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This work investigates the influence of geometrical features of the Apollonian packing (AP) on the behavior
of magnetic models. The proposed model differs from previous investigations on the Apollonian network (AN),
where the magnetic coupling constants depend only on the properties of the network structure defined by the
packing, but not on quantitative aspects of its geometry. In opposition to the exact scale invariance observed in
the AN, the circle’s sizes in the AP are scaled by different factors when one goes from one generation to the
next, requiring a different approach for the evaluation of the model’s properties. If the nearest-neighbors coupling
constants are defined by Ji,j ∼ 1/(ri + rj )α , where ri indicates the radius of the circle i containing the node i, the
results for the correlation length ξ indicate that the model’s behavior depend on α. In the thermodynamic limit,
the uniform model (α = 0) is characterized by ξ → ∞ for all T > 0. Our results indicate that, on increasing
α, the system changes to an uncorrelated pattern, with finite ξ at all T > 0, at a value αc � 0.743. For any
fixed value of α, no finite temperature singularity in the specific heat is observed, indicating that changes in the
magnetic ordering occur only when α is changed. This is corroborated by the results for the magnetization and
magnetic susceptibility.
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I. INTRODUCTION

The investigation of the collective behavior resulting from
the interactions among agents in complex networks is of
utmost importance for understanding the behavior of natural,
social, and economic systems [1–4]. Usually one compares
networks based on actual data with artificial counterparts,
which can be generated by stochastic or deterministic pro-
cedures: in the first case, networks are produced with the
intervenience of a random process that controls the inclusion
(or not) of an edge between any two nodes [5–7]. The second
approach consists of constructing deterministic structures, by
successively using a set of geometric rules that leads to a
hierarchy of networks with a growing number of nodes and
edges at successive generations [8–10].

The behavior of above quoted systems can profit from
the studies on the behavior of magnetic spin models on
networks, where the focus is to investigate the conditions
for the emergence of phase transitions and to characterize
the critical behavior. It is known that complex networks may
or may not show magnetic phase transition at a well-defined
critical temperature Tc [11–14]. If the network building
procedure depends on one parameter X, it frequently happens
that a phase transition can be found and located in a phase
diagram Tc = Tc(X). This is the case, for instance, of the
homogeneous Ising model on the generalized Barabasi-Albert
(BA) scale-free network [7]. Here, X represents the exponent
γ of the node degree distribution P (k) ∼ k−γ . Three disjoint
γ intervals [0,3],(3,5], and (5,∞) have been identified where,
respectively, magnetic ordering occurs at all temperatures, a
phase transition is observed at a finite temperature, and no
magnetic ordering is observed for T > 0 [11–13].

The Apollonian network (AN) has been used as a prototype
of a deterministically generated complex network since
it shares many of the features that are found in actual or
randomly generated networks [9]. The ordering properties of
several magnetic models on the AN are similar to those of the
BA network in the [0,3] interval [15]. For a degree-dependent

(k-dependent) exchange coupling given by Jij =
Jij (ki,kj ; X = μ) = J0/(kikj )μ, the model shows magnetic
ordering at all temperatures when μ < 1, and no ordering at
T > 0 when μ � 1 [16]. This contrasts with the observed
behavior for Ising models on scale-free networks with
the dependence of the magnetic coupling on the node
degree [17,18]. Hence, no interval or single value of μ where
a finite critical temperature has been observed. Contrary
to usual situations where the network topology is not
directly related to geometry, e.g., Cayley tree or diamond
hierarchical lattices, the structure of AN can be traced back
to the Apollonian packing (AP), which is the solution of
a well-defined geometrical problem, namely the optimal
covering of a planar domain by circles.

This work explores the rare opportunity of including geo-
metrical elements into a magnetic model defined on a complex
network. Here we investigate the thermodynamical properties
of a ferromagnetic Ising model on the AP. Although it shares
the same topological structures with AN, this distinction is
made to emphasize the fact that the coupling constants between
spins placed on the center of tangent circles i and j are given
by Ji,j = Ji,j (ri,rj ), where ri is the radius of the circle i

in the AP. This explicit dependence of Jij on a geometrical
property of each circle is the main distinction to previous
models [16,19,20], where the interaction was influenced only
by the network topology. This gives rise to a comparatively
richer interaction pattern, as two pairs of nodes with the same
degree may be at different geographic distance and will not
share the same interaction constant. The ultimate goal is to
investigate whether, by considering the influence of the AP
geometry on the coupling constants, a magnetic model can
show a finite nonzero critical temperature.

The rest of this paper is organized as follows: Section II
discusses basic properties of the Apollonian geometry: AP,
AN, and the proposed model. Details of the used TM scheme
to evaluate the thermodynamical properties are presented in
Sec. III. We discuss our main results in Sec. IV, emphasizing

2470-0045/2017/95(1)/012123(9) 012123-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.012123


RAFAEL S. OLIVEIRA AND ROBERTO F. S. ANDRADE PHYSICAL REVIEW E 95, 012123 (2017)

the emergence of a crossover in the parameter α, which gauges
the dependence of the coupling constant Jij on the radii ri

and rj . Finally, Sec. V closes the paper with our concluding
remarks.

