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Inferring hidden states in Langevin dynamics on large networks: Average case performance
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We present average performance results for dynamical inference problems in large networks, where a set of
nodes is hidden while the time trajectories of the others are observed. Examples of this scenario can occur in
signal transduction and gene regulation networks. We focus on the linear stochastic dynamics of continuous
variables interacting via random Gaussian couplings of generic symmetry. We analyze the inference error, given
by the variance of the posterior distribution over hidden paths, in the thermodynamic limit and as a function of
the system parameters and the ratio α between the number of hidden and observed nodes. By applying Kalman
filter recursions we find that the posterior dynamics is governed by an “effective” drift that incorporates the effect
of the observations. We present two approaches for characterizing the posterior variance that allow us to tackle,
respectively, equilibrium and nonequilibrium dynamics. The first appeals to Random Matrix Theory and reveals
average spectral properties of the inference error and typical posterior relaxation times; the second is based on
dynamical functionals and yields the inference error as the solution of an algebraic equation.
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I. INTRODUCTION

Inferring the time evolution of a partially observed system
of continuous degrees of freedom (d.o.f.) is an important
problem in statistical physics. In systems biology these d.o.f.
might for example be concentrations of interacting molecular
species in biochemical networks. Inference of unobserved or
hidden d.o.f. is then often crucial, e.g., for an understanding
of molecular mechanisms underlying genetic and metabolic
processes. Hidden d.o.f. can occur because the behavior of
part of a network is simply not recorded, or because the
amount of experimental data available might be limited [1].
If as in our analysis one studies generic continuous d.o.f., a
potentially broad and interdisciplinary range of applications
can be envisaged beyond biology, e.g., in financial data [2] or
weather forecasting [3].

Inference has been studied using statistical mechanics
approaches predominantly in scenarios without a temporal
dimension, e.g., when learning from examples in neural
networks [4,5]. Several studies have, like ours, focused on
performance analysis in the thermodynamic limit of large
systems [6,7]. Especially for linear learning problems, the
spectrum of the input correlation matrix (or equivalently the
average response function) has turned out to be a key quantity
and has been studied by different means, including the replica
method [5,8,9] based on the pioneering work of Ref. [10],
diagrammatic techniques [11] and partial differential equations
from matrix identities [7]. A key system parameter is the
“storage” ratio between the number of training examples and
the number of parameters to be learned [8,11].

Rather less work has been done for inference based on
entire temporal trajectories, with most efforts focused on the
dynamics of discrete variables, typically Ising spins with
random asymmetric couplings: see Ref. [12] for a review
and Refs. [13–16] for examples. We extend these studies
significantly by accounting for generic interaction symmetry,
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thus allowing us to interpolate across a range of nonequi-
librium situations all the way to equilibrium dynamics. The
results we present are exact in the thermodynamic limit and
complement our previous study using an a priori approximate
method, the Extended Plefka Expansion [17,18]. Our emphasis
on nonequilibrium dynamics is motivated by the fact that
many biological processes are out of equilibrium. Indeed,
recent studies [19] and computational models [20] have called
for a nonequilibrium approach to gene expression dynamics
that would allow one to infer regulatory interactions and
transcription factor activity from time-resolved measurements.

We focus on a paradigmatic scenario: stochastic linear
dynamics on a network of continuous d.o.f. that interact via
random Gaussian couplings. Such linear dynamics should give
a reasonable account also of the behavior of generic nonlinear
networks of continuous d.o.f. near stable fixed points. We
show that our setting is closely related to (linear Gaussian)
state space modeling in statistics [21], where the dynamics
of a set of hidden variables can only be observed indirectly.
This allows us to deploy inference methods developed for such
models [21–23], specifically the Kalman filter (and smoother)
[24].

The distribution over network trajectories is Gaussian in our
setting, and hence so is the posterior over hidden trajectories
given a time trajectory of the observed nodes, as we will
make clear. Its mean gives the optimal prediction of the time-
dependent hidden state, while the second order statistics give
information on the certainty of this prediction. In particular, the
normalized trace of the equal-time posterior covariance matrix
will be our measure of inference error. Posterior covariances
between different times quantify temporal correlations of
prediction uncertainties.

The novelty of our approach is that we assess the inference
error of the Kalman filter for random interactions, which
induce a random distribution in the eigenvalues of the posterior
covariance. In the thermodynamic limit of large networks
that we consider, the spectrum becomes self-averaging: its
fluctuations tend to zero, and it becomes equal to the disorder
(random interaction) average of the spectrum. We tackle this

2470-0045/2017/95(1)/012122(16) 012122-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.012122


B. BRAVI, M. OPPER, AND P. SOLLICH PHYSICAL REVIEW E 95, 012122 (2017)

disorder average by exploiting Random Matrix Theory (RMT)
results [25]. For related approaches that connect RMT and
Bayesian statistics see Refs. [26,27] and references therein.

