomly switching boundary (or
partial boundary). One important example is the transport
of molecules between the cell nucleus and the surrounding
cytoplasm. The nucleus of eukaryotes is surrounded by a
protective nuclear envelope (NE) within which are embedded
nuclear pore complexes (NPCs), see Fig. 4(a), which are
the sole mediators of exchange between the nucleus and
cytoplasm. In general small molecules of diameter ∼5 nm
can diffuse through the NPCs unhindered, whereas larger
molecules up to around 40 nm in diameter are excluded unless
they are bound to a family of soluble protein receptors known
as karyopherins (kaps) [24]. Another classical example is
the lateral diffusion of protein receptors within the plasma
membrane. It has been observed that transmembrane proteins
undergo confined diffusion within, and hopping between,
membrane microdomains or corrals [25]; the corralling could
be due to fencing by the actin cytoskeleton or confinement by
anchored protein pickets, see Fig. 4(b). One subtle feature of
these and other biophysical examples, such as gap junctions
[16,17], is that in some cases there is a physical gate that
switches between an open and a closed state, whereas in
other cases the pore is always open but the Brownian particle
switches between different conformational states; only a subset
of these states allow the particle to pass through the pore (e.g.,
the role of kaps in nuclear transport). Another characteristic
feature of higher-dimensional systems is that the stochastically
gated pores are typically much smaller than the total size of the
domain boundary, so that one often has to treat the transport
process as a narrow escape problem [26].

In conclusion, cellular biophysics provides a wide range
of potential applications of the theory developed in this
paper, in particular, motivating the types of higher-dimensional
geometries and switching mechanisms to consider in future
work. The derivation of the stochastically gated Feynman-Kac
formula for occupation times means that one keeps track of
the amount of time a protein complex spends in a given
domain, irrespective of the number of times it exits and
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reenters the domain, in contrast to first passage time problems.
Similarly, in the case of local times, one can keep track of
multiple interactions between a complex and some subcellular
target.
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APPENDIX

In this Appendix we provide the details of the evaluation of Eq. (5.24). First we rewrite Eq. (5.24) as

Q̃0(x; s,z) = [Ae−μ+(z)x�(x) + Beμ−(z)x�(−x)] + H(x; s,z) + (α + β)K(x; s,z), (A1)

where

H(x; s,z) =
∫ ∞

−∞
K(x,x ′; s,z)dx ′. (A2)

and

K(x; s,z) =
∫ ∞

−∞
K(x,x ′; s,z)Q̃(x ′; s,z)dx ′ (A3)

with K and Q̃ given by Eqs. (5.21) and (5.18), respectively. For ease of notation, we drop any arguments in s and z, and write
μ± = |λ±(z + α + β)| and ν± = |λ±(z)| with μ± > ν±. If x > 0 then

H(x) = H+ = 1

μ+

[∫ x

−∞
e−μ+(x−x ′)dx ′ +

∫ ∞

x

e−μ+(x ′−x)dx ′
]

= 2

μ2+
= 1

s + z + α + β
,

whereas if x < 0 then

H(x) = H− = 1

μ−

[∫ x

−∞
e−μ−(x−x ′)dx ′ +

∫ ∞

x

e−μ−(x ′−x)dx ′
]

= 2

μ2−
= 1

z + α + β
.

The calculation of K is more involved. First, we partition the integral with respect to x ′,

K(x) =
∫ ∞

0
K(x,x ′)u+(x ′)dx ′ +

∫ 0

−∞
K(x,x ′)u−(x ′)dx ′. (A4)

Next we partition one of the two integrals in order to take into account the piecewise nature of K(x,x ′):

K(x) =
∫ x

0
K(x,x ′)u+(x ′)dx ′ +

∫ ∞

x

K(x,x ′)u+(x ′)dx ′ +
∫ 0

−∞
K(x,x ′)u−(x ′)dx ′ (A5)

for x > 0 and

K(x) =
∫ ∞

0
K(x,x ′)u+(x ′)dx ′ +

∫ x

−∞
K(x,x ′)u−(x ′)dx ′ +

∫ 0

x

K(x,x ′)u−(x ′)dx ′ (A6)

for x < 0. For convenience, denote the six integrals in Eqs. (1.5) and (1.6) by In(x),n = 1, . . . ,6. We evaluate each of the integrals
in turn.

