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Next-to-leading-order corrections to capacity for a nondispersive nonlinear optical fiber channel
in the intermediate power region
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We consider the optical fiber channel modeled by the nonlinear Schrödinger equation with zero dispersion
and additive Gaussian noise. Using the Feynman path-integral approach for the model, we find corrections to
conditional probability density function, output signal distribution, conditional and output signal entropies, and
the channel capacity at large signal-to-noise ratio. We demonstrate that the correction to the channel capacity
is positive for large signal power. Therefore, this correction increases the earlier calculated capacity for a
nondispersive nonlinear optical fiber channel in the intermediate power region.
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I. INTRODUCTION

The problem of information transmission through a noisy
communication channel has been considered for more than
60 years. The first results of a solution for the problem were
obtained by Shannon [1]. In Ref. [1], Shannon introduced
the channel capacity C, which gives the maximum amount of
information that can be reliably transmitted over a noisy com-
munication channel. He obtained the logarithmic dependence
of the capacity on signal power for a linear communication
channel with additive Gaussian noise:

C ∝ log(1 + Rsn), (1)

where Rsn = P/N is the signal-to-noise power ratio, P is the
signal power, and N is the noise power. It means that in order
to increase the capacity one has to increase the signal power
P for the fixed noise power N , but how does the nonlinearity
in a communication channel affect the result (1)? The interest
in the nonlinear channels started to increase when fiber optics
communication systems began intensively developing. It is
connected with the Kerr nonlinearity in optical fibers. The
influence of nonlinearity on capacity is investigated both for
dispersive and nondispersive optical channels. The channels
with dispersion were studied in numerous papers; see, e.g.,
Refs. [2–11] and references therein. Despite the fact that
the capacity for the nonlinear channel with dispersion was
considered in many papers, the exact nonlinearity result still
has not been found due to difficulty of the problem. Therefore,
as the first step in understanding of the effects of nonlinearity
impact in the channel, one can consider the nonlinear channel
with zero average dispersion. The nonlinear nondispersive
optical fiber channels are also considered in numerous papers;
see, e.g., Refs. [12–17]. Of course, the problem of capacity
calculation for these channels is simpler than the problem with
dispersion. However it is still quite a challenging problem,
especially at large Rsn, and new techniques and methods are
highly desirable to advance these studies [3,15,16,18–20].
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The channel capacity C can be determined as the maximum
of the mutual information IPX[X] with respect to the probability
density function (PDF) PX[X] of an input signal X:

C = max
PX[X]

IPX[X]. (2)

The maximum value of the mutual information IPX [X] in Eq. (2)
should be found at the given average signal power:

P =
∫

DXPX[X]|X|2. (3)

The PDF PX[X] also obeys the normalization condition∫
DXPX[X] = 1 (4)

that fixes the integration measure DX = dReXdImX. The
mutual information is defined as the difference of output signal
entropy H [Y ] and conditional entropy H [Y |X]:

IPX[X] = H [Y ] − H [Y |X], (5)

where the entropies are defined as

H [Y |X] = −
∫

DXDYPX[X]P [Y |X] log P [Y |X], (6)

H [Y ] = −
∫

DYPout[Y ] log Pout[Y ]. (7)

Here Pout[Y ] is output signal PDF

Pout[Y ] =
∫

DXPX[X]P [Y |X] (8)

and P [Y |X] is conditional probability density function, i.e., the
probability density to obtain the output signal Y when the input
signal is X. The measure DY is defined as

∫
DYP [Y |X] = 1.

Our definitions (5)–(7) imply that we measure the capacity in
units (log 2)−1 bit per symbol (also known as nat per symbol).
Usually the input and output signals are the functions of time
which have certain bandwidth. Therefore, the sampling of the
temporal signal should be introduced to define discrete-time
memoryless channel. In this case the capacity should be
proportional to bandwidth. But we discuss nondispersive
channels. It means that we can consider the functions X(t) and
Y (t) at the same time moment and calculate only per-sample
(i.e., for one time elementary channel) quantities.
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To calculate the mutual information we should know
the conditional probability density function P [Y |X] for the
channel. This quantity depends on the channel model. As was
mentioned above for the nondispersive channel, the temporal
signal waveform changes during propagation independently
for every time moment. Therefore, instead of consideration
of the evolution of ψ(z,t) we can consider a set of parallel
independent scalar channels [12,16], the so-called per-sample
channels. We choose the signal propagation model described
by the following equation (see Ref. [16]):