II. APOLLONIAN PACKING MAGNETIC MODEL

The two-dimensional AP represents the solution to the
problem of optimally covering a finite domain of the plane with
circles. Independently of the domain’s shape, the asymptotic
solution amounts to finding an infinite set of three mutually
tangent circles. Thus, the simplest geometrical situation starts
with three touching circles centered at the vertices of an
equilateral triangle, as illustrated in Fig. 1 of Ref. [9]. All
further circles in the packing can be recursively evaluated
with the help of the Descartes circle theorem and the complex
Descartes theorem [21], which provide analytical expressions
for the radius and coordinates of the center of a circle that
is tangent to all three previously chosen tangent circles. The
AN is obtained by linking the centers of all tangent circles,
reproducing a triangular structure that emerges when a circle
is drawn inside the region bounded by three touching circles.
Other more complex packing geometries, and corresponding
networks, of tangent circles can be also obtained [22].

We remind that it is possible to obtain the same topological
AN structure by a simple recurrence rule, which does not
require the precise knowledge of the circles in the AP [15,22].
This procedure amounts to starting at generation g = 1 with
an equilateral triangle in a plane. Next, a node is inserted
inside the triangle and connected to all three vertices, forming
three new triangles at g = 2. This same procedure is used to
obtain the g + 1 generation network, namely by inserting a
node inside each triangle in the generation g and connecting
it to the vertices in that triangle. Another way to proceed
with the network construction explores the fact that the g + 1
generation network can be obtained by joining three deformed
units of the previous g generation network. These observations
allow to obtain the total number of nodes N and edges B

in the g generation according to the expressions N (g) =
(3g−1 + 5)/2 and B(g) = (3 + 3g)/2, so that B(g)/N(g) → 3
when g → ∞ [9]. When a node is inserted into the network,
it generates three new triangles, so that the total number of
triangles at generation g is T (g) = (3g − 1)/2. If we use
lower case letters to indicate the number of elements that
are introduced into the network on generation g, we ob-
tain n(g) = N (g) − N (g − 1) = (3g−1 − 3g−2)/2 and b(g) =
t(g) = (3g − 3g−1)/2. These AN topological properties are
also valid for the AP, and will help us in developing an adequate
method to evaluate the thermodynamical properties of the AP
model.

Probably because of such simple recurrence procedures,
the geometrical properties of the AP have been overlooked in
large variety of models defined on the AN that only take into
account its topological properties. These include disordered
magnetic systems [20,23], electronic models [24,25], quantum
walks [26,27], Bose-Einstein condensation [28], as well as
nonstationary processes [29–31]. The same is valid for AN
related networks, as the analyses of Ising models on the
regularized AN’s [32,33].

As anticipated in Sec. I, here we consider geometrical
elements of the AP by assuming that the interactions between
pairs (i,j ) of Ising spins σ = ±1 placed at the centers of
tangent circles depend on the circles radii ri and rj according
to the expression

Jij = Jij (ri,rj ; X = α) = J0

(ri + rj )α
, (1)

with J0 > 0. This dependence aims to account for a decrease
of the coupling strength with the distance between the circle’s
centers, where the spins are supposed to be placed. The Ising
Hamiltonian is written as

Hg = −
∑
(i,j )

Jijσiσj − h
∑

i

σi, (2)

where Jij is expressed by Eq. (1), and (i,j ) indicates pairs
of AP tangent circles. Note that, when α = 0, the coupling
constants become independent of the packing geometry and
the model reduces to the version investigated in Ref. [9].

III. TRANSFER MATRIX APPROACH

As argued before, the AN is granted an exact self-similar
topological structure by the recurrent construction rules. For
several models that are independent of the AP geometrical
aspects, a transfer matrix (TM) formalism based on the
observed self-similarity has been developed [15,16,19,20] to
proceed with the numerical evaluation of the thermodynamic
and magnetic properties of the system. Inspired by the strategy
of obtaining the g + 1 generation by joining three deformed g

networks, it can be noticed that the TM elements at generation
g + 1 can be expressed as functions of the same set of elements
at previous generation g. The numerical iteration of the set
of maps leads, in a straightforward way, to the partition
function, free energy, and related thermodynamic properties
as a function of T and h.

The iteration of these maps provides values for all quantities
as a function of g. If g is large enough, the intensive quantities
converge to fixed values, in a process that corresponds to taking
the thermodynamic limit.

In the current model, however, the dependence of Jij on
ri and rj does not allow us to obtain the g + 1 system by
assembling three deformed units of its version at generation
g. Because identical circles at generation g will be deformed
differently in the squeezing process, it becomes necessary to
adapt the previously used TM approach.

To treat the AP model, it becomes necessary to choose
the size of the system by assigning the value gmax, such that
only circles that appear in the packing from generations 1 to
gmax will be represented in the network. Every such circle
must be fully characterized in terms of its radii and center
positions, so that all coupling constants can be evaluated with
the help of Eq. (1). Since the number of distinct circles grows
exponentially, the value of gmax that can be reached turns out
to be small as compared to those used in previous models that
do not depend explicitly on the AP geometric features.

To proceed with the evaluation of partition function Zgmax ,
the usual labeling of each node or circle in the network or
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FIG. 1. (a)–(c) illustrate the first steps of the construction of the
AN. The labels indicate how the TM’s for each individual triangle
of type s = 1 are combined to generate a new TM corresponding to
s = 2 triangle. (d) indicates how to proceed to next step, when three
s = 2 triangles are combined to form the s = 3 triangle.

packing is not sufficient, and it becomes necessary to identify
each triangle in the network. If we start with g = 1, the network
consists of three nodes, labeled from i = 1 to i = 3, and one
triangle that receives the label τ = 1. To this triangle, with
no node inside it, it will be assigned a further label s = 1,
which is called the triangle type. The next step corresponds to
g = 2, where the system differs from the previous one by the
presence of just one node [n(g = 2) = 1], labeled by i = 4, but
with three new triangles [t(g = 2) = 3], labeled from τ = 2
to τ = 4. Each new triangle is of type s = 1, but the original
triangle, formed by the three original nodes i = 1,2, and 3,
now contains one node in its interior. It will be identified as a
s = 2 triangle.

