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Stochastic Liouville equation for particles driven by dichotomous environmental noise
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We analyze the stochastic dynamics of a large population of noninteracting particles driven by a global
environmental input in the form of a dichotomous Markov noise process (DMNP). The population density of
particle states evolves according to a stochastic Liouville equation with respect to different realizations of the
DMNP. We then exploit the connection with previous work on diffusion in randomly switching environments,
in order to derive moment equations for the distribution of solutions to the stochastic Liouville equation. We
illustrate the theory by considering two simple examples of dichotomous flows, a velocity jump process and a
two-state gene regulatory network. In both cases we show how the global environmental input induces statistical
correlations between different realizations of the population density.

DOI: 10.1103/PhysRevE.95.012124

I. INTRODUCTION

Recently, we analyzed a stochastic Fokker-Planck equa-
tion (FPE) describing the evolution of a large population
of noninteracting Brownian particles subject to a common
environmental input in the form of an Ornstein-Uhlenbeck
(OU) process [1]. For a given realization of the OU process,
the density of particle positions P (x,t) satisfies a deterministic,
nonautonomous FPE parametrized by the OU process. How-
ever, since the OU process is itself stochastic, this means that
different realizations of the OU process generate a distribution
of probability densities. We derived moment equations for the
distribution of solutions to the stochastic FPE and highlighted
the fact that although the particles are noninteracting, the
presence of a common environmental input induces statistical
correlations. In particular,

E[P (x,t)P (y,t)] �= E[P (x,t)]E[P (y,t)],

where expectation is taken with respect to different realiza-
tions of the environmental noise. We illustrated this result
using perturbation theory to calculate the above two-point
correlation function close to the white-noise limit of the
environmental OU process. We also gave another example
of environmentally induced correlations by reformulating the
theory of noise-induced synchronization [2–4] within the
stochastic FPE framework.

In this paper we further explore the issue of statistical
correlations induced in a population of noninteracting particles
driven by a common environmental noise source. Here,
however, each particle undergoes piecewise deterministic
dynamics rather than Brownian motion and is driven by
a global environmental input consisting of a dichotomous
Markov noise process (DMNP) rather than an OU process.
The resulting population density evolves according to a
stochastic Liouville equation rather than a stochastic FPE.
Dichotomous noise has played an important role in the study
of nonequilibrium systems over the years, as summarized
in the review by Bena [5]. In particular, it provides a more
analytically tractable model of colored noise and the effects of
finite correlation times than the OU process. Moreover, there
is a wide range of physical and biological systems where a
DMNP is a good representation of nonequilibrium processes.
For example, within the context of cell biology there are a

number of simple examples where some continuous variable
x(t) randomly jumps between two forms of deterministic
dynamics, depending on the state of some discrete variable
n(t) ∈ {0,1} that evolves according to a two-state Markov
process [6]: (i) a gene regulatory network where n(t) specifies
whether the gene is active or inactive and x(t) represents
the concentration of protein synthesized by the gene, (ii) a
stochastic ion channel for which n(t) specifies whether the
channel is open or closed and x(t) is membrane voltage,
and (iii) x(t) represents the position of a molecular motor
on a filament track and n(t) specifies whether it is moving to
the right with speed v+ or moving to the left with speed v−
(velocity jump process).

We begin by briefly reviewing the standard theory of a
single particle driven by a DMNP in Sec. II. We highlight
that the joint probability density of particle and environmental
states is given by a Chapman-Kolmogorov equation. In Sec. III
we introduce our population perspective by considering a
large population of noninteracting particles driven by the same
global DMNP. The resulting density of particle states satisfies
a stochastic Liouville equation, from which we construct
moment equations for the distribution of probability densities.
In Secs. IV and V we illustrate the theory using simple
examples of dichotomous flows, namely, a velocity jump
process (Sec. IV) and a two-state gene regulatory network
(Sec. V).

II. SINGLE PARTICLE DRIVEN BY DICHOTOMOUS
MARKOV NOISE

Consider a single particle with continuous variable x(t) ∈
� ⊂ R whose velocity switches between two forms

v±(x) = f (x) ± g(x)�± (2.1)

according to a two-state Markov process with x-independent
transition rates k±. That is, x(t) evolves according to the
following stochastic differential equation (SDE):

dx

dt
= f (x) + g(x)ξ (t), (2.2)

where ξ (t) is a realization of the two-state Markov process.
In the physics literature ξ (t) is called a dichotomous Markov
noise process and is said to act additively if g(x) is independent
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of x and to act multiplicatively otherwise (see the review by
Bena [5] and references therein). It is convenient to rewrite the
SDE (2.2) in the form

dx

dt
= F (x,n(t)), n(t) = 0,1 (2.3)

with functions

F (x,1) = f (x) + g(x)�+, F (x,0) = f (x) − g(x)�−.

(2.4)

A comparison of Eqs. (2.2) and (2.3) shows that

ξ (t) = (�+ + �−)n(t) − �−, n(t) ∈ {0,1}.
The discrete state n(t) evolves according to a two-state Markov
chain with matrix generator

A =
(−k+ k−

k+ −k−

)
. (2.5)

If Pnn0 (t) = P[N (t) = n|N (0) = n0] then the master equation
for the DMNP takes the form

dPnn0

dt
=

∑
m=0,1

AnmPmn0 .

Using the fact that P0n0 (t) + P1n0 (t) = 1, we can solve this
pair of equations to give

P0n0 (t) = δ0,n0e
−t/τc + τck−(1 − e−t/τc ), τc = 1

k− + k+
.