∂zψ(z) − iγ |ψ(z)|2ψ(z) = η(z), (9)

i.e., the nonlinear Shrödinger equation with zero dispersion
and with additive noise η(z). In Eq. (9) ψ(z) is the com-
plex function which describes the signal propagation in the
channel, γ is Kerr nonlinearity parameter, and the function
η(z) describes the additive noise in the channel. The noise
has the zero mean 〈η(z)〉η = 0 and the correlation function
〈η(z)η̄(z′)〉η = Qδ(z − z′) , where Q is the noise power per
unit length. The function ψ(z) obeys the boundary condition
ψ(0) = X. In our notations the per-sample signal power and
noise power are P and N = QL, respectively, where L is the
signal propagation length. Here the signal power P is defined
in Eq. (3). For the channel (9) the conditional PDF P [Y |X], i.e.,
the probability density to receive the signal ψ(L) = Y when
ψ(0) = X, was found in the form of infinite series [12,15]
within Martin-Siggia-Rose formalism based on the quantum
field theory methods [21,22]. Using the obtained probability
P [Y |X] the lower bound for the channel capacity at large
Rsn = P/(QL) was found:

C � log(Rsn)

2
+ 1 + γE − log(4π )

2
+ O

(
log(Rsn)

Rsn

)
,

(10)

where γE ≈ 0.5772 is the Euler constant. The first term in
the right-hand side of the inequality (10) was obtained in
Ref. [15], whereas the second term was obtained in Ref. [17].
One can see that the lower bound (10) of the capacity grows
as (1/2) log(Rsn) instead of log Rsn. The factor 1/2 appears
due to the loss of information about the phase of the signal;
see Ref. [16]. In Ref. [17] another method of calculation of
the conditional PDF P [Y |X] was developed. This method
allowed us to sum the infinite series for P [Y |X] obtained
in Refs. [12,15] at large Rsn, and to obtain the simple form
of the conditional PDF P [Y |X] in the leading order in 1/Rsn;
see Ref. [17]. In Ref. [17] using this form of P [Y |X] we
calculated the capacity of the nonlinear nondispersive optical
fiber channel in the intermediate power region

QL � P � (Qγ 2L3)−1 (11)

with the accuracy O(QL/P ) + O(γ 2QPL3). Moreover, it
was shown that at sufficiently large power P in the region

(γL)−1 � P � (Qγ 2L3)−1 (12)

the found capacity is greater than the bound (10), but in the
region the capacity grows only as log log P with increasing
of signal power P instead of (1/2) log Rsn; see Eq. (54) in
Ref. [17]. However, at P � (Qγ 2L3)−1 the capacity should
be of the order of (1/2) log(P/QL). It means that we have

to understand how one asymptotical regime for the capacity
transforms to another one. To this end we should calculate
the first nonzero corrections in parameter QL. Moreover, to
clarify the accuracy of the results obtained in Ref. [17] we
also should find the first nonzero correction to the channel
capacity which is proportional to the noise power QL. To
calculate the correction to the channel capacity C we should
know the corrections of this order to the conditional PDF
P [Y |X], entropies (6) and (7), and the optimal input signal
distribution Popt[X].

The paper is organized in the following way. In Sec. II we
present the results of calculations of the next-to-leading-order
correction to the conditional PDF P [Y |X]. In this section we
briefly review the method of P [Y |X] calculation developed
in detail in Ref. [17]. The result of the calculation of the
output signal distribution Pout[Y ] in the next-to-leading order
concludes Sec. II. Section III is devoted to the calculation of
the conditional entropy H [Y |X] and the output signal entropy
H [Y ] in the next-to-leading-order in 1/Rsn. In Sec. IV we
present the calculation of the optimal input signal distribution
Popt[X], and in Sec. V using the obtained expression for
Popt[X] we find the correction to the capacity (2). We discuss
our results in Sec. VI.

