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Physics of negative absolute temperatures

Eitan Abraham*

Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, United Kingdom

Oliver Penrose†

Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Colin Maclaurin Building, Heriot-Watt University,
Edinburgh EH14 4AS, United Kingdom

(Received 13 October 2016; published 17 January 2017)

Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who
successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent
article aroused considerable interest by its claim, based on a classical entropy formula (the “volume entropy”)
due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a
thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments.
We also examine the principal arguments that have been advanced against the negative temperature concept;
we find that these arguments are not logically compelling, and moreover that the underlying “volume” entropy
formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that,
despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the
experiments designed to produce them.
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I. INTRODUCTION

The concept of negative absolute temperature, first put
forward by Onsager [1,2] in the context of two-dimensional
turbulence, fits consistently into the description of various
experimental findings. In 1951, Purcell and Pound [3], by
rapidly reversing the magnetic field applied to nuclear spins in
LiF crystals, produced a state displaying negative magnetic
susceptibility, which lasted for several minutes. In 1957,
Abragam and Proctor [4,5] performed experiments, also on
LiF, which they described as “calorimetry ... at negative
temperature”. In 1997, a group from Helsinki [6,7], using
a similar procedure, brought the nuclear spins in silver to
temperatures measured to be around −2 nK, and in 2013,
Braun et al. [8] brought a system of interacting bosons in an
optical lattice to a state exhibiting Bose-Einstein condensation
into the single-particle state of highest, rather than lowest, en-
ergy. Nevertheless, the negative absolute temperature concept
has proved controversial: Berdichevsky et al. [9] argued that
Onsager’s use of it was flawed, and a recent article [10] argued
that the negative-temperature concept was inconsistent with
basic thermodynamic principles. Subsequently, a number of
articles have appeared on both sides of the argument [11–22].

In Secs. II and III of this paper, we present an argument
based on the second law of thermodynamics, which confirms
the negative-temperature interpretation of the nuclear-spin
experiments mentioned above. In Sec. IV, we examine the
statistical mechanics argument which has been held to rule
out negative temperatures; we find that this argument is not
logically compelling, and moreover (Sec. IV D) that it leads to
predictions inconsistent with known experimental results.
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II. MACROSCOPIC BEHAVIOR AND TIME SCALES

The Purcell-Pound experiment uses a system of nuclear
spins located on a crystal lattice in a uniform magnetic field h.
The energy of this system can be written

E = −h · M + Wss + Wsl, (1)

where M is the magnetic moment vector, Wss is the spin-spin
interaction, and Wsl is the spin-lattice interaction.

At sufficiently low temperatures, the spin-lattice interaction
acts very slowly; the relevant relaxation time τsl can be of the
order of minutes [23] or even hours [6]. On shorter time scales,
we can, following Abragam (Chap. 5 of Ref. [24]), neglect Wsl

and treat the spin system as isolated apart from the effect of
changes in h. If we perturb the spin system by changing h, and
then leave it alone for a time that is short compared to τsl, it
may come to a (transient) internal equilibrium under the action
of the spin-spin interaction, at a “spin temperature” [4,5,24],
which can differ from that of the lattice. The lifetime of this
transient equilibrium state, being of order τsl, is much greater
than the relaxation time τss for approaching it, which can [23]
be less than 0.1 s. In such a state, the magnetic moment M must
(assuming h �= 0) be parallel or antiparallel to the applied field
h, otherwise the Larmor precession would cause the vector M
to rotate about h.

The energy of any such transient equilibrium state can be
found from (1), which, provided that h · M is large enough to
justify neglecting1 Wss, simplifies to

E ≈ −h · M, (2)

1Although we neglect the contribution of Wss to the energy, we do
not neglect its dynamical effect, which is what brings the spin system
to internal equilibrium. There is an analogy with the kinetic theory
of gases, where the effect of the molecular interactions on the energy
may be neglected even though their effect on the time evolution is
crucial.
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where the sign ≈ means that the difference between the
quantities it separates is negligible when |Wss| � E. The
transient equilibrium states can conveniently be labeled by
their values of the energy E and magnetic field h. Their
magnetic moments are determined by these two parameters,
since M(E,h) has to be parallel or antiparallel to h, and
therefore it equals the only scalar multiple of h satisfying
(2), namely