We will see that the combination of Kalman filter and
RMT gives a wealth of information for inference in systems
with equilibrium dynamics, i.e., obeying detailed balance,
but cannot be extended in an obvious way to nonequilibrium
dynamics. For these scenarios we choose an alternative avenue,
using dynamical functionals and defining the normalization
factor of the posterior as a partition function. Again we
consider the disorder average, for which in our case an
annealed approximation is sufficient instead of a replica
treatment. The replica approach was used for inference of
spins trajectories in Ref. [13] generalizing to dynamics an
approach that was already used for learning in static networks
(see Refs. [4–6]).

The aim of this paper is to provide exact results on the
average inference error for large networks, against which
other approximation methods or algorithms can be compared.
Exactness in the thermodynamic limit relies crucially on the
assumption of weak long-range (mean field) interactions. In
addition to the use of Kalman filter recursions combined with
RMT, as well as dynamical functionals, we provide a link to
variational methods.

The paper is organized as follows. After presenting the
governing Kalman filter equations for the posterior variance
and the effective posterior drift (Sec. II), we use RMT to
study the equilibrium dynamics case in Sec. III, first for the
elementary case of hidden variables with only self-interactions
(Sec. III B), then for symmetric hidden-hidden couplings
(Sec. III C), where we apply free probability methods. Moving
on to nonequilibrium dynamics, we describe in Sec. IV
the dynamical functional method. We focus on the fully
asymmetric case (Sec. IV A) initially, which then generalizes
to arbitrary symmetry (Sec. IV B). The result is an algebraic
equation for the stationary posterior variance in the Laplace
domain which coincides with the one we derived using the
Extended Plefka Expansion in Refs. [17,18]. We summarize
and discuss the outlook for future work in Sec. V.

II. MODEL AND GENERAL EXPRESSION FOR
POSTERIOR COVARIANCE

The setting we study consists of two sets of variables: the
subnetwork, which models the observed d.o.f., and the bulk,
which stays hidden and whose values we want to infer from
the observations. To allow explicit insight into how the level
of accuracy in this inference task depends on the structural
parameters of the problem we consider a tractable scenario,
where subnetwork and bulk interact linearly.

Our model, then, is a linear dynamical system specified by
the following equations:

∂t xb(t) = K bsxs(t) + K bbxb(t) + ξ b(t), (1)

∂t xs(t) = K ssxs(t) + K sbxb(t) + ξ s(t), (2)

where subnetwork and bulk variables are denoted, respectively,
by the superscript s and b; ξ s(t) and ξ b are independent white

Gaussian noises with zero mean and variance:

〈ξ s(t)ξ s(t ′)T 〉 = �ssδ(t − t ′), (3)

〈ξ b(t)ξ b(t ′)T 〉 = �bbδ(t − t ′). (4)

In addition the matrix K ss (K bb) contains the linear couplings
between subnetwork (bulk) variables, while K bs,K sb specify
the interactions between subnetwork and bulk.

As pointed out in the introduction, a linear system with
Gaussian noise produces a Gaussian distribution over the
dynamical trajectories of the entire network. By this we
mean that the collection of trajectories of all variables is a
Gaussian process: the joint distribution of any finite collection
of variables {xi(tj )} is a multivariate Gaussian. To make
this more intuitive it can be helpful to think about a time
discretized version of the dynamics (1) and (2), for which
the joint distribution of the collection of subnetwork and
bulk variables across all time steps is then Gaussian, as
also shown in Appendix A. Inferring the hidden dynamics
then corresponds to Gaussian conditioning. In particular, the
aim is to evaluate the posterior probability distribution over
hidden trajectories, conditioned on the observed subnetwork
trajectory. We denote the latter X s, as a shorthand for the data
sequence {xs(t)|t ∈ [0,T ]}. The posterior distribution is then
fully characterized by the first and second moments

〈xb(t)〉 = μb(t), (5)

〈δxb(t)δxb(t ′)T 〉 = Cbb|s(t,t ′), (6)

where δxb(t) = xb(t) − μb|s(t) is the deviation from the
posterior mean and the T superscript denotes vector or
matrix transpose. As defined, Cbb|s(t,t) is then the posterior
covariance matrix of xb(t). We shall drop the superscripts for
the sake of brevity and will denote μb|s(t) simply by μ(t) and
Cbb|s(t,t ′) by C(t,t ′). The best estimate, in the mean-square
sense, of the hidden dynamics based on the observed time
series X s is then just μ(t), while C(t,t) determines the
uncertainty in this prediction: in particular, the trace of C(t,t) is
the total mean squared prediction error for the hidden variables.
Normalizing by the number of hidden nodes defines what we
will call the inference error.

To find the posterior means and variances in linear-Gaussian
state models one can use a message passing algorithm known
as the Kalman filter [24] (see Appendix A). For a long time
series, the algorithm will converge to stationary values for
the covariances when well away from the two ends t = 0
and t = T ; note though that the state prediction μ(t) remains
time dependent as it is driven by the time dependence of the
observed xs(t). The covariances, on the other hand, are entirely
independent of the xs(t), by a general property of conditional
Gaussian distributions: they depend only on which variables
are observed, but not their values. Note that this contrasts with
the case of, e.g., binary spins, where mean and variance are
directly related so that variances of individual spins would
generally also be nonstationary.