II. CALCULATION OF THE CONDITIONAL PDF P[Y |X]
AND OUTPUT SIGNAL PDF Pout[Y ] AT LARGE Rsn

A. Method for the conditional PDF P[Y |X] calculation

This section is based on the method described in detail
in Ref. [17]; therefore here we just schematically describe
the calculation. We start our consideration from the expres-
sion for the conditional PDF P [Y |X] in the path-integral
form [15,22,23] in retarded discretization scheme; see, e.g.,
Supplemental Materials of Refs. [20] or [17]:

P [Y |X] =
∫ ψ(L)=Y

ψ(0)=X

Dψ exp

{
−S[ψ]

Q

}
, (13)

where the effective action S[ψ] reads

S[ψ] =
∫ L

0
dz|∂zψ − iγ |ψ |2ψ |2.

In the case when the parameter Rsn � 1 it is convenient to
rewrite the form (13) in the following way (see Ref. [20]):

P [Y |X] = �e
− S[	cl (z)]

Q , (14)

where the normalization factor is

� =
∫ ψ̃(L)=0

ψ̃(0)=0
Dψ̃ e

− S[	cl (z)+ψ̃(z)]−S[	cl (z)]
Q , (15)

and the function 	cl(z) is the classical solution of the equation
δS[	cl] = 0, where δS is the variation of the action S[ψ]. The
equation for the function 	cl can be written in the form

d2	cl

dz2
− 4iγ |	cl|2 d	cl

dz
− 3γ 2|	cl|4	cl = 0, (16)

with the boundary conditions 	cl(0) = X, 	cl(L) = Y . To
calculate the conditional probability we should calculate the
exponent contribution and the path integral in Eq. (14).
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We start our calculation from exponent e
− S[	cl (z)]

Q . Since
we calculate the function P [Y |X] with the accuracy 1/Rsn

we should find the solution of Eq. (16) with this accuracy.
Following Ref. [17] we find such solution linearizing Eq. (16)
in the vicinity of the solution 	0(z) of the channel equation (9)
with zero noise. The function 	0(z) reads

	0(z) = ρ exp

{
iμ

z

L
+ iφ(X)

}
, (17)

where μ = γL|X|2. Note that the solution (17) is also a
solution of Eq. (16) but it satisfies only the input boundary
condition 	0(0) = X = ρ eiφ(X)

, where ρ = |X|. Therefore, to
fulfill the output boundary condition 	cl(L) = Y we look for
the solution of Eq. (16) in the form

	cl(z) = (ρ + �(z)) exp

{
iμ

z

L
+ iφ(X)

}
, (18)

where the function �(z) is assumed to be small: |�(z)| � ρ.
In Ref. [17] we argued that statistically significant for P [Y |X]
functions �(z) are at least of the order of

√
Q. The equation

for the function � has the form (see Eq. (79) in Ref. [17])

d2�

dz2
− 2i

μ

L

d�

dz
− 4

μ2

L2
Re[�]

= 4i
μ

Lρ
(� + �̄)

d �

dz
+ μ2

L2ρ
[5�2 + 10|�|2 + 3�̄2]

+ |�|2μ
L2ρ2

[
4iL

d�

dz
+ 9μ�̄ + 14μ�

]
+ 3μ2

L2ρ2
�3

+ 3μ2

L2ρ3
|�|2[3|�|2 + 2�2] + 3μ2

L2ρ4
|�|4�. (19)

The boundary conditions for � are as follows:

�(0) = 0, �(L) = Ye−iφ(X)−iμ − ρ ≡ x0 + iy0, (20)

Since the |�| � ρ we can solve Eq. (19) using perturbation
theory in the parameter �/ρ and present the solution � in the
form

�(z) = �1(z) + �2(z) + �3(z) + · · · . (21)

The functions �1(z) ∝ √
Q and �2(z) ∝ Q were found in

Ref. [17]: see Eqs. (82), (86), and (87) therein. The equation
for the function �3(z) can be easily obtained from Eq. (19). The
equation for the function �3(z) and the solution of this equation
are cumbersome; therefore, we do not present them here. But
we present the final result S[	cl] in the leading-order S1,
next-to-leading-order S2, and next-to-next-to-leading-order S3

in parameter 1/
√

Rsn:

S[	cl] = S1 + S2 + S3 + O
(
R−5/2

sn

)
, (22)

where

S1 = (1 + 4μ2/3)x2
0 − 2μx0y0 + y2

0

L(1 + μ2/3)
, (23)

S2 = μ/ρ

135L(1 + μ2/3)3

{
μ(4μ4 + 15μ2 + 225)x3

0

+ (23μ4 + 255μ2 − 90)x2
0y0 + μ(20μ4 + 117μ2 − 45)