The process is illustrated in Fig. 1. The interactions in the
triangle in Fig. 1(a) are described by the matrix elements
defined in Eq. (4), where i = 1,j = 2, and � = 3, corre-
sponding to the τ = 1,s = 1,gmax = g = 1 triangle. When
gmax = 2, two steps are required and Eq. (5) is used one
single time. Figure 1(b) represents its right-hand side, with the
nodes i = 1,j = 2,k = 3, and � = 4 being the vertices of the
triangles τ1 = 2,s = 1,gmax = 2, τ2 = 3,s = 1,gmax = 2, and
τ3 = 4,s = 1,gmax = 2. The left-hand side of Eq. (5) is rep-
resented by Fig. 1(c), which displays the triangle τ4 = 1,s =
2,gmax = 2. The dashed lines indicate that the contributions of
the node � = 4 have been summed out, so that σ4 no longer
appears in the expression of the partition function. Finally,
Fig. 1(d) highlights the first step for gmax = 3, when Eq. (5) is
used four times until the triangle τ = 1,s = 3 is obtained. In
detail, the indication how the triangle τ = 2,s = 2,gmax = 3,
represented by the left-hand side of Eq. (5), is formed by
summing over the contributions of the spin at � = 5 in a similar
way as indicated in Fig. 1(b). Here, the nodes 1, 2, 4, and 5
form the following triangles: (i) τ = 5,s = 1,gmax = 3; (ii)
τ = 6,s = 1,gmax = 3; (iii) τ = 7,s = 1,gmax = 3. For each
value of τ , the corresponding nodes appear in the right-hand
side of Eq. (5). After the triangles τ = 2,s = 2,gmax = 3 and
τ = 3,s = 2,gmax = 3 are assembled in a similar way, the
triangle τ = 4,s = 2,gmax = 3 is obtained by summing over
the contributions of the spin states on the node 4.

The described identification of nodes and triangles will
be extended for any value 1 < g � gmax: (i) n(g) nodes are
introduced in the network, which are labeled from N (g − 1) +
1 to N (g); (ii) in the same way, t(g) triangles are introduced
in the network, which are labeled from T (g − 1) + 1 to T (g).
Each new triangle is of type s = 1, but triangles formed in
the previous generations g′ are of of type s = g − g′ + 1. The
interior of a triangle of type s contains N (s) − 3 nodes and
T (s) − 1 triangles. A type s triangle inside a gmax > s network
corresponds to a distorted version of the triangle formed by
the three outmost original nodes when s = gmax. Finally, we
remark that, by construction, no triangle contains more than
one vertex of the same generation g > 1.

Once the value of gmax has been selected, we start the
evaluation of the Zgmax by considering all t(gmax) triangles
in which one of the innermost sites (i.e., those included in the
network when g = gmax) is a vertex. Let us consider one such
triangle, with label τ1 and vertices labeled by i,j, and �, which
we indicate by (i,k,�). We store the Boltzmann weights of all
spin configurations involving the vertices of this triangle in the
2 × 4 TM Ms,g

τ1 :

Ms,g
τ1

=
[
a

s,g
τ1 b

s,g
τ1 c

s,g
τ1 d

s,g
τ1

d
s,g
τ1 c

s,g
τ1 b

s,g
τ1 a

s,g
τ1

]
. (3)

Here, the values assumed by the superscripts are s = 1 and g =
gmax. Because of the up-down symmetry, the matrix elements
satisfy the relation (Ms,g

τ1 )u,v = (Ms,g
τ1 )3−u,5−v , with u = 1,2

and v = 1,2,3, and 4, as indicated in Eq. (3). They depend on
the state of the three spins according to the expression

〈σi |Ms,g
τ1

|σjσ�〉 = exp[ β

2 (Jij σiσj +Jj�σj σ�+J�iσ�σi )] , (4)

where β = 1/kBT . The matrix lines u = 1,2 correspond to
σi = +1, − 1. The column label assumes the values v =
1,2,3,4 according to the following states of the (σj ,σ�)
pair: [(+1,+1),(+1,−1),(−1,+1),(−1,−1)]. For the sake of
definitiveness, let us assume that the node � was introduced in
the network in the generation gmax. By construction, it forms
two further triangles labeled by τ2 and τ3, with the pairs of
nodes (i,k) and (j,k), respectively. Note also that the network
construction procedure warrants that one of the nodes i,j, or
k was inserted in the network at generation gmax − 1, and that
they form a s = 2 triangle, which we label by τ4. For the sake
of definitiveness, let us assume that the node k was inserted
into the network at generation gmax − 1.