A number of results follow from this. First, τc is the relaxation
time of the DMNP with Pmn0 (t) → ρm in the limit t → ∞ and

ρ0 = k−
k+ + k−

, ρ1 = k+
k+ + k−

. (2.6)

In the stationary state,

〈ξ (t)〉 = (�+ + �−)〈n(t)〉 − �− = ρ1�+ − ρ0�−. (2.7)

Suppose in particular that the DMNP is unbiased so that
〈ξ (t)〉 = 0. The stationary autocorrelation function is then
given by

〈ξ (t)ξ (t ′)〉 = �2
−−2�−(�+ + �−)ρ1 + (�+ + �−)2〈n(t)n(t ′)〉

= D

τc

e−|t−t ′ |/τc , (2.8)

with noise amplitude D = k+k−τ 3
c (�+ + �−)2. This shows

that the DMNP provides an alternative form of colored noise
to an Ornstein-Uhlenbeck process.

Given the initial conditions x(0) = x0,n(0) = n0, we intro-
duce the probability density pn(x,t |x0,n0,0) with

P{x(t) ∈ (x,x + dx),n(t) = n|x0,n0}
= pn(x,t |x0,n0,0)dx. (2.9)

It follows that pn,n = 0,1 evolves according to the forward
differential Chapman-Kolmogorov (CK) equation [6,7]

∂p0

∂t
= − ∂

∂x
(F (x,0)p0(x,t)) + k−p1 − k+p0, (2.10a)

∂p1

∂t
= − ∂

∂x
(F (x,1)p1(x,t)) + k+p0 − k−p1 (2.10b)

(after dropping the explicit dependence on initial conditions).
One major topic of interest regarding DMNPs is determining
conditions on the functions F (x,0) and F (x,1) or, equivalently,
f (x) and g(x) for which a stationary solution of Eqs. (2.10a)
and (2.10b) exists [5]. This will be illustrated in Secs. IV and V.
In applications one is typically interested in the marginal
density p(x,t) = p0(x,t) + p1(x,t), which can be used to
calculate moments of p such as the mean and variance,

〈x(t)〉 =
∫

xp(x,t)dx,

Var[x(t)] =
∫

x2p(x,t)dx − 〈x(t)〉2.

Then either the moments or the full density profile can be
compared with experimentally observed quantities or direct
numerical simulations of the SDE (2.3). It is important to
note that in making these comparisons one is simultaneously
averaging over realizations of the piecewise dynamics and the
DMNP. In the next section we will consider a different protocol
where one separates out the piecewise dynamics from different
realizations of the DMNP.

For simplicity, in this paper we assume that the transition
rates k± are independent of the state x. However, in some
systems this does not hold, such as gene regulatory networks
with feedback (see Sec. V). The solution of Eq. (2.10) now
becomes more involved and one typically has to use some
numerical scheme [8].

III. STOCHASTIC LIOUVILLE EQUATION
FOR A DICHOTOMOUS FLOW

For a given realization σ (t) = {n(τ ),0 � τ < t} of the
stochastic process n(t), the SDE (2.3) reduces to a de-
terministic, nonautonomous ordinary differential equation
(ODE). Now consider an ensemble of identical, noninteracting
particles labeled by 
 = 1, . . . ,M with state variables x
(t),
all being driven by the same external or environmental variable
n(t). Equation (2.3) becomes

dx


dt
= F (x
,n(t)) (3.1)

for 
 = 1, . . . ,M, with the stochastic variable n(t) indepen-
dent of 
 and evolving according to a continuous Markov
chain with generator A. Assume that the initial positions of the
particles xi(0) are randomly generated from a density p0(x).
Take the thermodynamic limit M → ∞ and let P (x,t) denote
the density of particles in state x at time t given a particular
realization σ (t) of the DMNP. The population density evolves
according to the stochastic Liouville equation

∂

∂t
Pσ (x,t) =

[
− ∂

∂x
F (x,n(t))

]
Pσ (x,t), (3.2)

with Pσ (x,0) = p0(x). Note that the density Pσ (x,t) is a
random field with respect to realizations σ .

It is important to highlight the relationship between the
stochastic Liouville equation (3.2) and the deterministic CK
equation (2.10). In particular, does the former formulation
provide any new information that is physically measurable
compared to the standard formulation in terms of the CK
equation (2.10)? The essential point is that we are dealing
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FIG. 1. Diagram illustrating the difference between the particle and population or SPDE perspectives. (a) Multiple realizations (xj (t),nj (t))
of a single particle driven by dichotomous noise generate the density pn(x,t). (b) Large population (N → ∞) of particles evolving in a single
realization σ of a common dichotomous noise source n(t) generates the density P (x,t). (c) The stochastic Liouville equation describes the
evolution of the population density P (x,t) with respect to realizations σ of the common dichotomous noise n(t). A corresponding figure in
Ref. [1] shows each particle undergoing Brownian motion, rather than piecewise deterministic dynamics, and driven by an OU process, rather
than a DMNP.

with a doubly stochastic process. One source of stochasticity
is that the initial condition of each particle is independently
generated from some probability density and the second source
of noise is an external input in the form of dichotomous
noise. There are then two distinct cases. If the dichotomous
noise is independent for each particle (uncorrelated) [see
Fig. 1(a)], then the resulting distribution of sample paths is
given by the solution p(x,t) = p0(x,t) + p1(x,t) of the CK
equation (2.10). We will refer to this as the particle perspective.
On the other hand, if the dichotomous noise is common to
all the particles (fully correlated) [see Fig. 1(b)], then the
resulting distribution of paths for a single realization σ of the
dichotomous noise process is given by the solution Pσ (x,t) to
the Liouville equation (3.2). We will call this the stochastic
partial differential equation (SPDE) perspective. (In our
previous paper [1], each particle evolved according to an SDE
with two sources of noise. The first was intrinsic white noise
that was uncorrelated between particles and an environmental
or extrinsic colored noise source that was common to all
the particles.) From a computational perspective, one can
obtain approximations of both densities p(x,t) and Pσ (x,t)
by partitioning the domain � into small bins and counting
the number of particles in each bin. The resulting histogram
should converge to the appropriate population density in
the thermodynamic limit M → ∞. Clearly, both types of
population sampling are possible and are thus physically
realizable.