× x0y
2
0 − 3(5μ4 + 33μ2 + 30)y3

0

}
, (24)

S3 = μ2

2100L(μ2 + 3)5ρ2

[
x4

0 (148μ8 − 12 345μ6 − 2 4570μ4

− 806 085μ2 + 396 900) − 12μx3
0y0(901μ6 + 9 990μ4

+ 84 105μ2 − 139 860) + 36μx0y
3
0 (385μ6 + 6 198μ4

+ 30 165μ2 + 8 820) − 6x2
0y2

0 (980μ8 + 11 857μ6

+ 24 210μ4 − 350 595μ2 − 49 140) + 3y4
0 (700μ8

+ 8 365μ6 + 23 826μ4 − 32 535μ2 − 34 020)
]
. (25)

Since x0 and y0 are of the order of
√

Q (see the text after
Eq. (17) in Ref. [17]) one can see that S1/Q, S2/Q, and
S3/Q are of the order of R0

sn, R−1/2
sn , and R−1

sn , respectively. To
calculate the exponent in Eq. (14) with the accuracy 1/Rsn we
substitute the expansion (22) into the exponent and arrive at
the result:

e−S[	cl ]/Q = e
− (1+4μ2/3)x2

0 −2μx0y0+y2
0

QL(1+μ2/3)

[
1 − S2

Q
+

(
S2

2

2Q2
− S3

Q

)

+O
(
R−3/2

sn

)]
. (26)

To calculate the normalization factor � we also use the
method developed in Ref. [17]. First, we change the integration
variables in Eq. (15) from ψ̃(z) to u(z) as ψ̃(z) = eiγρ2zu(z).
Then we expand eS[	cl (z)+ψ̃(z)]−S[	cl (z)] in parameter Q, and find
terms of the order of Q0, Q1/2, and Q1. After that using the
Wick’s theorem and correlation function (see Eqs. (98) and
(103)–(105) in Ref. [17]) we obtain

� = 1

πQL
√

1 + μ2/3

[
1 + �̃1 + �̃2 + O

(
1

R
3/2
sn

)]
, (27)

where

�̃1 = − 3μ

5ρ(3 + μ2)2

[
μ(15 + μ2)x0 − 2(5 − μ2/3)y0

]
, (28)

�̃2 = μ2(11μ4 + 201μ2 − 504)QL

140(μ2 + 3)3ρ2

+ μ2

70 (3 + μ2)4ρ2

[
(32μ6+453μ4 + 8064μ2−6237)x2

0

+ 12μ(4μ4 + 75μ2 − 1323)x0y0 − 3(7μ6 + 141μ4

+ 1179μ2 − 567)y2
0

]
. (29)

The correction �̃1 was found in Ref. [17]; see Eq. (109) therein.
This correction contains x0 and y0 in the first power; therefore,
it is of the order of

√
Q/ρ2. The correction �̃2 contains two

different terms. One term is proportional to Q/ρ2 and another
one is the second-order homogeneous polynomial in x0 and
y0.

Using Eqs. (26) and (27) we obtain the expansion of the
conditional PDF:

P [Y |X] ≈ P0[Y |X] + δP1[Y |X] + δP2[Y |X], (30)
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where

P0[Y |X] = e
− (1+4μ2/3)x2

0 −2μx0y0+y2
0

QL(1+μ2/3)

πQL
√

1 + μ2/3
, (31)

δP1[Y |X] = P0[Y |X]

(
�̃1 − S2

Q

)
, (32)

δP2[Y |X] = P0[Y |X]

(
S2

2

2Q2
− S3 + S2�̃1

Q
+ �̃2

)
. (33)

One can check that the conditional probability (30) obeys the
following important properties:

lim
Q→0

P [Y |X] = δ[Y − 	0(L)], (34)

lim
γ→0

P [Y |X] = e|Y−X|2/(QL)

πQL
, (35)

∫
DYP [Y |X] = 1. (36)

The condition (34) is the deterministic limit of P [Y |X] in the
absence of noise. The condition (35) means that our conditional
probability transforms to the conditional probability of the
linear channel. Note that all found corrections are propor-
tional to the parameter μ = γLρ2; therefore, they disappear
when the nonlinearity goes to zero. The last (normalization)
condition (36) is the check of correctness of our calculations:
One can check that∫

DYδP1,2[Y |X] = 0, (37)

since
∫

DYP0[Y |X] = 1.