In the same way as expressed by Eq. (3), two similar TM’s
Ms,g

τ2 and Ms,g
τ3 are constructed to account for the triangle

configurations involving the spins in the vertices (j,k,�) and
(k,i,�). Once the degree of node � is 3, and it has connections
to the nodes i,j, and k, we can start the evaluation of Zgmax by
performing the partial trace over all configurations involving
the spin σ�. Since the result of the partial trace still depends
on the eight different configurations for the spins at the nodes
i,j, and k, we can store the different values in a 2 × 4 TM
Ms=2,g

τ4 . Note that s now assumes a different value. Once the
value of gmax is selected, the value of the superscript is always
g = gmax. However, for the sake of a simpler notation, we will
keep using g but implicitly assuming that it represents gmax. It
is straightforward to show that the matrix elements of Ms=2,g

τ4
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are obtained by:

〈σi |Ms,g
τ4

|σjσk〉 =
∑
σl

[〈σi |Ms−1,g
τ1

|σjσ�〉〈σj |Ms−1,g
τ2

|σkσ�〉

× 〈σk|Ms−1,g

τ3) |σiσ�〉
]
. (5)

Equation (5) is completely general, and it must be applied
to all t(gmax) triangles of type s = 1. Thus, we end up with
t(gmax − 1) TM’s describing the Boltzmann weights of the spin
configurations corresponding to the same number of s = 2
triangles, where the influence of the spin at the central node
has been already accounted for.

Next, we observe that the same operation can be performed
to sum over the influence of all spins placed at the vertices
introduced in the generation g = gmax − 1. In such case, new
2 × 4 TM’s Ms=3,g

τ can be defined, the elements of which
are expressed in terms of three Ms=2,g

τ ′ matrices according to
Eq. (5). In fact, the procedure can be repeated over and over,
i.e., if we evaluate all matrices Ms,g

τ from s = 2 to s = gmax,
we take into account the contribution of all configurations due
to the spins placed in the interior sites, and we end up with one
single 2 × 4 TM matrix Ms=g,g

τ2 , which depends on the spins
in the sites 1, 2, and 3. The sum of its elements corresponds to
the complete partition function Zgmax at a preestablished value
of T .

Equation (5) can be explicitly written as four independent
recurrence relations in terms of the distinct matrix elements
indicated by Eq. (3) as:

as,g
τ4

= as−1,g
τ1

as−1,g
τ2

as−1,g
τ3

+ bs−1,g
τ1

bs−1,g
τ2

bs−1,g
τ3

bs,g
τ4

= as−1,g
τ1

cs−1,g
τ2

ds−1,g
τ3

+ bs−1,g
τ1

ds−1,g
τ2

cs−1,g
τ3

cs,g
τ4

= cs−1,g
τ1

ds−1,g
τ2

as−1,g
τ3

+ ds−1,g
τ1

cs−1,g
τ2

bs−1,g
τ3

ds,g
τ4

= cs−1,g
τ1

bs−1,g
τ2

ds−1,g
τ3

+ ds−1,g
τ1

as−1,g
τ2

cs−1,g
τ3

. (6)

Since the matrix elements are Boltzmann weights, the
iteration of the above recurrence relations leads to numerical
divergences after a small number of steps. Therefore, it is
convenient to rewrite the maps in terms of the free energy per
particle

f s,g
τ = − T

N (s)
ln

[
as,g

τ + bs,g
τ + cs,g

τ + ds,g
τ

]
. (7)

Once J0 > 0, one can verify that a
s,g
τ � b

s,g
τ , c

s,g
τ , d

s,g
τ .

Therefore, it is convenient to define x
s,g
τ = b

s,g
τ /a

s,g
τ , y

s,g
τ =

c
s,g
τ /a

s,g
τ , z

s,g
τ = d

s,g
τ /a

s,g
τ , so that Eq. (7) becomes

f s,g
τ = − T

N (s)

{
ln

[
as,g

τ

] + ln
[
1 + xs,g

τ + ys,g
τ + zs,g

τ

]}
. (8)

For large values of g, the iteration of Eq. (6) indicates that
x

s,g
τ ,y

s,g
τ , and z

s,g
τ becomes negligible in a few steps. Thus, we

may consider f
s,g
τ = − T

N(s) ln a
s,g
τ , and replace the maps for

the matrix elements in Eq. (6) by:

f s,g
τ4

= −N (s − 1)

N (s)

[
f s−1,g

τ1
+ f s−1,g

τ2
+ f s−1,g

τ3

]
− T

N (s)

[
ln

(
1 + xs−1,g

τ1
xs−1,g

τ2
xs−1,g

τ3

)]
xs,g

τ4
= (

ys−1,g
τ2

zs−1,g
τ3

+ xs−1,g
τ1

zs−1,g
τ2

ys−1,g
τ3

)
/qs,g

τ4

ys,g
τ4

= (
ys−1,g

τ1
zs−1,g
τ2

+ zs−1,g
τ1

ys−1,g
τ2

xs−1,g
τ3

)
/qs,g

τ4

zs,g
τ4

= (
ys−1,g

τ1
xs−1,g

τ2
zs−1,g
τ3

+ zs−1,g
τ1

ys−1,g
τ3

)
/qs,g

τ4
, (9)

where q
s,g
τ4 = 1 + x

s−1,g
τ1 x

s−1,g
τ2 x

s−1,g
τ3

From the free energy per particle obtained by the iteration
of the above maps, we can evaluate the entropy and specific
heat by proceeding with the numerical derivatives with respect
to the temperature. However, we can also rewrite Eq. (6) in a
different way that allows us to compute a quantity that plays
the role of the correlation length ξ . Indeed, it is well known
that, in a linear system, the correlation length can be expressed
by

ξ = 1/ ln(η/ε), (10)

where η and ε are the largest and smallest eigenvalues of the
TM describing the nearest-neighbor interaction.