M(E,h) ≈ −hE/|h|2. (3)

III. USING THE ENTROPY INCREASE PRINCIPLE

The procedure used by Purcell and Pound in their quest for
negative temperatures was to bring the system to equilibrium
at a very low (positive) temperature in a strong magnetic field
and then reverse the field rapidly, in a time much less than
the period τL of the Larmor precession, so that the magnetic
moment has no time to change. Assuming that M and h were
parallel in the old state, the new magnetic field is in the opposite
direction to the magnetic moment, so that there is no Larmor
precession in the new state. The new state is therefore also a
transient equilibrium state. By Eq. (2), the energy of the new
state is the negative of the old. If the energy of the old state
was negative, that of the new one is positive.

To obtain thermodynamic information about these transient
equilibrium states, we shall use the second law of thermody-
namics. An integral part of this law is2 the principle of increase
of entropy (or, more precisely, nondecrease of entropy), which
asserts ([26], p. 77) that the entropy of the final state of any
adiabatic transition is never less than that of its initial state.3

Here “adiabatic transition” means a process during which no
heat enters or leaves the system—that is, one during which any
change in the energy of the system is equal to the work done
on it by external mechanisms. To avoid misunderstandings, we
emphasize that (i) the word “adiabatic” is not being used here
to mean “infinitely slow” (i.e., quasistatic), as in the adiabatic
theorem of mechanics discussed in Sec. IV C below, nor (as in
Ref. [16], p. 12) as a synonym for “isentropic”; (ii) (as noted
explicitly in Ref. [26]) there is no requirement for the system
to be isolated; and (iii) although the initial and final states
are equilibrium states (otherwise their entropies would not be
defined), there is no need for the states passed through during
the process to be equilibrium states, not even approximately.

So long as M remains constant, the field-reversal process
considered here satisfies the definition of “adiabatic transi-
tion”, for it follows from (2) that

dE = −M · dh − h · dM (4)

so that, with M constant (i.e., dM = 0), the change in E is
−M · dh, which, as shown, for example, in Reif’s textbook
([28], pp. 440–444),4 is equal to the work done by external

2This is what Campisi [25] calls “part B” of the second law.
3An alternative to the formulation in Ref. [26] is the entropy

principle used by Lieb and Yngvason [27] in their axiomatic
formulation of thermodynamics.

4An alternative to Reif’s argument is to imagine the magnetic
field acting on the system to be produced by movable permanent

mechanisms in changing h so that the process is indeed an
“adiabatic transition” as defined above. It follows, from the
entropy increase principle, that neither of the two states with
opposite h but the same M can have greater entropy than the
other, i.e., their entropies are equal. But by (2) these two states
have equal and opposite energies, and so if the entropy is
written as a function of E and h, the function S(E,h) has the
property

S(E,h) = S(−E,−h). (5)

We define the reciprocal temperature θ (usually denoted
1/T , or else kβ) by

θ := ∂S(E,h)

∂E
. (6)

The physical significance of this definition is that if a small
amount of energy is transferred from a body with a lower θ

to one with a higher θ , then the total entropy will increase.
Moreover, if the two bodies are in thermal contact (i.e., if
energy can pass by heat conduction from one to the other),
then at equilibrium their θ values must be equal. In everyday
language, the body with lower θ is [23] “hotter” than the other.
In particular, a body with negative temperature (negative θ ) is
“hotter” than any body with positive temperature. An example
of this is the experiment of Abragam and Proctor discussed
in more detail below (Sec. IV D), where a spin system with
positive energy (corresponding to a negative temperature, i.e.,
θ < 0) gave up energy to another spin system with zero energy
(corresponding to an infinite temperature, i.e., θ = 0).

Defining the temperature T := 1/θ , it follows from (5) and
(6) that

T (E,h) = −T (−E,−h). (7)

Thus, when the magnetic field is reversed, the temperature T

changes sign along with E, in agreement with the interpretation
given by Purcell and Pound [3], by Abragam and Proctor [4,5],
and by the Helsinki group [6,7] that the states they obtained
by magnetic-field reversal had negative thermodynamic tem-
peratures.

The negative-temperature interpretation has, however, been
challenged [10], using a statistical mechanics argument. This
argument is considered in the next section.