The crucial observation is that in the fully correlated
case the resulting density Pσ (x,t) depends on the particular
realization σ . Hence, one could run multiple trails for
different σ resulting in a distribution of densities Pσ (x,t),
as illustrated schematically in Fig. 2 for some fixed time
t = T . Clearly, the set of densities Pσ (x,t) for different σ

contains more information than the single density p(x,t).
For a large number of realizations or trials σ1, . . . ,σχ and
fixed x,t , the computational relationship between the two is
p(x,t) ≈ χ−1 ∑χ

j=1 Pσj
(x,t). As we will establish below, a

more precise mathematical relationship between the particle
and SPDE perspectives can be obtained by deriving moment

equations for the distribution � of the resulting stochastic
population density Pσ (x,t). In particular, we will find that

p(x,t) = Eσ [Pσ (x,t)], (3.3)

where the subscript σ denotes expectation with respect to
realizations of the DMNP. However, since all particles in the
SPDE formulation are driven by a single realization of the
same DMNP, it follows that there are higher-order statistical
correlations of the density Pσ (x,t) even when the particles
are otherwise noninteracting, so, for example,

C(x,y,t) ≡ Eσ [Pσ (x,t)Pσ (y,t)]

�= Eσ [Pσ (x,t)]Eσ [Pσ (y,t)]. (3.4)

In certain simple cases, however, second-order correlations
may disappear in the large-t limit (see the example in
Sec. IV). (It is important to emphasize that these correlations
are at the level of the full probability density function
Pσ (x,t), which is distinct from correlations in the position

x
Pσ1(x,T)

Pσ2(x,T)

Pσ3(x,T)

Pσ4(x,T)

σ

x0

p(x0,T)  ∼ χ-1Σj Pσj(x0,T)

FIG. 2. Schematic illustration of the relationship between p(x,t)
and Pσ (x,t) for a given time t = T and different realizations of the
common dichotomous noise σ = σj , j = 1, . . . ,χ .

012124-3



PAUL C. BRESSLOFF PHYSICAL REVIEW E 95, 012124 (2017)

of a particle evolving according to some SDE, say, where
E[x(t)x(t ′)] �= E[x(t)]E[x(t ′)].) From a computational
perspective, we also have the approximation

C(x,y,t) ≈ χ−1
χ∑

j=1

Pσj
(x,t)Pσj

(y,t)

and similarly for higher-order moments. That is, these
moments can be experimentally measured by running
multiple realizations of the environment.

Finally, note that the full statistics in the case of fully
correlated dichotomous noise is captured by the distribution �

of densities Pσ . However, this is a probability functional over
an infinite-dimensional space. Therefore, it is more practical
to deal with moments of �. It turns out that these moments
also have an interpretation in terms of the particle perspective,
namely, the nth-order moments of � determine the statistics of
a population of particle clusters of size n, where each cluster is
subject to independent dichotomous noise, but the n particles
within a cluster are subject to the same dichotomous noise. This
corresponds to having n particles in each box of Fig. 1(a).

A. Moment equations

An analogous distinction between the particle and SPDE
perspectives has recently arisen within the context of the
diffusion of particles in a randomly switching environment,
specifically, a finite domain with randomly switching boundary
conditions [9,10]. Applications in biological physics include
diffusion-limited reactions [11], neurotransmission [12], in-
sect physiology [13], and stochastically gated gap junc-
tions [14]. A related work has considered a model of lateral
membrane diffusion based on random walks in random
environments [15]. As in our previous study of the stochastic
FPE arising from a population of Brownian particles driven by
a common OU process [1], we will use the moment generating
method developed in Ref. [10] to analyze Eq. (3.2). For ease
of notation we drop the index σ from Pσ .

For the sake of illustration, consider the bounded domain
� = [0,L], where we allow the boundary conditions at x =
0,L to be n dependent. The first step is to discretize Eq. (3.2)
using a finite-difference scheme so that the system is converted
to a higher-dimensional DMNP. Introduce the lattice spacing
a such that Na = L for integer N and let Pj (t) = P (aj,t),
etc., j = 0, . . . ,N . Also set F

(n)
j = F (ja,n). Then

dPi

dt
= −

N∑
j=0

K
(n)
ij Pj if n(t) = n (3.5)

for i = 0, . . . ,N . Away from the boundaries (i �= 0,N ),

K
(n)
ij = 1

a
[δi,j−1 − δi,j ]F (n)

j . (3.6)

One of the major benefits of the finite-difference scheme is
that boundary conditions can be absorbed into the discrete
operator K

(n)
ij , even when they are n dependent. For the sake

of illustration, consider the boundary conditions

P (0,t)1n(t)=1 = 0, P (L,t)1n(t)=0 = 0, (3.7)

where 1n(t)=n is the indicator function, which is equal to one if
n(t) = n and is zero otherwise. These boundary conditions will
apply to the example of a two-state gene network considered
in Sec. V. At the boundaries we require P0(t) = 0 when
n = 1 and PN (t) = 0 when n = 0. These conditions can be
implemented by taking

K
(n)
0j = 1

a
δj,1F

(n)
j , K

(n)
N j = −1

a
δj,N−1F

(n)
j .

[Similarly, if each particle evolved according to an SDE rather
than the ODE (3.1), then Eq. (3.2) would become a piecewise
deterministic Fokker-Planck equation and K

(n)
ij would have

an additional term consisting of a discrete Laplacian. It is
well known from the theory of finite differences that Dirichlet
or Neumann boundary conditions could be implemented by
modifying the discrete Laplacian at the boundaries [1,10]; see
Sec. V C.]