Although the evaluation of f (T ) requires us to work with
2 × 4Ms,g

τ matrices, it is also possible to define, for each
value of gmax, 2 × 2 squares matrices M̂g,g

τ=1 just by carrying
the partial trace over the different configurations depending
on the states of one of the spins in the original triangle.
The eigenvalues of M̂g,g

τ=1 can be easily evaluated but, as
discussed in Ref. [16], one should be careful when extending
the expression for ξ in Eq. (10) to models defined on complex
networks. Because of this, we proceed with the analysis of
the behavior of 1/ ln(η/ε) while avoiding to make a direct
identification to the correlation length. Thus, if we define

M̂g,g

τ=1 =
[
p

g,g

1 q
g,g

1

q
g,g

1 p
g,g

1

]
=

[
a

g,g

1 + b
g,g

1 c
g,g

1 + d
g,g

1

c
g,g

1 + d
g,g

1 a
g,g

1 + b
g,g

1

]
,

(11)

it is straightforward to obtain the eigenvalues η
g,g

1 = p
g,g

1 +
q

g,g

1 and ε
g,g

1 = p
g,g

1 − q
g,g

1 .

IV. RESULTS

As discussed in the previous section, to obtain the results
for a particular generation gmax one needs to know the radii and
center of each circle in the AP. Therefore, in order to optimize
the numerical procedure, we initially determine and store all
data related to the geometry of the model. The exponential
increase of the number of circles is reflected in the storage
requirements, e.g., when increasing gmax from 15 to 16 the
data file increases from ∼ 2 GB to ∼ 3.4 GB. This data size
also impacts the required memory to address and carry on
the computation of the partition function involving 2.1 × 107

individual triangles. Because of the quality of the results
obtained for gmax = 15, and of the much larger computational
effort to go beyond this system size, we adopted gmax � 15. In
the following, we present the results for gmax = 5,7,10,13, and
15. The numerical calculations of the free energy f (T ) were
made with 16 significant digit variables, as to obtain reliable
values for the entropy s(T ) and the specific heat c(T ) through
numerical derivatives of f (T ). The value of 1/ ln(η/ε) is also
evaluated with 16-digit precision.

In Fig. 2 we show the behavior of the free energy and
entropy per spin as a function of the temperature, for α = 0.5
and 0.8. It is important to remark that, once the value of Jij is
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FIG. 2. Behavior of f (T ) [(a) and (b)] and s(T ) [(c) and (d)] for gmax = 5 (red dashes) and 15 (black solid line), and α = 0.5 [(a) and
(c)] and 0.8 [(b) and (d)]. To enable a comparison of the curves for different values of gmax, the values of J0 were chosen in such a way that
f (T = 0) = −3, as observed for the uniform model with J0 = 1. As a consequence, the high temperature limit, when s → ln2, is observed
in the same range of values of T ,∀gmax,α. The inset of all panels highlight the convergence of the results as gmax increases, by displaying the
corresponding differences from g′ = 5 (red solid line), 7 (blue dashes), 10 (green dots), and 13 (violet dot-dashes), to gmax = 15.

not constant, the average energy per particle strongly depends
on the model parameters. In the particular case expressed by
Eq. (1), the average value of the coupling constants increase
with g when α > 0. Therefore, in order to better compare the
results for different gmax values, it is wise to let J0 change
with gmax. This is done by requiring that, for any gmax, the
free energy per spin at T = 0 assumes the same value, which
is chosen to be −3 in order to reproduce the value of the
uniform value (α = 0). A similar procedure was introduced
when analyzing the model where Jij depends on the degree of
the nodes i and j [16]. These features are well reflected by the
shape of the curves. We observe that, independently of gmax

and α, the limit of high temperatures, where s(t) ∼ ln 2 starts
roughly at the same value of T .

Figure 3 shows the behavior of the specific heat as a
function of the temperature for the same values of gmax and
α. The curves are characterized by soft maxima cmax, all of
which occur in the same temperature range. They display no
evidence of a divergence or any nonanalytic behavior that
could hint for a magnetic phase transition. As observed in
Sec. I, similar behavior has been verified for other magnetic
models on the AN, or even for the uniform Ising model on other
network types, such as the γ ∈ [0,3] range of the scale-free
Barabasi-Albert type [17]. The tendency of cmax is to decrease
as gmax or α increases. Larger values of α cause stronger
dependency of Jij with respect to the distance between nodes,
weakening the importance of the coupling between spins
placed inside large circles, which are inserted in the network
in the first generations and have large number of neighbors.
A similar effect is introduced in the model investigated in
Ref. [16], but a comparison of the corresponding specific heat
curves indicate the oppositive tendency, i.e., cmax increases as α

increases.

Although the specific heat curves do not present any sign of
divergence, it is still possible to assess the existence of some
critical behavior by the presence of a numerical divergence

FIG. 3. Behavior of c(T ) for gmax = 5 (red dashes), 7 (blue dot-
dashes), 10 (green dots), 13 (violet dot-dot-dashes), and 15 (black
solid line), and (a) α = 0.5 and (b) 0.8. All curves follow the same
Schottky profile. Because of the adequate definition of J0, the smooth
peaks always occur in the same temperature range. No indication of a
singular behavior at a finite temperature has been detected. g′ = 5 (red
solid line), 7 (blue dashes), 10 (green dots), and 13 (violet dot-dashed
line), to gmax = 15.
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FIG. 4. Behavior of 1/ ln(η/ε) as a function of temperature for
gmax = 5 (red squares), 7 (blue circles), 10 (green up-triangles), 13
(violet down-triangles) and 15 (black diamonds). (a), (b), and (c)
illustrate the different behavior of the divergence temperature Td for
α = 0.5, 0.743, and 0.87.