IV. STATISTICAL MECHANICS AND NEGATIVE
TEMPERATURES

A. The “Boltzmann” entropy

When we come to apply statistical mechanics to negative
absolute temperatures, the first question to consider is what
ensemble to use. The canonical ensemble, based on the Gibbs
canonical distribution exp(−βH), where H is the Hamiltonian
and β is a parameter specifying the reciprocal temperature,
seems natural, but it has the disadvantage that this distribution
describes a system in thermal contact with a heat bath whose
temperature is treated as something already given, rather than

magnets so that the work done on the system in changing h equals
the mechanical work done in moving these magnets.
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being expressed in terms of more “fundamental” concepts
whose meaning is unequivocal.

For this reason, our discussion here will be based on
the microcanonical rather than the canonical ensemble. The
main conceptual problem is how best to extend the notion of
entropy, originally a thermodynamic concept, into the realm
of mechanics. There is no unique solution to this problem;
the choice of entropy definition is partly a matter of taste, so
long as the chosen definition agrees with the thermodynamic
entropy when applied to macroscopic systems.

Traditionally, the microcanonical definition of entropy has
been based on Boltzmann’s principle,5

S = k log W, (8)

where W is the number of quantum states constituting the
microcanonical ensemble. For our spin system, the energy
levels are highly degenerate, and a microcanonical ensemble
can be set up for each energy level, comprising all the states
with that energy. In that case, Eq. (8) gives, for all E in the
energy spectrum for the given value of h,

S = SB(E,h) := k log ω(E,h), (9)

where k is Boltzmann’s constant, and ω(E) is the multiplicity
of the energy level E. If E is not in the energy spectrum,
Boltzmann’s principle gives no clear guidance; the usual
procedure is to use a convenient interpolation formula. For
more general systems, where the energy levels may not be
degenerate at all, the ensemble can be defined [30] to comprise
all the states whose energies lie in a specified interval, say
(E − ε,E], where ε is a parameter that is large in comparison
with the energy level spacing but small in comparison with E

itself; the corresponding entropy formula would be

SBε = k log (�(E,h) − �(E − ε,h)), (10)

where �(E,h) denotes the number of energy levels with
energies not exceeding E. In Refs. [10,16,19], the formula
(10) is approximated as

SBε = k log[ε	 (E)], (11)

in which 	 (E), the “density of states”, is the derivative of a
differentiable approximation to �(E).

For a system of N spin- 1
2 particles in a magnetic field h,

the energy levels are given by the formula

E = (2n − N )μ|h|, (12)

where n is the number of spins pointing along the negative h
direction, and μ denotes the magnetic moment of one spin.
Each energy level has a definite magnetic moment along or
against the direction of h, whose component in the direction
of h is

M = (N − 2n)μ (13)

= −E/|h|. (14)

The vector M is given in terms of E and h in Eq. (3).

5See, for example, p. 170 of Ref. [29].

A standard combinatorial formula gives, using (13),

ω(E,h) = N !

n!(N − n)!
= N |(

N
2 − M

2μ

)
!
(

N
2 + M

2μ

)
!
. (15)

From (14) and (15) it follows that ω(E,h) is an even function
of E at constant |h|, so that the “Boltzmann” entropy defined
by (9) has the symmetry property (5). The temperature TB

associated [via Eq. (6)] with this entropy definition therefore
has the antisymmetry property (7) and is negative for the states
reached by magnetic-field reversal. Thus the consequences of
the “Boltzmann” entropy formula in this case are consistent
with the thermodynamic argument leading to (7) and with
the negative-temperature interpretation of the magnetic-field
reversal experiments.

B. The thermostatistical consistency condition

Some authors [10,12,14,16,18,19] have challenged the
negative-temperature interpretation of the experiments de-
scribed above. In their argument, originally due to
Berdichevsky et al. [9], the microcanonical entropy is defined
not by (9) but by

S = SG := k log �(E), (16)

where �(E) [or more precisely �(E,h)] is the number of
energy levels with energies not exceeding E. The classical
analog of (16) was used by Gibbs ([31], p. 170) and so
SG is often called the “Gibbs” entropy. Since the function
�(E) is manifestly nondecreasing, the “Gibbs temperature”,
defined in analogy with (6) as TG := (∂SG/∂E)−1, cannot be
negative; thus the definition (16) implies that negative absolute
temperatures are impossible.