Let P(t) = (P0(t), . . . ,PN (t)) and introduce the probability
density

Prob{P(t) ∈ (P,P + dP),n(t) = n} = �n(P,t)dP, (3.8)

where we have dropped the explicit dependence on initial
conditions. The resulting CK equation for the discretized
piecewise deterministic PDE is [6,7]

∂�n

∂t
=

N∑
i=0

∂

∂Pi

⎡⎣⎛⎝ N∑
j=0

K
(n)
ij Pj

⎞⎠�n(P,t)

⎤⎦
+

∑
m=0,1

Anm�m(P,t), (3.9)

with A00 = −k+ = −A10 and A01 = k− = −A11. Since the
Liouville term in the CK equation is linear in P, we can derive
a closed set of equations for the moments of �. For the sake
of illustration, we will calculate the first and second moments.
Let

Vn,j (t) = Eσ [Pj (t)1n(t)=n] =
∫

�n(P,t)Pj (t)dP, (3.10)

where ∫
f (P)dP =

⎡⎣ N∏
j=0

∫ ∞

0
dPj

⎤⎦f (P).

Multiplying both sides of the CK equation (3.9) by Pk(t) and
integrating with respect to P gives [after integrating by parts
and using �n(P,t) → 0 as P → ∞]

dVn,k

dt
= −

N∑
j=0

K
(n)
kj Vn,j +

∑
m=0,1

AnmVm,k.

We have assumed that the initial discrete state is distributed
according to the stationary distribution of the matrix A. If
we now retake the continuum limit a → 0, we obtain the CK
equation

∂Vn

∂t
=

[
− ∂

∂x
F (x,n)

]
Vn +

∑
m=0,1

AnmVm, (3.11)

with Vn(x,t) = Eσ [P (x,t)1n(t)=n]. The boundary conditions
are V1(0,t) = 0 = V0(L,t).
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Next we consider the second-order moments

Cn,kl(t) = Eσ [Pk(t)Pl(t)1n(t)=n]

=
∫

�n(P,t)Pk(t)Pl(t)dP.

Multiplying both sides of the CK equation (3.9) by Pk(t)Pl(t)
and integrating with respect to P gives (after integration by
parts)

dCn,kl

dt
= −

N∑
j=0

K
(n)
kj Cn,jl −

N∑
j=0

K
(n)
lj Cn,jk +

∑
m=0,1

AnmCm,kl .

If we now retake the continuum limit a → 0, we obtain a
system of equations for the equal-time two-point correlations

Cn(x,y,t) = Eσ [P (x,t)P (y,t)1n(t)=n], (3.12)

given by

∂Cn

∂t
= − ∂

∂x
(F (x,n)Cn) − ∂

∂y
(F (y,n)Cn) +

∑
m=0,1

AnmCm.

(3.13)

The boundary conditions are

C1(0,y,t) = C1(x,0,t) = 0, C0(L,y,t) = C0(x,L,t) = 0.

Formally speaking, Eq. (3.11) for the first-order moments
Vn(x,t) is identical in form to the deterministic CK equa-
tion (2.10) for the single-particle probability density pn(x,t).
Similarly, Eq. (3.13) for the second moment Cn(x,y,t) is
identical in form to the CK equation that would be written
down for the joint probability density of two particles with
positions x and y at time t . More generally, C(r) is related
to the joint probability density of r particles. [The latter
would correspond to having r particles in each of the boxes
in Fig. 1(a).] However, these two representations are not
equivalent, particularly in the case of bounded domains [10].
From a physical perspective, there is a much wider class of
boundary conditions that one can impose on the SPDE (3.2)
compared to the SDE (2.3) or its finite particle extension (3.1).
This reflects the fact that particle conservation need not hold
at the SPDE level. For example, if x ∈ [0,L] then one could
impose an inhomogeneous boundary condition at x = L, say,
of the form

∑
n F (L,n)Pn(L,t) = η. One final observation

is that solutions to Eq. (3.13) are generally not separable,
that is, Cn(x,y,t) �= Vn(x,t)Vn(y,t). In other words, Eq. (3.4)
holds. This reflects the fact that, although the particles are
noninteracting, they are all moving under the same single
realization of the DMNP (common environmental noise)
and this induces statistical correlations in the distribution of
densities P (x,t) with respect to different realizations of the
DMNP.

IV. EXAMPLE: VELOCITY JUMP PROCESS

A. Single-particle perspective

As the first illustration of the above analysis, consider the
velocity jump process

dx

dt
= [v+ + v−]n(t) − v−, k± = k.

The corresponding CK equation (2.10) reduces to

∂p0

∂t
= v−

∂p0

∂x
+ k[p1 − p0], (4.1a)

∂p1

∂t
= −v+

∂p1

∂x
+ k[p0 − p1]. (4.1b)

First suppose that x ∈ R and v+ = v− = v. The marginal
probability density p(x,t) = p0(x,t) + p1(x,t) then satisfies
the telegrapher’s equation [16,17][

∂2

∂t2
+ 2k

∂

∂t
− v2 ∂2

∂x2

]
p(x,t) = 0. (4.2)

(The individual densities p0,1 satisfy the same equations.) The
telegrapher’s equation can be solved explicitly for a variety
of initial conditions. More generally, the short-time behavior
(for t � τc = 1/2k) is characterized by wavelike propagation
with 〈x(t)〉2 ∼ (V t)2, whereas the long-time behavior (t � τc)
is diffusive with 〈x2(t)〉 ∼ 2Dt , D = v2/2k. As an explicit
example, the solution for the initial conditions p(x,0) = δ(x)
and ∂tp(x,0) = 0 is given by

p(x,t) = e−kt

2
[δ(x − vt) + δ(x + vt)]

+ ke−kt

2v

[
I0(k

√
t2 − x2/v2) + t√

t2 − x2/v2

× I0(k
√

t2 − x2/v2)

]
[�(x + vt) − �(x − vt)],

where In is the modified Bessel function of nth order and � is
the Heaviside function. The first two terms clearly represent
the ballistic propagation of the initial data along characteristics
x = ±vt , whereas the Bessel function terms asymptotically
approach Gaussian functions in the long-time limit. The
steady-state equation for p(x) is simply p′′(x) = 0, which from
integrability means that p(x) = 0 pointwise. This is consistent
with the observation that the above explicit solution satisfies
p(x,t) → 0 as t → ∞.