I1(x) = 1

μ+

∫ x

0
e−μ+(x−x ′)

[
1

z + s
− ρ1K1√

2(z + s)
e−ν+x ′

]
dx ′ = 1

μ+

[
1 − e−μ+x

μ+(z + s)
− ρ1K1√

2(z + s)

e−ν+x − e−μ+x

μ+ − ν+

]

I2(x) = 1

μ+

∫ ∞

x

eμ+(x−x ′)
[

1

z + s
− ρ1K1√

2(z + s)
e−ν+x ′

]
dx ′ = 1

μ+

[
1

μ+(z + s)
− ρ1K1√

2(z + s)

e−ν+x

μ+ + ν+

]

I3(x) = 1

μ+

∫ 0

−∞
e−μ+(x−x ′)

[
1

z
+ ρ1K1√

2z
eν−x ′

]
dx ′ = 1

μ+

[
e−μ+x

μ+z
+ ρ1K1√

2z

e−μ+x

μ+ + ν−

]

I4(x) = 1

μ−

∫ ∞

0
eμ−(x−x ′)

[
1

z + s
− ρ1K1√

2(z + s)
e−ν+x ′

]
dx ′ = 1

μ−

[
eμ−x

μ−(z + s)
− ρ1K1√

2(z + s)

eμ−x

μ− + ν+

]

I5(x) = 1

μ−

∫ x

−∞
e−μ−(x−x ′)

[
1

z
+ ρ1K1√

2z
eν−x ′

]
dx ′ = 1

μ−

[
1

μ−z
+ ρ1K1√

2z

eν−x

μ− + ν−

]

I6(x) = 1

μ−

∫ 0

x

eμ−(x−x ′)
[

1

z
+ ρ1K1√

2z
eν−x ′

]
dx ′ = 1

μ−

[
1 − eμ−x

μ−z
+ ρ1K1√

2z

eν−x − eμ−x

μ− − ν−

]
.

012130-13



PAUL C. BRESSLOFF PHYSICAL REVIEW E 95, 012130 (2017)

Given the solution

K(x) = I+(x) ≡
3∑

n=1

In(x), x > 0, K(x) = I−(x) ≡
6∑

n=4

In(x), x < 0, (A7)

we determine the coefficients A and B in Eq. (5.24) as functions of K1 by imposing the boundary conditions (5.16):

−μ+A + (α + β)
∂I+(x)

∂x

∣∣∣∣
x=0+

= 0, μ−B + (α + β)
∂I−(x)

∂x

∣∣∣∣
x=0−

= 0. (A8)

In particular,

A = A(K1) ≡ α + β

μ2+

[
1

z + s
− 1

z
− μ+

μ+ + ν+

ρ1K1√
2(z + s)

− μ+
μ+ + ν−

ρ1K1√
2z

]
(A9)

and

B = B(K1) ≡ −α + β

μ2−

[
1

z + s
− 1

z
− μ−

μ− + ν+

ρ1K1√
2(z + s)

− μ−
μ− + ν−

ρ1K1√
2z

]
. (A10)

Finally, the constant K1 is obtained by imposing the boundary condition (5.15a):

(α + β)u+(0) − α{A(K1) + (α + β)[I+(0) + H+]} = (α + β)u−(0) − α{B(K1) + (α + β)[I−(0) + H−]}. (A11)

Using Eqs. (5.18), (1.7), and

A(K1) + (α + β)(I+(0) + H+) = 2
α + β

μ2+

[
1 + 1

z + s
− μ+

μ+ + ν+

ρ1K1√
2(z + s)

]

B(K1) + (α + β)(I−(0) + H−) = 2
α + β

μ2−

[
1 + 1

z
+ μ−

μ− + ν−

ρ1K1√
2z

]
we find[

1

z + s
− 1

z
− ρ1K1√

2(z + s)
− ρ1K1√

2z

]
= 2α

μ2+

[
1 + 1

z + s
− μ+

μ+ + ν+

ρ1K1√
2(z + s)

]
− 2α

μ2−

[
1 + 1

z
+ μ−

μ− + ν−

ρ1K1√
2z

]
.

In the limit α → 0, we recover the results of the no-switching case, since the right-hand side vanishes. That is.

ρ1K1 → �0 ≡
√

2

z + s
−

√
2

z
.

Given the complexity of the above equation, we will focus on the large time behavior by taking s,z → 0. To leading order we
have μ2

± → 2(α + β) and μ±/(μ± + ν±) → 1, so that we have the simplified equation[
1

z + s
− 1

z
− ρ1K1√

2(z + s)
− ρ1K1√

2z

]
≈ ρ0

[
1

z + s
− ρ1K1√

2(z + s)
− 1

z
− ρ1K1√

2z

]
.

This implies that, provided ρ0 < 1 (the gate is open some of the time), then we obtain the same large time behavior as the case
when the gate is always open. That is,

Q̃(0±,s,z) ≈ 1√
z(s + z)

, s,z → 0. (A12)
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