The principal argument given in Refs. [9,10] and elsewhere
in support of the “Gibbs” entropy definition (16) makes use
of a “thermostatistical consistency” condition [10], which for
spin systems using the microcanonical ensemble reads

T dS(E,h) = dE + 〈M〉E,h · dh, (17)

where

M := −∂H/∂h (18)

is the magnetic moment operator, defined in terms of the
Hamiltonian operatorH in which h is a parameter, and 〈· · · 〉E,h
denotes a microcanonical average at energy E and magnetic
field h. Equation (17) ensures that the statistical mechanics
formula 〈M〉E,h for the magnetic moment agrees with the
thermodynamic formula for the same quantity, which can
be written −∂E(S,h)/∂h. As shown in the supplementary
material of Ref. [10], the “Gibbs” entropy (16) exactly satisfies
(17), whereas the “Boltzmann” entropy as defined in (10) does
not. The conclusion drawn in Ref. [10] is that the “Boltzmann”
entropy is inherently unsatisfactory and should never be used.

What this argument ignores, however, is that for spin sys-
tems there is an alternative, simpler, definition of “Boltzmann”
entropy, namely (9), and that this simpler definition does
exactly satisfy thermodynamic consistency. To see this, we
use the fact, evident from (15), that ω(E,h) can be written as a
function of the single variable M. It follows that differentiation
holding SB fixed is equivalent to differentiation holding M
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fixed, so that6 (
∂E

∂h

)
SB

=
(

∂E

∂h

)
M

(19)

= −M by (4). (20)

By a standard calculus formula, it follows that

∂SB(E,h)/∂h
∂SB(E,h)/∂E

= M (21)

and hence that

TBdSB = TB

(
∂SB

∂E
dE + ∂SB

∂h
· dh

)
= dE + M · dh, (22)

where TB is the “Boltzmann” temperature, defined in analogy
with (6) by

TB =
(

∂SB(E,h)

∂E

)−1

. (23)

But by its definition [see (13)], M is the microcanonical
expectation of the magnetic moment, and so our result (22)
confirms that the Boltzmann entropy, as defined in (9), satisfies
the thermostatistical consistency condition (17)—not only in
the thermodynamic limit, as shown, for example, in Ref. [21],
but for finite systems as well.

Thus for the nuclear spin system, the thermostatistical
consistency criterion is neutral between the “Gibbs” and
“Boltzmann” entropies, giving no reason to disbelieve our
result obtained earlier that the magnetic-field reversal ex-
periments produced negative absolute temperatures, even
though such temperatures are incompatible with the “Gibbs”
formula (16).

C. “Gibbs” entropy and the adiabatic theorem of mechanics

An important strand in the rationale behind the “Gibbs”
entropy formula (16) is [10,32] the adiabatic theorem of
classical mechanics [33]. This theorem tells us how energy
varies with time for any system whose Hamiltonian contains a
parameter such as h, when that parameter is varied extremely
slowly (the type of process known in thermodynamics as
quasistatic). The theorem states that, provided certain further
conditions are satisfied, the energy E will vary with time in
such a way that �(E,h) is invariant. The most important
of these conditions is that, as h changes, the phase-space
region inside a given closed energy surface must always be
transformed into the region inside, rather than outside, the
new energy surface. Since the thermodynamic entropy is also
invariant in any quasistatic process, this theorem supports the
claim that k log �(E,h) equals the thermodynamic entropy—
provided that the energy surfaces satisfy the condition just
mentioned.

For quantum systems, the corresponding necessary condi-
tion is that the energy levels near E should not cross during
the process. For the Hamiltonian of the spin system,

H := −h · M, (24)

6The notation ∂/∂h denotes a gradient in h space.

this condition is satisfied if and only if h does not pass
through the value zero during the process. Thus, for all the
equilibrium states that can be reached quasistatically with
h �= 0 throughout, the entropy formula (16) is a good one.
The catch is that h does pass through zero in the field reversal
process used to reach positive values of E, thus the necessary
condition is not satisfied and the theorem does not require
�(E,h) to be invariant during this process. Our contention
that k log �(E,h) is not the thermodynamic entropy for the
(transient) equilibrium states reached by field reversal is
therefore compatible with the theorem.