A nontrivial steady-state solution can be obtained on the
semi-infinite line x > 0 for v+ �= v−. One example of such a
system is the Dogterom-Leibler model of microtubule catas-
trophes [18,19], in which microtubules switch between growth
and shrinkage phases at a rate k, with v± the corresponding
elongation and shrinkage velocities. We can determine a
condition for the existence of a steady-state solution by
adding Eqs. (4.1a) and (4.1b) and setting ∂tp0,1 = 0. This
gives v+p′

1(x) − v−p′
0(x) = 0 and thus v+p1(x) − v−p0(x) =

const. Normalizability of p0,1(x) implies that the constant must
be zero and hence p1(x) = P (x)/v+ and p0(x) = P (x)/v−,
with P satisfying the equation

dP (x)

dx
=

[
k

v−
− k

v+

]
P (x) = −V

D
P (x),

where V = (v− − v+)/2 and D = (v+v−)/2k is an effective
diffusivity. It immediately follows that there exists a steady-
state solution P (x) = P (0)e−V x/D , 0 < x < ∞, if and only if
V > 0. In the regime V < 0, catastrophic events are relatively
rare and the microtubule continuously grows with mean
speed |V |, whereas for V > 0 the catastrophic events occur
much more frequently, so there is a balance between growth
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and shrinkage that results in a steady-state distribution of
microtubule lengths.

B. SPDE perspective

Turning to the corresponding stochastic Liouville equa-
tion (3.2), we can identify the first moments Vn with the
solutions pn of Eq. (4.1), whereas the second-order moments
Cn(x,y,t) satisfy

∂C0

∂t
= v−

∂C0

∂x
+ v−

∂C0

∂y
+ k[C1 − C0], (4.3a)

∂C1

∂t
= −v+

∂C1

∂x
− v+

∂C1

∂y
+ k[C0 − C1]. (4.3b)

Again let us first consider the case (x,y) ∈ R2 and v+ =
v− = v. Adding and subtracting Eqs. (4.3a) and (4.3b) and
setting C = C1 + C0 and Ĉ = C1 − C0 yields

∂C

∂t
= −v

∂Ĉ

∂x
− v

Ĉ

∂y
, (4.4a)

∂Ĉ

∂t
= −v

∂C

∂x
− v

∂C

∂y
− 2kĈ. (4.4b)

Differentiating Eq. (4.4a) with respect to t and using
Eq. (4.4b) establishes that C satisfies the two-dimensional
(2D) partial differential equation (PDE)[

∂2

∂t2
+ 2k

∂

∂t
− v2

(
∂

∂x
+ ∂

∂y

)2
]
C(x,y,t) = 0. (4.5)

This PDE is clearly not separable, which implies that
C(x,y,t) �= p(x,t)p(y,t). If the cross-differentiation term
2v2∂x∂y were absent from Eq. (4.5), then (4.5) would be
identical to the 2D version of the telegrapher’s equation. Even
for this simpler PDE, it is necessary to resort to numerical
methods in order to solve the initial value problem. Note,
however, that C(x,y,t) → 0 in the limit t → 0.

Now suppose x > 0, y > 0, and v+ < v−. Adding
Eqs. (4.3a) and (4.3b) then yields

∂φ(x,y)

∂x
+ ∂φ(x,y)

∂y
= 0, x,y > 0,

with φ(x,y) = v+C1(x,y) − v−C0(x,y). It follows that
φ(x,y) = �(x − y) for some function � and hence

C0(x,y) = P (x + y)

v−
+ �0(x − y),

C1(x,y) = P (x + y)

v+
+ �1(x − y),

with v+�1 − v−�0 = �. Substituting into the steady-state
version of Eq. (4.3a) shows that �0 = �1 = �, say, and

∂P

∂x
+ ∂P

∂y
= −V

D
P. (4.6)

The latter has the solution P (z) = P (0)e−V z/D with z =
x + y. Finally, integrability of the solutions and the integral

identities∫ ∞

0
Cn(x,y)dx = Vn(y),

∫ ∞

0
Cn(x,y)dy = Vn(x) (4.7)

require � = 0 so that

Cn(x,y) = Cn(0)e−V (x+y)/D = Vn(x)Vn(y). (4.8)

This establishes that in steady state the two-point correlations
disappear for the given velocity jump process.

V. EXAMPLE: TWO-STATE GENE NETWORK

A. Single-particle perspective

In order to further illustrate the occurrence of statistical
correlations in a population of particles driven by a common
DMNP, consider the simple two-state model of gene regulation
shown in Fig. 3. The gene randomly switches between an
inactive state I (no protein production) and an active state A

where proteins are produced at a rate r . Proteins subsequently
degrade at a rate γ . (The stages of transcription and translation
are lumped together so we do not keep track of the amount of
mRNA.) The corresponding reaction scheme is

I
k+�
k−

A
r→ p

γ→ ∅,

where k± are the switching rates between the inactive and
active states. Suppose that the number of proteins is sufficiently
large so that we can represent the dynamics in terms of a
continuous-value protein concentration x(t). Let n(t) denote
the current state of the gene with n(t) = 0 if it is inactive and
n(t) = 1 if it is active. The protein evolves according to the
piecewise-deterministic equation

dx

dt
= rn − γ x (5.1)

for n(t) = n ∈ {0,1}. Equation (5.1) has the form of Eq. (2.3)
with

F (x,0) = −γ x, F (x,1) = r − γ x.