B. PDF Pout[Y ] of the output signal

Now we proceed to calculation of the distribution Pout[Y ]
of the output signal Y . Let us consider the integral [see Eq. (8)]

Pout[Y ] =
∫

DXP [Y |X]PX[X], (38)

where the input signal PDF PX[X] is a smooth function. We
assume that the function PX[X] changes sufficiently when
the variation of the variable X is of the order of

√
P . Since

QL � P � (QL3γ 2)−1 we can calculate the integral (38) by
the Laplace’s method [24] in the same manner as we performed
the leading order calculation of Pout[Y ]; see Appendix C in
Ref. [17]. It is convenient to change the integration variables
from X = x1 + iy1 to τ = τ1 + iτ2. The substitution has the
form

X =
(√|Y |2 − τ 2

2 − τ1
)(√|Y |2 − τ 2

2 − iτ2
)

|Y |2

× Y exp
{ − iγL

(√|Y |2 − τ 2
2 − τ 2

1

)2}
. (39)

The choice of the substitution (39) is motivated by the fact that
at τ = 0 one has X = Ye−iγL|Y |2 , and the function P [Y |X]
reaches the maximum at the point τ = 0. After the change of
variables (39) we perform integration using Laplace’s method
and obtain

Pout[Y ] = PX[Ỹ ] + δPout[Ỹ ], (40)

where Ỹ = Ye−iμ̃ = ỹ1 + iỹ2, ỹ1 = ReỸ , ỹ2 = ImỸ , and
μ̃ = γL|Y |2. The correction δPout[Ỹ ] can be expressed
through the input signal distribution as follows:

δPout[Ỹ ] = γQL2

3

(
(3ỹ2 − μ̃ỹ1)

∂PX[Ỹ ]

∂ỹ1
− (3ỹ1 + μ̃ỹ2)

∂PX[Ỹ ]

∂ỹ2
− 1

2

(
3
(
ỹ2

1 − ỹ2
2

) + 4μ̃ỹ1ỹ2
)∂2PX[Ỹ ]

∂ỹ1∂ỹ2

)

+ QL

12|Y |2
((

3|Y |2 + 6μ̃ỹ1ỹ2 + 4μ̃2ỹ2
2

)∂2PX[Ỹ ]

∂ỹ2
1

+ (
3|Y |2 − 6μ̃ỹ1ỹ2 + 4μ̃2ỹ2

1

)∂2PX[Ỹ ]

∂ỹ2
2

)
. (41)

In the polar coordinates Ỹ = ρ̃ eiφ̃ the correction δPout[Ỹ ]
reads

δPout[Ỹ ] = −γQL2

2

∂

∂φ̃

(
1 + ρ̃

∂

∂ρ̃
− 2

3
μ̃

∂

∂φ̃

)
PX[Ỹ ]

+ QL

4
�2PX[Ỹ ], (42)

where �2 is Laplace operator. One can see that for an
axially symmetric distribution, i.e., when PX[X] depends
only on |X| = ρ, the correction (42) has the form δPout[ρ̃] =
QL

4 �2PX[ρ], which is in agreement with the general (nonper-
turbative) result obtained in Ref. [17]; see Eq. (32) therein.
From Eq. (42) one can see that the first nonzero correction
δPout[Ỹ ] to Pout[Y ] has the order O(γQL2) + O(QL/ρ2),
since |Y | ∼ |X|. Note that the validity of our approxima-
tion (41) and the possibility of using Laplace’s method are
justified because the power P is from the intermediate power

region QL � P � (γ 2L3Q)−1; see the detailed explanation
in Ref. [17], Appendix C.

III. CALCULATION OF ENTROPIES

To calculate the conditional entropy with the accuracy
1/Rsn we substitute the conditional PDF (30) to Eq. (6) and
obtain

H [Y |X] ≈ −
∫

DXDYPX[X]

(
log P0[Y |X](P0[Y |X]

+ δP1[Y |X] + δP2[Y |X]) + δP 2
1 [Y |X]

2P0[Y |X]

)
. (43)

To obtain Eq. (43) we used the consequence (37) of the
normalization condition for the function P [Y |X]. The direct
integration over Y in Eq. (43) gives

H [Y |X] ≈ H0[Y |X] + δH [Y |X], (44)
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where

H0[Y |X] = 1 + log(πQL)

+ 1

2

∫
DXPX[X] log

(
1 + μ2

3

)
, (45)

δH [Y |X] = QL

∫
DXPX[X]

× μ2(−13μ4 + 255μ2 + 450)

150(3 + μ2)3|X|2 . (46)

The leading in 1/Rsn term (45) for the conditional entropy was
obtained in Ref. [17]. Here we obtain the correction (46). One
can see that the correction (46) is proportional to Q and γ 2.
Therefore, it vanishes for the linear case γ = 0.