Some other arguments that have been put forward in favor
of using SG rather than SB are considered in Appendix C.

D. An experimental test of the entropy formulas

Consider an experiment in which two spin systems, each
comprising N nuclei with magnetic moment μ, are brought
into thermal contact. Such an experiment was carried out by
Abragam and Proctor [4,5], the two spin systems being the Li
nuclei in an LiF crystal and the F nuclei in the same crystal.
Initially, both systems are in thermal equilibrium, one having
energy 0 and the other having maximum positive energy,
Emax := Nμ|h|. How will this energy be apportioned between
the two systems when the new equilibrium is reached? For the
spin system, a standard calculation based on applying Stirling’s
approximation to Eq. (15) gives, using (9),

SB(E) ∼= −Nk[x log x + (1 − x) log(1 − x)], (25)

where x := n/N = (E + Emax)/2Emax with Emax := Nμ|h|,
and the symbol ∼= signifies that the difference between the
expressions it separates is thermodynamically negligible, or
more precisely that 1/N times this difference tends to 0 in the
thermodynamic limit where N,E → ∞ at constant E/N and
constant h.

From (25) we have, for a spin system,

SB(0) ∼= Nk log 2 = 0.69 Nk,

SB

(
1
2Emax

) ∼= Nk[2 log 2 − (3/4) log 3] = 0.56 Nk,

SB(Emax) = 0.

If N spins with energy 0 and N spins with total energy Emax are
brought into thermal contact, their initial Boltzmann entropy
of (0 + 0.69)k per spin can increase to (0.56 + 0.56)k = 1.12k

per spin if they share their energy equally. Thus the Boltzmann
entropy formula (9) predicts that in the new equilibrium state,
the energy will be shared between the two groups of spins.7

And that is just what happened in the experiments of Abragam
and Proctor [4,5,35].

Now consider the predictions of the “Gibbs” entropy
formula (16). Since �(E) increases monotonically with E,
the entropy increase achieved by giving energy E1 to one

7This may be thought of as an application of Callen’s “entropy
maximum postulate” [34], which asserts that at equilibrium the
available energy will be distributed between the subsystems in the
way that maximizes the total entropy. The entropy-maximizing energy
apportionment is the one that equalizes the reciprocal temperatures
of the two groups of spins and hence also, by (6), their energies.
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subsystem and E2 to the other, where E1 + E2 = Emax, has
the following upper bound:

[SG(E1) + SG(E2)] − [SG(0) + SG(Emax)]

� SG(Emax) − SG(0)

= k log

(
�(Emax)

�(0)

)

= k log

(
�(Emax)

1
2 (�(Emax) + ω(0))

)

< k log 2, (26)

where we have used first the monotonicity of SG(E), which im-
plies that SG(E1) + SG(E2) � 2SG(Emax), and afterwards the
symmetry of the energy spectrum about E = 0, which implies
that the number of energy levels with negative energy, namely
�(0) − ω(0), is equal to the number with positive energy,
namely �(Emax) − �(0), so that �(Emax) + ω(0) = 2�(0).
The inequality (26) shows that the composite system cannot
significantly increase its “Gibbs” entropy by transferring
energy from one subsystem to another; consequently, if the
Gibbs entropy is the same as the thermodynamic entropy, one
might expect the energy of each subsystem to perform some
kind of random walk after the two subsystems are brought
into thermal contact, but never to settle down at any definite
“equilibrium” value.8 But this prediction is inconsistent with
the experimental results of Abragam and Proctor [4,5], who
found that the energy apportionment went to a definite value,
not far from that which maximizes the “Boltzmann” entropy
of the composite system. One is led to the conclusion that the
“Gibbs” entropy formula (16), whatever its other virtues, is
not a secure foundation for the discussion of systems capable
of negative absolute temperatures.

V. DISCUSSION

A. Negative temperatures in a system of particles

The discussion given so far shows that negative absolute
temperatures make thermodynamic sense and are necessary
for a coherent description of nuclear spin experiments, but
negative absolute temperatures can also arise in other types of
experiment. One such experiment, described by Braun et al.
[8], involves 39K atoms in an optical lattice. The system was
first brought to equilibrium at a positive temperature and then
manipulated by changing the experimental parameters in a
way that, in essence, reversed the sign of the Hamiltonian.
As with the magnetic-field reversal for nuclear spin systems,
this manipulation can bring the atomic system to a state in
which the negative temperature concept is appropriate. A more
detailed analysis is given in the Appendix.