(values greater than 1016) for the quantity 1/ ln(η/ε). In Fig. 4
we shows how this variable depends on the value of T for the
same values of α and gmax. It is observed that, on decreasing
the value of T , a numerical divergence is observed at a well-
defined value Td = Td (g). For α = 0.5 Td (g) increases with
gmax, while the opposite behavior is observed for α = 0.87.
In this situation, Td (g) vanishes exponentially when g → ∞.
The crossover between the two different regimes is observed,
for gmax = 15, to occur at α = αc � 0.743.

To put this result in perspective, let us remind that, for the
uniform Ising model on the AN, Td (g) increases linearly with
g, a result that is well reproduced when we set α = 0 in the
current work. For the model with degree-dependent coupling
constant [16], the same results are observed as long as μ < 1.0,
while Td (g) decreases with g when the exponent μ > 1.0.

This behavior is very similar to what is shown in Fig. 4.
Indeed, within the limits of our numerical investigation
(gmax � 15), we were able to determine the value αc = 0.743
for the change in the behavior of Td . This is illustrated in Fig. 5.
At this threshold value, Td (g) remains roughly independent of
the generation g.

Nevertheless, it appears from Fig. 4 that Td bears no
correlation with other behavior of the system. For instance it
lies well below the value of cmax, and no alteration is observed
in the Schottky profile for the specific heat at this value of α.

We evaluated the spontaneous magnetization m(T ,h = 0)
and zero-field susceptibility χ (T ,h = 0) by numerically dif-
ferentiating the field-dependent free energy. To this purpose,
it is necessary to replace Eq. (9) by a larger set of maps,
as explained in the Appendix. Figures 6 and 7 illustrate,
respectively, the behavior of m(T ,h = 0) and χ (T ,h = 0) for
some typical values of α and five different gmax ∈ [5,15]. We
emphasize that, much as occurred with 1/ ln(η/ε), the behavior
of m(T ,h = 0) and χ (T ,h = 0) depend on the chosen value
of α and its relation to αc � 0.743. For α < αc, a plateau at
m � 1 appears in the region of small T , the width of which
is nearly gmax independent. This almost horizontal structure is
followed by a monotonic decrease of m(T ,h = 0) for larger
T . If α = 0, a pure exponential decay extends to the rest of
the T axis, as reported previously for a homogeneous system
where Jij = J0,∀i,j (see Fig. 2 of Ref. [15]). Finite-size
effects appear in the form of deviations to a slower decrease

FIG. 5. Behavior of Td (g) as a function of gmax for different α.
In (a), results for α = 0.5, 0.6, 0.7, and 0.8, are identified by black
squares, red circles, green up-triangles, and blue down-triangles,
respectively. With exception of α = 0.8, Td increases with gmax.
In (b) α = 0.7, 0.743, 0.75, 0.8, and 0.87 are identified by black
squares, red circles, green up-triangles, blue down-triangles, and
violet diamonds. While Td increases when α = 0.7 and approaches
a constant plateau when α = 0.743, it decreases with g when
α > 0.743.

regime, which sets in at larger and larger values of T as gmax

increases. Such effect gives rise to gmax-dependent peaks in
the susceptibility χ (T ,0).

For 0 < α < 0.743, the gmax-independent plateau persists,
although its width decreases as α increases. This is illustrated
in the Fig. 6(a) for α = 0.5, which also indicates that the
exponential decay does not preserve the previously described
α = 0 pattern. As gmax increases, the corresponding mg(T ,0)
curves are marked by a much steeper decrease, which starts at
values of T slightly smaller than those for the previous values
of gmax. Figure 6(a) also shows that the descent phase is marked
by several changes in the slope of the curves, with the result
that, given two values g and g′,mg(T ,0) and mg′(T ,0) may
cross each other several times. Nevertheless, for sufficiently
large values of T ,mg(T ,0) < mg−1(T ,0), as also occurs when
α = 0.

These traits, which are typical for all values of α in
the quoted interval, are also reflected in the behavior of

FIG. 6. Behavior of m(T ,h = 0) as a function of T for gmax = 5
(red dashes), 7 (blue dot-dashes), 10 (green dots), 13 (violet dot-
dot-dashes), and 15 (black solid line), (a), (b) and (c) correspond,
respectively, to α = 0.5, 0.743, and 1.3.
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FIG. 7. Behavior of χ (T ,h = 0) as a function of T for gmax = 5
(red dashes), 7 (blue dot-dashes), 10 (green dots), 13 (violet dot-dot-
dashes), and 15 (black solid line), Panels (a), (b) and (c) correspond,
respectively, to α = 0.5, 0.743, and 1.3.

χg(T ,h = 0) as a function of T , which are shown in Fig. 7(a):
a sharp (but otherwise smooth) peak develops at a value of
T that can be identified with the largest slope of log[m(T ,0)]
as a function of T . We find that, for a fixed α, the maxima
of χg(T ,0) occur at larger values of T as gmax increases.
Figure 7(a) also illustrates that the height of the peak increases
with gmax but, much as observed when α = 0, there is no
indication that a true singularity should be found in the g → ∞
limit. Our results also show that, for a fixed gmax, the height of
these peaks increases with α.