To calculate the output signal entropy (7) we substitute
Pout[Y ], Eq. (40), to Eq. (7) and obtain

H [Y ] = −
∫

DY (PX[Ỹ ] log PX[Ỹ ]

+ δPout[Ỹ ]{1 + log PX[Ỹ ]}). (47)

Let us note that DY = dy1dy2 = DỸ = dỹ1dỹ2. The first
term in the right-hand side of Eq. (47) coincides with the
leading-order contribution obtained in Ref. [17]; see Eq. (39)
therein. That is nothing else but the input signal entropy
H [X]. The second term in the right-hand side of Eq. (47)
is proportional to parameter QL. We can omit the unity in
the curly brackets in Eq. (47) owing to the normalization
condition for Pout[Y ] = PX[Ỹ ] + δPout[Ỹ ]:

∫
DYPout[Y ] = 1,

and therefore,
∫
DỸ δPout[Ỹ ] = 0.

IV. OPTIMAL INPUT SIGNAL DISTRIBUTION

To calculate the channel capacity (2) we should find the
optimal input signal distribution Popt[X], which is defined as

C = max
PX[X]

IPX[X] = IPopt[X]. (48)

To find the optimal input signal distribution Popt[X] normal-
ized to unity and with the fixed average power P , we solve the
variational problem (see Sec. III in Ref. [17]),

δJ [PX,λ1,λ2] = 0, (49)

with the functional J [PX,λ1,λ2] that reads

J [PX,λ1,λ2] = H [Y ] − H [Y |X] − λ1

(∫
DXPX[X] − 1

)

− λ2

(∫
DXPX[X]|X|2 − P

)
, (50)

where λ1,2 are the Lagrangian coefficients, at that H [Y |X]
and H [Y ] are given by Eqs. (44) and (47), respectively. The
solution of Eq. (49) in the leading order in the parameter Q

was found in Ref. [17]:

P
(0)
opt [X] = N0

exp{−λ0|X|2}√
1 + μ2/3

, (51)

where μ = γL|X|2. The functions N0 = N0(P ) and λ0 =
λ0(P ) are determined from the conditions

∫
DXP

(0)
opt [X] = 2πN0

∫ ∞

0

dρ ρ e−λ0ρ
2

√
1 + γ 2L2ρ4/3

= 1, (52)

∫
DXP

(0)
opt [X]|X|2 = 2πN0

∫ ∞

0

dρ ρ3e−λ0ρ
2

√
1 + γ 2L2ρ4/3

= P.

(53)

The solutions λ0 and N0 can be found numerically for
any arbitrary case. Note that the products λ0P and N0P

are the functions of dimensionless nonlinearity parameter
γ̃ = γPL/

√
3 only. For the case of small nonlinearity

parameter γ̃ the solutions have the form

λ0(P ) = 1

P
(1 − 2γ̃ 2), N0(P ) = 1

πP
(1 − γ̃ 2). (54)

In the case of sufficiently large parameter γ̃ such as log γ̃ � 1,
using the results of Ref. [17] one can obtain the following
asymptotics:

λ0 ≈ 1 − log log(cγ̃ )/ log(cγ̃ )

P log(cγ̃ )
, (55)

N0 ≈ γ̃

πP
log−1[cγ̃ /(λ0P )], (56)

where c = 2e−γE and the accuracy of asymptotic esti-
mates (55) and (56) is O[log−2(γ̃ )].