B. Negative temperatures in other systems

It is sometimes stated, e.g., in Refs. [13,23,35], that
negative absolute temperatures can arise in any system whose

8This is an illustration of the unphysically large fluctuations
sometimes predicted, according to Ref. [22], by the “Gibbs” entropy
formula.

energy spectrum is bounded above. Even without any specific
mechanism, such as magnetic-field reversal, for bringing the
system on its own to a negative temperature, such a claim still
makes sense because the system can, in principle, be placed in
a negative-temperature heat bath consisting of nuclear spins.
By a standard result of statistical mechanics (see, for example,
Chap. 11 of Ref. [35]), the system’s probability distribution
at equilibrium would then be canonical at the temperature of
the heat bath. If the energy spectrum of the original system
is bounded above, its partition function is a convergent sum
when the temperature is negative, and so this system can come
to equilibrium with a negative-temperature heat bath. In that
situation, it would be reasonable to describe the system itself
as being at a negative absolute temperature.

C. Gibbs versus Boltzmann

The debate about negative absolute temperatures tends
to take the form of a contest between the “Gibbs” and
“Boltzmann” formulas for the microcanonical entropy; for
example, it is argued in Refs. [10,16,18] that the “Boltzmann”
formula is flawed and that the “Gibbs” formula should always
be used, whereas Refs. [11,13,17,21,22] take the opposite
view. Our work suggests, however, that there is no definitive
way to decide in advance which entropy formula should be
used—the choice between them can depend on what system
is being considered, and even on what state that system is
in. For spin- 1

2 systems at positive energies (TB < 0), the
“Gibbs” entropy definition is unsatisfactory (see Sec. IV), but
at negative energies (TB > 0) there is little to choose between
the two definitions. Additionally, for classical systems of
particles, the “Gibbs” definition has some advantages [10,31],
which include the fact that no arbitrary parameter ε appears
in it.

Incidentally, this parameter ε is not quite as innocent
as it may look. Although its contribution k log ε to the
entropy is macroscopically negligible, the way it is chosen
can make the difference between thermostatistical consistency
and inconsistency. In Ref. [18], the choice ε = const in (11)
leads to a formula for magnetization that is thermodynamically
inconsistent [it disagrees with (2)], but by choosing ε ∝ μ|h|
instead, the inconsistency can be removed (see the calculation
in Sec. IV B). The reader may like to investigate whether or
not an equally effective choice of ε is always possible.

D. Superefficient Carnot engines?

It is sometimes asserted [8,23] that negative temperatures
make Carnot engines of efficiency greater than 1 possible.
This paradoxical assertion seems to stem from an uncriti-
cal application of the standard formula 1 − T2/T1 for the
efficiency of a reversible Carnot engine operating between
positive temperatures T1,T2 with T1 > T2. A more careful
treatment [11,36] shows, however, that the standard formula
does not apply if one of the temperatures is negative. Denoting
the increases in entropy of the working substance at the
temperatures T1,T2 by δS1,δS2 per cycle, the amounts of heat
taken in at the two temperatures are T1δS1 and T2δS2. If T1

and T2 have opposite signs, then, since δS1 + δS2 = 0 in a
reversible cycle, the amounts of heat taken in at the two
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temperatures have the same sign; therefore, the work done
by the engine per cycle is equal to the total heat taken in:
no heat is wasted and the efficiency is 1. An efficiency of 1
is remarkable enough, but there is no mysterious creation of
mechanical energy coming from nowhere.

Such a Carnot-type engine might be useful working in
reverse, as a heat pump [36] that would take in mechanical
energy and pump out some of it as heat into a negative-
temperature system, thereby helping to maintain that system
at a desired negative temperature against the inevitable loss
of heat to its “cooler” positive-temperature surroundings. A
possible cycle for such a device is described in the Appendix.

VI. SUMMARY AND CONCLUSIONS

The aim of this paper is to clarify the current controversy,
in which it has been claimed, on the one hand, that certain
experimental procedures produce negative absolute tempera-
tures and, on the other hand, that negative temperatures are
incompatible with basic thermodynamic principles.