Note that x(t) can be restricted to the closed interval � =
[0,r/γ ], where F (x,0) < 0 and F (x,1) > 0 within the interior
of the domain.

Several previous studies of two-state regulatory networks
have focused on properties of the steady-state probability

r γY

k+ k_

X

TF

promotor

FIG. 3. A gene randomly switches between an on-state and an
off-state at rates k± due to the binding and unbinding of a transcription
factor to a promotor site. In the on-state proteins are produced at
a rate r and degrade at a rate γ . (For simplicity, the intermediate
transcription step of producing mRNA is ignored.)
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density [20–24] by solving the time-independent version of
the CK equation (2.10) with the boundary conditions (3.7) and
L = r/γ . More specifically, adding Eqs. (2.10a) and (2.10b)
and setting time derivatives to zero yields

∂

∂x
(F (x,0)p0(x)) + ∂

∂x
(F (x,1)p1(x)) = 0,

that is, F (x,0)p0(x) + F (x,1)p1(x) = c for some constant c.
The reflecting boundary conditions imply that c = 0. Since
F (x,n) is nonzero for all x ∈ �, we can express p1(x) in
terms of p0(x): p1(x) = −F (x,0)p0(x)/F (x,1). Substituting
into Eq. (2.10a) yields the solutions

pn(x) = 1

ZN |F (x,n)|

× exp

[
−

∫ x

0

(
k+

F (z,1)
+ k−

F (z,0)

)
dz

]
, (5.2)

where Zn is a normalization factor (assuming it exists). Given
the no-flux boundary conditions, we can impose the normal-
ization condition

∫ L

0 [p0(x) + p1(x)]dx = 1. Integrating the
steady-state versions of Eqs. (2.10) with respect to x then
shows that∫ L

0
p0(x)dx = k−

k− + k+
,

∫ L

0
p1(x)dx = k+

k− + k+
.

For the particular example of the two-state regulatory network
one thus finds [21]

p0(x) = C (γ x)−1+k+/γ (r − γ x)k−/γ , (5.3a)

p1(x) = C (γ x)k+/γ (r − γ x)−1+k−/γ (5.3b)

for C = γ [r (k++k−)/γ B(k+/γ,k−/γ )]−1, where B(α,β) is the
Beta function B(α,β) = ∫ 1

0 tα−1(1 − t)β−1dt . In Fig. 4 we
sketch p(x) = p0(x) + p1(x) for various values of K± =
k±/γ . It can be seen that if the rates k± of switching between
the active and inactive gene states are faster than the rate
of degradation γ , then the steady-state density is unimodal
(graded), whereas if the rate of degradation is faster, then
the density tends to be concentrated around x = 0 or x = 1,
consistent with a binary process. (The density actually diverges
at both ends but if k+ � k− or vice versa, then the associated
boundary layer is infinitesimal.)

B. SPDE perspective

Let us now consider the above example from the SPDE
perspective, where we imagine a large population of noninter-
acting gene networks driven by a common noise source. That
is, we assume there is some common environmental stimulus
that simultaneously controls the activation and inactivation of
the gene across a population of cells [23,24]. The discrete
environmental states could represent the presence of some
extracellular metabolite or signaling molecule, perhaps arising
from changes in the physiological or hormonal state that a
cell experiences in a multicellular organism. Since we can
identify the steady-state solution pn(x) with the first moment
limt→∞ Eσ [P (x)], we will consider the second-order moments
Cn(x,y), n = 0,1.

p(x)

 0        0.2       0.4       0.6      0.8         1.0
x

p(x)

1

2

3

4

5

1

2

3

4

(a)

(b)

k_ > k+ k+ > k_

k+ = k_

 0        0.2       0.4       0.6      0.8         1.0
x

FIG. 4. Sketch of steady-state protein density p(x) for a simple
regulated network in which the promoter transitions between an active
and inactive state at rates k±. (a) Case k±/γ > 1: There is a graded
density that is biased towards x = 0,1 depending on the ratio k+/k−.
(b) Case k±/γ < 1: There is a binary density that is concentrated
around x = 0,1 depending on the ratio k+/k−.

The steady-state version of Eq. (3.13) becomes

− ∂

∂x
[γ xC0] − ∂

∂y
[γyC0] = k−p1 − k+p0,

(5.4a)

∂

∂x
[(r − γ x)C1] + ∂

∂y
[(r − γy)C1] = −k−p1 + k+p0.

(5.4b)

These are supplemented by the integral identities∫
R

C0(x,y)dx dy = k−
k− + k+

,∫
R

C1(x,y)dx dy = k+
k− + k+

,

where A = [0,r/γ ] × [0,r/γ ]. The quasilinear equations (5.4)
are similar in form to the CK equations for the first moments of
a two-stage model of mRNA and protein concentrations (see
Sec. V C and Ref. [23]). As noted in Ref. [23], it is difficult
to find analytic solutions to these equations, so one has to
use numerical simulations. Here we show how the method of
characteristics may be used to extract some information about
the asymptotic behavior of the variances.