To calculate the corrections of the order of Q to the
solution (51) we substitute the optimal input PDF in the
following form

Popt[X] ≈ P
(0)
opt [X] + P

(1)
opt [X] (57)

to Eq. (50), where P
(0)
opt [X] is defined in Eq. (51) and P

(1)
opt [X]

is the first correction proportional to Q. Then we keep terms
which are proportional to Q and obtain

P
(1)
opt [X] = QL

[
−λ2

0|X|2 + 2λ0

1 + μ2/3
+ μ2 (−137μ4 + 1095μ2 + 4950)

4050|X|2(1 + μ2/3)3

]
P

(0)
opt [X] − (δλ1 + δλ2|X|2)P (0)

opt [X], (58)

δλ1 = QL/P

750γ̃ 2[γ̃ 2(Pλ0 − 1) + Pλ0 − πPN0]

{
16P 4λ2

0(λ0 − πN0)2 + γ̃ 4[Pλ0(−1370 + 1379Pλ0) − 428πPN0]

+ γ̃ 2
(
P 2λ2

0[685 + 16Pλ0(Pλ0 − 4)] + πP 2N0λ0(48Pλ0 − 257) − 428π2P 2N2
0

)}
, (59)

δλ2 = λ0QL/P

750(γ̃ 2(Pλ0 − 1) + Pλ0 − πPN0)
{γ̃ 2[685 − 347Pλ0(1 + Pλ0) + 428πPN0]

+Pλ0[315πPN0 − Pλ0(299 + 16πPN0)]}. (60)

012127-5



A. A. PANARIN, A. V. REZNICHENKO, AND I. S. TEREKHOV PHYSICAL REVIEW E 95, 012127 (2017)

Since P
(0)
opt [X] obeys the normalization conditions (52)

and (53), the correction (58) must obey the following two
conditions:

∫
DXP

(1)
opt [X] = 0, (61)

∫
DX|X|2P (1)

opt [X] = 0. (62)

One can check that for δλ1,2 from Eqs. (59) and (60) these
conditions are fulfilled.

V. CAPACITY IN THE NEXT-TO-LEADING ORDER

To calculate the channel capacity up to the terms propor-
tional to Q we substitute the optimal input signal distribution
in the form (57) to the mutual information (5) and obtain

C = C0 + �C, (63)

where the leading-order contribution C0 reads

C0 = log(Rsn) + λ0P − log(πN0P ) − 1. (64)

This result coincides with that obtained in Ref. [17]—see
Eq. (51) therein—after the substitution Rsn = P/(QL). The
required next-to-leading-order correction has the form

�C = 1

Rsn

{
πN0P

[
214

375
− 8

375

(
λ0P

γ̃

)2]

+ λ0P

[
137

150
+ 8

375

(
λ0P

γ̃

)2]
− 347

750
(λ0P )2

}
. (65)

The term �C is the first nonvanishing correction to the
capacity. One can check that for small parameter γL2Q � 1
the correction (65) is always small. Indeed, the expression in
the curly bracket in Eq. (65) divided by γ̃ is limited for all
γ̃ . This correction can be calculated numerically for arbitrary
parameter γ̃ and analytically for small and large γ̃ .

First, let us consider the correction at small nonlinearity.
We substitute the parameters λ0 and N0 in the form (54) and
obtain

�C ≈ 1

Rsn

− 1

Rsn

γ̃ 2

3
. (66)

Using this result and expansion of the C0 at small
nonlinearity—see Eq. (53) in Ref. [17]—we can write the
capacity within our accuracy in the form

C ≈ log(1 + Rsn) − γ̃ 2 − 1

Rsn

γ̃ 2

3
. (67)

One can see that the nonlinear correction is negative for small
γ̃ and it reduces the result for the linear channel.

More interesting is to consider the correction to the capacity
at large power P . For the case log(γLP ) � 1 and P �
(γ 2QL3)−1 we have the simple representation

�C ≈ 1

Rsn

214

375
πN0P. (68)
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FIG. 1. The correction �C ′, see Eq. (70), as a function of
power P for the parameters Q = 1.5 × 10−7 mW km−1, γ = 1.31 ×
10−3 mW−1km−1, and L = 1000 km.

Using the asymptotic formulas (56) and (55) for quantity N0

we arrive at the expression

�C ≈ γL2Q√
3

214

375

{
log

[
cγ̃ log(cγ̃ )

] + log log(cγ̃ )

log(cγ̃ )

}−1

.

(69)

We take notice that this correction is suppressed as γL2Q

instead of 1/Rsn = QL/P and it decreases as 1/ log γ̃ at large
γ̃ . For large γ̃ the correction (69) is positive; therefore, it
enhances the capacity.