These experimental procedures involve reversing the mag-
netic field acting on a system of nuclear spins in a crystal whose
initial temperature is so low that the interaction of the spin
system with crystal lattice vibrations can be neglected. Using
the thermodynamic principle of entropy increase, we show that
the magnetic-field reversal does not change the entropy, and
hence, since the energy of the spin system is reversed, that S

is an even function of E so that the temperature (∂S/∂E)−1,
initially positive, is negative after field reversal.

The challenge to the negative T concept has been mainly
based on the claim that it is incompatible with the “thermosta-
tistical consistency condition” (17), since the most obvious
entropy definition satisfying that condition, the “Gibbs”
formula (16), implies T � 0. Here we show that there is in fact
no incompatibility, since (for spin systems) the “Boltzmann”
entropy, as defined in (9), also satisfies thermostatistical
consistency and yet permits negative temperatures. To confirm
that the Gibbs formula is not the right entropy definition for
nuclear spin systems, we also show that it is incompatible with
the experimental results of Abragam and Proctor [4,5] on the
way that energy is shared between spin systems in thermal
contact.

In conclusion, we have shown that negative absolute tem-
peratures arise naturally in the analysis of certain experiments
on spin systems, and that for those systems the Gibbs entropy
definition gives misleading results, whereas the Boltzmann
definition does not.
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APPENDIX A: NEGATIVE TEMPERATURES IN A SYSTEM
OF PARTICLES

The experiment described by Braun et al. [8] involves a
system of 39K atoms in an optical lattice. They modeled this
system using a Hamiltonian of “Bose-Hubbard” type, which

can be written in the form

H1 := c1

∑
k,l

(a†
k − a

†
l )(ak − al) + c2

∑
k

a
†
ka

†
kakak

+ c3

∑
k

r2
ka

†
kak, (A1)

where c1,c2,c3 are positive constants, the indices k,l label the
lattice sites, the double sum goes over all nearest-neighbor
pairs of sites, ak is the operator annihilating a particle at lattice
site k, the dagger indicates a Hermitian conjugate, and rk is
the distance from the lattice site k to a fixed origin. In the
experiment, the system was started in equilibrium at a positive
temperature T , with Hamiltonian H1, and then manipulated
by changing the parameters c1,c2,c3 until the Hamiltonian
became (essentially) −H1. To study what happens to the
thermodynamic entropy during such a process, consider the
family of Hamiltonians

Hλ := λH1 (−1 � λ � 1) (A2)

and consider a thought experiment in which the (time-
dependent) Hamiltonian is Hλ, with λ being controlled so
that its value starts at 1 and ends at −1. The system starts
in equilibrium, modeled by a microcanonical ensemble at
energy E = E1. Since the operator H1 commutes with the
time-varying Hamiltonian Hλ, its expectation 〈H1〉 is an
invariant and therefore preserves its initial value, E1, thus
the energy, i.e., the expectation of Hλ = λH1, is equal to
λE1 throughout and finally reaches the value −E1. The final
ensemble is again microcanonical and therefore describes a
new equilibrium state, this time with energy −E1. Moreover,
the process can be reversed, bringing us back to the original
equilibrium state with λ = 1 and energy E1. Hence, by an
argument similar to the one used in deriving (5), the entropy
as a function of energy and λ must satisfy9

S(−E,−λ) = S(E,λ), (A3)

and it follows, as in the discussion of (5), that

T (−E,−λ) = −T (E,λ), (A4)

confirming the interpretation made in Ref. [8] that the
equilibrium state reached by reversing the signs of c1,c2,c3

does have a negative absolute temperature.
The Hamiltonian H1 is not bounded above; therefore, the

reversed Hamiltonian H−1 := −H1, used here to model the
“inverted” state produced in the experiment, is not bounded
below. This fact has the consequence that �(E) is not defined
for the reversed Hamiltonian, so that it does not have a “Gibbs”
entropy, nor a “Gibbs” temperature. One could instead work
with the “complementary Gibbs entropy” defined [13,16] in
terms of the number of energy levels above, rather than below,
the actual energy of the system. The ramifications of this
possibility will not be explored further here.