First, rewrite Eqs. (5.4) in the matrix form

M(x)
∂C(x,y)

∂x
+ M(y)

∂C(x,y)

∂y
= F , (5.5)
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10
0

1

rx/γ

ry/γ
C0 = 0

C
0  =

 0C
1 

=
 0

C1 = 0

FIG. 5. Characteristic curves for λ1 = y/x (dark) and λ2 =
(r − γy)/(r − γ x) (light).

with C = (C0,C1)� and F = (F0,F1)� for

F0 = (2γ − k+)C0 + k−C1, F1 = k+C0 + (2γ − k−)C1,

and M(x) = diag[F (x,0),F (x,1)]. Hence, Eq. (5.5) can be
analyzed using the method of characteristics [25]. Let �2 =
[0,r/γ ] × [0,r/γ ] ⊂ R2. Away from the boundary ∂�2 we
have a hyperbolic system with a pair of real characteristics for
all 0 < x < r/γ and 0 < y < r/γ . The slope dy/dx = λ of
a characteristic is determined from the equation det[M(y) −
λM(x)] = 0, which yields

λ1 = F (y,0)

F (x,0)
= y

x
, λ2 = F (y,1)

F (x,1)
= r − γy

r − γ x
. (5.6)

The corresponding characteristic curves are

y = y0(x) = ax, y = y1(x) = bx + r

γ
(1 − b) (5.7)

for constants a and b. The corresponding eigenvectors are
σ1 = (1,0)� and σ2 = (0,1)�. The curves are plotted in Fig. 5.
It can be seen that each point (x,y) in the interior of the domain
�2 is at the intersection of a unique pair of characteristics
propagating from the boundaries.

In particular, one has the following equations for C along
the characteristics y = yj (x) [25]:

σ�
j M(x)

(
∂C
∂x

+ λj

∂C
∂y

)
= σ�

j F , j = 1,2. (5.8)

For the given system we have the pair of equations

− γ x
dC0

dx
= k−C1 + (2γ − k+)C0, y = y0(x)

(5.9a)

(r − γ x)
dC1

dx
= k+C0 + (2γ − k−)C1, y = y1(x).

(5.9b)

Integrating Eqs. (5.9a) and (5.9b) with respect to x and
imposing the boundary conditions gives

C0(x,ax) = k−
γ

x−2+k+/γ

[
A0

x
−2+k+/γ

0

−
∫ x

x0

C1(x ′,ax ′)
[x ′]−1+k+/γ

dx ′
]
,

(5.10a)

C1(x,y1(x)) = k+
γ

(r/γ − x)−2+k−/γ

[
A1

[r/γ − x0]−2+k−/γ

+
∫ x

x0

C0(x ′,y1(x ′))
[r/γ − x ′]−1+k−/γ

dx ′
]

(5.10b)

for 0 < x0 < r/γ and constants A0 and A1.
The above pair of equations allows us to determine the

asymptotic behavior of the variances σ 2
n (x) = Cn(x,x). For

the sake of illustration, consider the case of graded responses
for which k±/γ > 1. Setting a = 1 and b = 1 and taking the
limits x → 0 in Eq. (5.10a) and x → r/γ in Eq. (5.10b) shows
that

σ 2
0 (x) ∼ x−2+k+/γ , x ∼ 0

σ 2
1 (x) ∼ [r − γ x]−2+k−/γ , x ∼ r/γ.

We have used the fact that the integral terms are clearly
finite for the graded response. It follows that in the graded
response regime, the variances have removable singularities at
the boundaries x = 0 and r/γ whenever 1 < k±/γ < 2.

It is clear from the above analysis that Cn(x,y) �=
Vn(x)Vn(y), thus providing an explicit example of statistical
correlations at the population level. Moreover, such correla-
tions could be experimentally measurable. That is, one could
imagine labeling the protein product within each cell using
green fluorescent protein (GFP) and taking a snapshot of the
GFP intensities across the population at some time t , after
being exposed to a single realization of the environment.
The resulting histogram of GFP intensities would yield an
approximation to P (x,t) for the given realization. Repeating
this for multiple runs would yield different realizations of the
stochastic density P (x,t) from which statistical correlations of
the population density could be constructed. This procedure
is distinct from most studies of gene networks, which tend to
focus on moments of P (x,t) averaged with respect to different
realizations of the environment, that is,

∫
xkEσ [P (x,t)]dx

rather than Eσ [P (x1,t) · · · P (xk,t)].

C. Extensions of gene network model

The above two-state gene network is about the simplest
gene regulatory network that one could write down. A more
realistic model would need to include the dynamics of mRNA,
allow for the possibility of nonlinear regulatory feedback, and
also need to take into account the effects of intrinsic noise.
The latter arises from a number of different sources, including
fluctuations in the binding or unbinding of the transcription
factor (TF) to or from the promotor site and demographic
noise associated with a finite number of proteins [24]. All of
these features can be incorporated into our SPDE framework.
In particular, our derivation of the moment equations for
the stochastic Liouville equation (3.12) did not require the
functions F (x,n) to be linear, nor the number of discrete states
n be restricted to two. However, as we found for even the
simple two-state gene network with linear F (x,n), analysis
of the resulting system of PDEs for the second moments
is nontrivial. Therefore, in most cases one would have to
compare the observed statistics with a numerical solution
of the corresponding PDEs. Here we outline a few possible
extensions in a little more detail.
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1. Intrinsic noise

The two-state environmental switching model has recently
been extended to include the effects of molecular noise and
nonlinearities by carrying out a system-size expansion of the
master equation for protein synthesis when the environment is
in state n [24] (see also Ref. [26]). This leads to a modification
of the SDE (2.3) of the form

dX(t) = F (X,n(t))dt +
√

σ (X,n(t))
�

dW (t) (5.11)

for n(t) ∈ {0,1}, where � is the system size (such as the
expected number of proteins), W (t) is a Wiener process with

〈dW (t)〉 = 0, 〈dW (t)dW (t ′)〉 = δ(t − t ′)dt dt ′,

and σ (X,n) is a noise intensity that typically depends on both
the protein concentration and the state of the environment.
Equation (5.11) is in the form of a piecewise SPDE, whose
associated CK equation for the probability densities pn(x,t) is

∂pn

∂t
=

[
− ∂

∂x
F (x,n)

]
pn + 1

2�

[
∂2σ 2(x,n)

∂x2

]
pn

+
∑

m=0,1

Anmpm (5.12)

for n = 0,1. The intrinsic multiplicative noise is treated in
the Itô sense. Hufton et al. [24] analyzed the model from
a particle perspective and showed how to approximate the
steady-state solutions of Eq. (5.12) by carrying out a linear
noise approximation, which can be applied even when F , σ ,
and k± are nonlinear functions of x.