A quite interesting feature in the behavior of χg(T ,0) is the
noticeable presence of a number of wiggles for the range of
values of T smaller than the peak temperature. Their presence,
which becomes evident for larger values of gmax, occur at
approximately equally spaced values of T . The difference
between the logarithm of the heights of two successive wiggles
remains also approximately constant. We could not identify
their presence for values of T larger than the peak temperature.

When α > 0.743, the numerical results suggest that m(T >

0,0) = 0 in the g → ∞ limit, much in the same way as
the model investigated in Ref. [16]. Indeed, after a very
small plateau at m = 1, the width of which rapidly becomes
negligible as gmax increases, mg(T ,0) decays exponentially to
zero. Once we are limited to rather small

values of gmax, in Fig. 6(c) we show results for α = 1.3,
where these features become quite evident. Figure 7(c) shows
the evolution of χg(T ,0) as a function of T for the same α and
five values of gmax. We notice that the peaks are still present,
but they move towards smaller values of T as gmax increases.
In fact, for all values of α, the change of the location of these
peaks on the T axis follows the same tendency observed for the
divergence of the 1/ ln(η/ε) (see Fig. 4), although the actual
values of T where the two events occur do not coincide. This is
also verified when we consider α = αc, as shown in Fig. 7(b).
We notice that the χg(T ,0) peaks remain at a rather fixed
value of T �= Td . Finally, Fig. 6(b) illustrates the behavior of
mg(T ,0) at αc, where a monotonic decrease in the width of the
plateau can be observed.

V. DISCUSSION AND CONCLUSIONS

In this work we studied the Ising model on the AP. Here
we consider ferromagnetic interactions that depend on the

distance between the centers of the circles in the AP where the
Ising spins are placed. In opposition to previous AN models,
in which the interactions depend on the network topology, the
explicit dependence of magnetic interactions on the geometric
properties of the packing turns out to destroy the exact scale
invariance of the system. This fact causes increased difficulties
to perform the evaluation of the partition function within a
TM framework, as compared to models where the packing
geometry plays no role.

Despite this difficult, which restricted the work to a
relatively small number of packing generation, we were able
to characterize the most important features of the model. The
characterization of three thermodynamic quantities, free en-
ergy, entropy, and specific heat, confirmed that their qualitative
behavior is much like those in previous models.

The dependence of the quantity 1/ ln(η/ε) as function
of T indicates two disjoint ranges of values of α where,
independently of the value of T , a well-defined magnetic
ordering can, or cannot, be found.

This evidence, which is similar to the observed behavior
of 1/ ln(η/ε) in a distinct model [16], is confirmed by the
evaluation of m(T ,0) and χ (T ,0) for different values of α. We
have found, however, that the magnetic behavior offers a more
complex pattern as compared to that of the quoted model. We
remind that the geometrical dependence of Jij has a greater
degree of inhomogeneity, once spins located on nodes with the
same degree interact with their neighbors in different ways.
This may be a reason for richer and more diverse patterns.

Finally, we mention the possibility of defining other
ferromagnetic models on the AP where further geometrical
properties of the packing are taken into account. One of them
would consider that the magnetic moments in each circle center
were to represent the global magnetic property of all spins
placed inside the corresponding AP circle drawn on the top
of a plane filled with equally spaced spins. In such case, a
factor increasing with r2

i r2
j should be inserted in Eq. (1). We

point out that this possibility should bring the model closer to a
realistic model. However, one major difficult in this approach
is that either the magnitude of the coupling or of the magnetic
effective moment should be dependent on T .
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APPENDIX

Here we provide the generalization of the Eqs. (3)–(9)
in Sec. III, when the spins are subject to a magnetic field
of magnitude h. We start with the elementary triangles in a
field-free situation and, when we put together three triangles
of type s to assemble a s + 1 triangle, the effect of the field
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is added only at the vertex that belongs simultaneously to all
three s triangles. This assures that the magnitude of field acting
on each spin is the same, with exception of the three outermost
spins, which remain field free. However, their influence in
the value of the magnetization is vanishingly small as g

increases.
(i) Due to the up-down symmetry break induced by the

field, new matrix elements are required for the field-dependent
form of the matrix in Eq. (3):

Ms,g
τ1

=
[
a

s,g
τ1 b

s,g
τ1 c

s,g
τ1 d

s,g
τ1

d̄
s,g
τ1 c̄

s,g
τ1 b̄

s,g
τ1 ā

s,g
τ1

]
. (A1)

(ii) Equation (4) does not become field dependent, as
explained above.

(iii) Field-dependent form of Eq. (5):

〈σi |Ms,g
τ4

|σjσk〉 =
∑
σl

[〈σi |Ms−1,g
τ1

|σjσ�〉〈σj |Ms−1,g
τ2

|σkσ�〉

× 〈σk|Ms−1,g

τ3) |σiσ�〉
]

exp(βhσ�). (A2)