9It does not matter that the density matrix when λ = 0 is not
microcanonical and therefore does not describe an equilibrium
state—as noted in Sec. III, the entropy increase principle does not
require the intermediate states to be equilibrium states.
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M M12

T=T1

T= −T1

h1
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axis
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FIG. 1. “Carnot” cycle for a heat pump using negative tem-
peratures. The area enclosed by the loop equals the total energy
transferred per cycle. For the nuclear spin system, the equation of the
temperature-T isotherm is h = (kT /μ)arc tanh(M/Nμ). The vertical
line at M = Nμ is an asymptote of all the isotherms, both for positive
and negative temperatures. M1 and M2 are the magnetization values
at which the magnetic field is suddenly reversed. Nμ is the maximum
value the magnetization can acquire.

APPENDIX B: A POSSIBLE NEGATIVE-TEMPERATURE
MAINTENANCE CYCLE

The engine might operate as follows (see Fig. 1)10

(i) As in Sec. III: the working substance starts in equilibrium
at temperature T1 > 0 with magnetic field h1 and magnetic
moment M1 both in the positive z direction, so that [by (1)] the
energy is E = −h1M1 < 0 initially. The magnetic field is then
quickly reversed (to −h1); the energy increases from −h1M1

to +h1M1, the temperature changes to −T1, but the entropy
and magnetic moment stay constant.

(ii) The working substance is placed in contact with
the (relatively large) object that is to be maintained at
temperature −T1 in the face of energy losses to its envi-
ronment. Heat is taken from the working substance isother-
mally so that |h| and M both decrease but the reciprocal
temperature, which for the spin systems considered earlier

10A very similar diagram, with more isotherms, is given in Ref. [11].
11See, for example, Eq. (6.3.3) on p. 207 of Ref. [28], or Eq. (15)

of Ref. [11].

can be shown11 to be equal to (k/μh)arc tanh(M/Nμ), remains
constant; the magnetic field decreases (in magnitude) from
−h1 to −h2 and the energy decreases from h1M1 to h2M2,
with h2 < h1,M2 < M1; the entropy of the working substance
increases by �E/T = (h2M2 − h1M1)/(−T1) > 0 (i.e., it
takes entropy out of the object).

(iii) The magnetic field is again quickly reversed (from −h2

to +h2); the magnetic moment stays at M2 but the temperature
goes back to T1; the energy decreases from h2M2 to −h2M2.

(iv) The working substance is placed in contact with a heat
sink at temperature T1 and gives out heat isothermally. The
magnetic field returns to h1 and the magnetic moment returns
to M1, the energy of the working substance decreases [see
(1) from −h2M2 to −h1M1], and the entropy of the working
substance increases by �E/T = (−h1M1 + h2M2)/T1 < 0
(i.e., it gives up entropy to the heat sink).

An important difference from positive-temperature Carnot
cycles is that steps (i) and (iii) are not quasistatic, so that
the system need not pass through equilibrium states and does
not have a well-defined temperature throughout. In particular,
when the magnetic field passes through the value zero, the
system is not in equilibrium and so there is no violation of the
third law of thermodynamics, even though the representative
point in the (M,h) plane crosses isotherms belonging to
arbitrarily small temperatures.

APPENDIX C: REPLIES TO SOME OTHER ARGUMENTS
FOR USING SG

An argument sometimes given for preferring the “Gibbs”
to the “Boltzmann” entropy definition is [16,19] that “only
SG obeys the second law” in the sense that SG always
increases when two systems, both previously in equilibrium
but separated, are brought together, whereas SBε [defined in
(10)] may decrease slightly (depending on the value of ε). The
Boltzmann entropy SB as defined here [see (9)] does, however,
obey the second law in this sense.

An ingenious argument due to Campisi [18,37] depends
on the fact that all exact solutions of (17) have the form
S(E) = g[�(E)]; it is argued that, if the function g is known
for one system [such as the classical ideal gas, for which
g(x) = k log x], then “it has to be one and the same for all
systems ...because by adjusting the external parameters ...one
can transform any Hamiltonian into any other”. However, it is
not self-evident that the change from one system to another
can always be accomplished by a mere adjustment of external
parameters. The change from classical to quantum mechanics
is the most obvious example, and the change from a system
with an unbounded energy spectrum to one with a bounded
spectrum, or even the magnetic-field reversal considered in
Sec. III, also involves discontinuous changes in the properties
of the system, which may require a corresponding discontinu-
ous change in the function g(·).
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