Here we briefly indicate how the model can be formulated
from the SPDE perspective. Consider a large population of
noninteracting cells labeled by 
 = 1, . . . ,M with protein
concentrations X
(t), all being driven by the same external
or environmental variable n(t). Equation (3.1) becomes

dX
 = F (X
,n(t))dt +
√

σ (X
,n(t))
�

dW
(t) (5.13)

for 
 = 1, . . . ,M, with the stochastic variable n(t) indepen-
dent of 
 and evolving according to the continuous Markov
chain with generator A given by Eq. (2.5). The important point
to note is that the intrinsic noise within each cell is described
by an independent Wiener process

〈dW
(t)〉 = 0, 〈dW
(t)dW
′(t ′)〉 = δ
,
′δ(t − t ′)dt dt ′.

As in Sec. III, take the thermodynamic limit M → ∞ and let
P (x,t) denote the density of particles in state x at time t given
a particular realization of the DMNP. The stochastic Liouville
equation (3.2) is replaced by the stochastic FPE

∂

∂t
P (x,t) =

[
− ∂

∂x
F (x,n(t))

]
P (x,t)

+ 1

2�

[
∂2σ 2(x,n(t))

∂x2

]
P (x,t). (5.14)

One can now derive moment equations along lines analogous
to Sec. III and Ref. [1].

2. Two-stage model of mRNA and protein concentrations

As highlighted in Ref. [23], it is straightforward to write
down a two-stage version of the two-state gene network
model (5.1) that incorporates the production and decay of
mRNA. Let x(t) denote the concentration of protein and u(t)
the concentration of mRNA. The corresponding system of
kinetic equations at the single-gene level are given by

dx

dt
= rpu − γpx,

du

dt
= rn(t) − γuu(t) (5.15)

for n(t) = n ∈ {0,1}. Here γp and γu are the degradation rates
of protein and mRNA, rp is the environment-independent rate
at which protein is translated from active mRNA, and r is the
rate of mRNA synthesis when the gene is active. Let pn(x,y,t)
be the probability density for the joint process. The associated
CK equations are [23]

∂p0

∂t
= − ∂

∂x
[(rpu − γpx)p0] − ∂

∂u
[−γuu)p0]

+ k−p1 − k+p0, (5.16a)

∂p1

∂t
= − ∂

∂x
[(rpu − γpx)p1] − ∂

∂u
[(r − γuu)p1]

− k−p1 + k+p0. (5.16b)

The steady-state version of these equations is similar in
form to Eqs. (5.4). However, the latter determine the second-
order moments of the one-stage model in the SPDE perspec-
tive, whereas the former represent the particle perspective of
the two-state model or equivalently the first-order moments
equations of the SPDE perspective; the second-order moment
equations would involve four independent variables.

VI. DISCUSSION

In this paper we extended our recent work on SDEs in
random environments [1] by considering a large population
of noninteracting particles evolving according to piecewise
deterministic dynamics in the presence of global dichotomous
noise. Such a system could represent the switching on and
off of genes in a population of cells driven by a com-
mon environmental stimulus. We highlighted the difference
between the standard approach to analyzing dichotomous
noise, which we call the particle perspective, and the SPDE
perspective. The former simultaneously considers realizations
of the piecewise deterministic dynamics and the DMNP, which
results in a deterministic CK equation, whereas the latter
considers multiple realizations of the piecewise dynamics for
a single realization of the environmental noise, which leads
to a stochastic Liouville equation. A relationship between
the particle and SPDE perspectives was obtained by deriving
moment equations for the distribution of the resulting stochas-
tic population density by averaging over multiple realizations
of the environment. We illustrated the theory by considering
two simple examples of dichotomous flows, a velocity jump
process and a two-state gene regulatory network. In both
cases we showed how the global environmental input induces
statistical correlations between different realizations of the
population density.

In the probability literature, a particle driven by a DMNP
is an example of a much more general type of stochastic
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process known as a piecewise deterministic Markov process
(PDMP). That is, x(t) could belong to a higher-dimensional
space, n(t) could take on more than two discrete values, and,
most significantly, the transition rates of the discrete Markov
process could themselves depend on the continuous variable.
For example, the switching on or off of a gene could depend on
the concentration of its protein product (regulatory feedback)
or the opening and closing of an ion channel could be voltage
gated. A rigorous introduction to PDMPs can be found in
Refs. [27–30]. Note that a major assumption of the SPDE
formulation is that the switching rates k± of the environment
are independent of the states of the individual particles. This
is necessary; otherwise we could not separate the realizations
of the different particle trajectories and the realizations of the
dichotomous noise. It also allows us to interpret the discretized
piecewise deterministic equation (3.9) as a CK equation and to
derive the closed set of moment equations. One way to extend
the model would be to take the switching rates to depend on

some collective population variable such as the population
mean X = M−1 ∑M


=1 x
. (In applications to collective cell
signaling, for example, it is possible that the protein produced
by the cells could be secreted into the environment and thus
influence the state of the environment. A classical example is
bacterial quorum sensing [31].) In the thermodynamic limit,
we would have X(t) = ∫

�
xP (x,t)dx and thus the switching

rates would be functionals of P (x,t). Now carrying out the
discretization scheme in Sec. III A would lead to a CK
equation of the form (3.9), except that the matrix A would
now depend on the vector P. Although we could still construct
moment equations, the resulting nonlinearities would result in
a moment closure problem.
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