(iv) Field-dependent form of Eq. (6):

as,g
τ4

= as−1,g
τ1

as−1,g
τ2

as−1,g
τ3

r + bs−1,g
τ1

bs−1,g
τ2

bs−1,g
τ3

t

bs,g
τ4

= as−1,g
τ1

cs−1,g
τ2

d̄s−1,g
τ3

r + bs−1,g
τ1

ds−1,g
τ2

c̄s−1,g
τ3

t

cs,g
τ4

= cs−1,g
τ1

d̄s−1,g
τ2

as−1,g
τ3

r + ds−1,g
τ1

c̄s−1,g
τ2

bs−1,g
τ3

t

ds,g
τ4

= cs−1,g
τ1

b̄s−1,g
τ2

d̄s−1,g
τ3

r + ds−1,g
τ1

ās−1,g
τ2

c̄s−1,g
τ3

t

d̄s,g
τ4

= c̄s−1,g
τ1

bs−1,g
τ2

ds−1,g
τ3

t + d̄s−1,g
τ1

as−1,g
τ2

cs−1,g
τ3

r

c̄s,g
τ4

= c̄s−1,g
τ1

ds−1,g
τ2

ās−1,g
τ3

t + d̄s−1,g
τ1

cs−1,g
τ2

b̄s−1,g
τ3

r

b̄s,g
τ4

= ās−1,g
τ1

c̄s−1,g
τ2

ds−1,g
τ3

t + b̄s−1,g
τ1

d̄s−1,g
τ2

cs−1,g
τ3

r

ās,g
τ4

= ās−1,g
τ1

ās−1,g
τ2

ās−1,g
τ3

t + b̄s−1,g
τ1

b̄s−1,g
τ2

b̄s−1,g
τ3

r (A3)

where r = exp(βh) = t−1.
(v) The two free-energy definitions given by Eqs. (7)

and (8) are not changed by the presence of the field.
(vi) To account for the new matrix elements, new normal-

ized coefficients are introduced, in a similar way as done in the
paragraph between Eqs. (7) and (8): x̄

s,g
τ = b̄

s,g
τ /a

s,g
τ , ȳ

s,g
τ =

c̄
s,g
τ /a

s,g
τ , z̄

s,g
τ = d̄

s,g
τ /a

s,g
τ , w̄

s,g
τ = ā

s,g
τ /a

s,g
τ .

(vii) Field-dependent form of Eqs. (9):

f s,g
τ4

= −N (s − 1)

N (s)

[
f s−1,g

τ1
+ f s−1,g

τ2
+ f s−1,g

τ3

]
− T

N (s)

[
ln

(
r + xs−1,g

τ1
xs−1,g

τ2
xs−1,g

τ3
t
)]

xs,g
τ4

= (
ys−1,g

τ2
z̄s−1,g
τ3

r + xs−1,g
τ1

zs−1,g
τ2

ȳs−1,g
τ3

t
)
/qs,g

τ4

ys,g
τ4

= (
ys−1,g

τ1
z̄s−1,g
τ2

r + zs−1,g
τ1

ȳs−1,g
τ2

xs−1,g
τ3

t
)
/qs,g

τ4

zs,g
τ4

= (
ys−1,g

τ1
x̄s−1,g

τ2
z̄s−1,g
τ3

r + zs−1,g
τ1

w̄s−1,g
τ2

ȳs−1,g
τ3

t
)
/qs,g

τ4

z̄s,g
τ4

= (
ȳs−1,g

τ1
xs−1,g

τ2
zs−1,g
τ3

t + z̄s−1,g
τ1

ys−1,g
τ3

r
)
/qs,g

τ4

ȳs,g
τ4

= (
ȳs−1,g

τ1
zs−1,g
τ2

w̄s−1,g
τ3

t + z̄s−1,g
τ1

ys−1,g
τ2

x̄s−1,g
τ3

r
)
/qs,g

τ4

x̄s,g
τ4

= (
w̄s−1,g

τ1
ȳs−1,g

τ2
zs−1,g
τ3

t + x̄s−1,g
τ1

z̄s−1,g
τ2

ys−1,g
τ3

r
)
/qs,g

τ4

w̄s,g
τ4

= (
w̄s−1,g

τ1
w̄s−1,g

τ2
w̄s−1,g

τ3
t + x̄s−1,g

τ1
x̄s−1,g

τ2
x̄s−1,g

τ3
r
)
/qs,g

τ4

(A4)

where q
s,g
τ4 = r + x

s−1,g
τ1 x

s−1,g
τ2 x

s−1,g
τ3 t .
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[5] P. Erdös and A. Rényi, Publ. Math., Debrecen 6, 290 (1959).
[6] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440

(1998).
[7] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[8] E. Ravasz and A.-L. Barabási, Phys. Rev. E 67, 026112

(2003).
[9] J. S. Andrade, H. J. Herrmann, R. F. S. Andrade, and L. R. da

Silva, Phys. Rev. Lett. 94, 018702 (2005).
[10] J. P. K. Doye and C. P. Massen, Phys. Rev. E 71, 016128 (2005).
[11] A. Aleksiejuk, J. A. Hoyst, and D. Stauffer, Physica A (Amster-

dam) 310, 260 (2002).
[12] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.

Rev. E 66, 016104 (2002).
[13] A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Phys.

Rev. E 67, 026123 (2003).
[14] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev.

Mod. Phys. 80, 1275 (2008).
[15] R. F. S. Andrade and H. J. Herrmann, Phys. Rev. E 71, 056131

(2005).

[16] R. F. S. Andrade, J. S. Andrade, and H. J. Herrmann, Phys. Rev.
E 79, 036105 (2009).

[17] C. V. Giuraniuc, J. P. L. Hatchett, J. O. Indekeu, M. Leone, I.
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Pérez Castillo, B. Van Schaeybroeck, and C. Vanderzande, Phys.
Rev. E 74, 036108 (2006).
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