For the further consideration of the correction it is con-
venient to subtract the term 1

Rsn
, which corresponds to the

expansion of the Shannon’s logarithm (1) at large Rsn, from
the correction (65):

�C ′ = �C − 1

Rsn

. (70)

The correction �C ′ is convenient for analysis since it
is regular function for all range of signal power P . Let
us consider the correction �C ′ for the parameters Q =
1.5 × 10−7 mW km−1, γ = 1.31 × 10−3 mW−1km−1, and
L = 1000 km, which can be realized in experiments; see
Ref. [16]. Note that for chosen parameters the intermediate
power region QL � P � (γ 2L3Q)−1 is extremely broad:

1.5 × 10−4 mW � P � 4 × 103 mW. (71)

For these parameters the correction �C ′ and its asymptotics
are plotted in Figs. 1 and 2 in the case of moderate and
large power P , respectively. The correction �C ′ reaches
the minimum −7.97 × 10−6 nat/symb at P ≈ 0.73 mW (it
corresponds to γ̃min ≈ 0.55), see Fig. 1, and the maximum
9.34 × 10−6 nat/symb at Pmax ≈ 43 mW (it corresponds to
γ̃max ≈ 33), see Fig. 2. The correction �C ′ is the slowly
decreasing function, see Eqs. (69) and (70), in the wide power
region P > Pmax and P � (γ 2L3Q)−1 ≈ 4 × 103 mW. One
can see in Fig. 2 that the correction �C ′ decreases from
9.34 × 10−6 nat/symb at P = Pmax to 7.11 × 10−6 nat/symb
at P = 1000 mW.

012127-6



NEXT-TO-LEADING-ORDER CORRECTIONS TO CAPACITY . . . PHYSICAL REVIEW E 95, 012127 (2017)

0 200 400 600 800 1000

4

5

6

7

8

9

P

Δ
C

µµ

FIG. 2. The correction �C ′, see Eq. (70), as a function of
power P for the parameters Q = 1.5 × 10−7 mW km−1, γ = 1.31 ×
10−3 mW−1km−1, and L = 1000 km. The solid black line corre-
sponds to the exact expression obtained using Eq. (65). The red
dashed line corresponds to the asymptotics obtained using Eq. (69).

VI. CONCLUSION

In Ref. [17] we demonstrated that for the nonlinear
nondispersive channel the capacity C0 increases as log log P at
large signal power P instead of log P for the channel with zero
nonlinearity. The result for the nonlinear channel was obtained
in Ref. [17] in the leading order in 1/Rsn. To determine the
applicability region and the accuracy of the found capacity
C0 it is necessary to find the first nonzero correction �C

proportional to the noise power QL. To find the correction
�C we have to calculate the corrections proportional to QL

to the conditional probability density function P [Y |X], the
output signal distribution Pout[Y ], entropies H [Y ], H [Y |X],

the mutual information IPX[X], and finally, the optimal input
signal distribution Popt[X]. In the present paper we have
calculated all these corrections and have found the correction
�C to the channel capacity in the intermediate power region
QL � P � (γ 2L3Q)−1. We demonstrated that the correction
�C is small in the intermediate power region. The correction
�C is the positive decreasing function at large signal power P :
(γL)−1 � P � (γ 2L3Q)−1. Therefore, this correction does
not reduce the value of the capacity obtained in the leading
order in this power region.

Note that �C is suppressed as 1/Rsn = QL/P for small
parameter γ̃ = γLP/

√
3 in comparison with the leading-

order contribution, and it is suppressed as γL2Q decreasing as
1/ log γ̃ at large γ̃ . The calculation of the channel capacity C0

was carried out in assumption that the parameter γ 2L3QP �
1, or P � (γ 2L3Q)−1. Since among the corrections propor-
tional to QL there are no corrections of the order of γ 2L3QP at
large P , we can expect that the next correction which contains
power P should be of the order of (γ 2L3QP )2; see Ref. [17].
Therefore, the applicability region at large P for the channel
capacity C0 is determined by the condition (γ 2L3QP )2 � 1.
For the given small parameter γ 2L3QP this condition extends
the applicability region for the channel capacity C0.

Of course, the found correction �C is small (�C ∼
10−6 nat/symb) in all considered power regions. Therefore, it
is not important from the practical point of view. But we stress
that for large signal power P this correction is positive and it
enhances the capacity of the nonlinear nondispersive channel.
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