The stationary inference error, i.e., the normalized trace of
the stationary equal time posterior covariance C(t,t) = C, will
be the main focus of our attention. As shown in Appendix A,
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C satisfies

K bb|sC + C K bb|s T + �bb = 0. (7)

This is a Lyapunov equation with an “effective” or “posterior”
drift K bb|s, where we use the superscript bb|s to indicate
that this is the bulk-bulk coupling matrix conditioned on
the observed subnetwork trajectory. By “posterior” we mean
then that K bb|s incorporates the effect of the observations and
defines an effective posterior dynamics

∂t δxb(t) = K bb|sδxb(t) + ξ b(t). (8)

The effective drift can be written as

K bb|s = K bb − �bb A, (9)

where A = AT is a symmetric matrix that is a solution of the
matrix Riccati (i.e., quadratic) equation

A�bb A − AK bb − K bb T A = W . (10)

Here the feedback matrix W = K sb T (�ss)−1 K sb describes
how observations affect the inferred statistics. This matrix is
determined by the interplay between the strength of hidden-
observed interactions K sb and the dynamical noise on the
observed variables, namely, �ss. (We stress here that this is
noise acting on the time evolution of xs, not noise affecting
our measurement of the observed trajectory.)

The matrix A in (9) is directly related to the backwards
messages sent in the Kalman filter method. Specifically, the
distribution of δxb(t) conditioned only on observations from
time t onwards is Gaussian, and A is its inverse covariance in
the stationary regime.

Accordingly, Eq. (10) can be derived as the stationary limit
of what is known as a Riccati recursion, for the backward pass
in the Kalman Filter (see Appendix A). Without observations
the distribution of xb(t) conditional only on data beyond t is
flat, hence A vanishes. Then K bb|s reduces to K bb as expected
and the posterior covariance to the unconditional covariance
because (7) becomes simply K bbC + C K bb T + �bb = 0. One
sees therefore that A is the key quantity that captures the
effects of the observations on the (second order) posterior
statistics. This insight is supported by an alternative variational
derivation of (7), (9), and (10), outlined in Appendix B,
where A appears as a Lagrange multiplier implementing the
constraints resulting from the observed data.

Once the stationary equal-time covariance C has been
found, it is clear from (8) that the two-time covariance must
be given by

C(t − t ′) = eK bb|s(t−t ′)C (11)

for t > t ′. This exponential decay with the effective drift
matrix K bb|s can be derived explicitly by generalizing the
filtering-smoothing procedure (see Appendix A and references
there). We have emphasized in the notation the fact that
C(t − t ′) depends only on the time difference because the
stationary regime obeys time-translation invariance. Stability
of the conditional hidden dynamics, where (11) decays to
zero as t − t ′ grows, requires K bb|s to be negative definite.
Assuming that the dynamical matrix K bb of the isolated hidden
dynamics has this property, then also K bb|s does because A,
as the inverse covariance matrix in the stationary backwards
messages, is non-negative definite.

So far in this section we have derived expressions for C and
C(t − t ′) that specify the second order posterior statistics in
our setting of inferring hidden state trajectories. These results
are valid for given values of the interaction matrices K bb and so
on. In the remainder of the paper we consider these interactions
to be drawn from some probability distribution, acting as
quenched disorder. In an appropriately defined infinite size
or thermodynamic limit we then expect key results such
as the eigenvalue spectrum of C to be self-averaging, i.e.,
independent of the specific realization. In particular we look at
a fully connected system interacting via Gaussian couplings.
This is a standard scenario used to analyze the mean-field
regime of, e.g., spin glass models [28]. It can also be thought
of as the large connectivity limit of an Erdős-Rényi graph [29]
with Gaussian weights [30]; studying dynamical processes on
such random graphs to predict the evolution of each node from
partial observations is of interest in, e.g., epidemic forecasting
[31,32]. A precedent for the use of RMT techniques, such
as Stieltjes transforms and free probability, in the study of
asymptotic eigenvalue distributions for random Lyapunov and
Riccati recursions, like those occurring in filtering, can be
found in Ref. [26]. Reference [26] takes a control and systems
theory perspective, however, while we focus on inference for
dynamics. It is worth stressing that this makes our approach
more general, as we look at a time-dependent problem with
quenched, “frozen” randomness rather than a sequence of
signals where the randomness in the interactions is resampled
at each step. From the spectrum C we will obtain the inference
error; we will also study the properties of the posterior drift
K bb|s, whose inverse defines the spectrum of relaxation times
of the posterior dynamics.

III. THERMODYNAMIC LIMIT BY RANDOM
MATRIX THEORY

To investigate the thermodynamic limit, we first apply tools
from random matrix theory (RMT) to equilibrium dynamics,
where detailed balance holds. We study two such scenarios.
In the first, the hidden variables only have self-interactions
(Sec. III B); in the second we add random symmmetric hidden-
to-hidden interactions (Sec. III C). The main results are explicit
mathematical expressions which establish a link between the
inference error and the parameters describing the dynamics.
In both cases we make the same assumptions regarding the
hidden-to-observed interactions K sb and therefore discuss first
the resulting statistics of the feedback matrix W .

A. Feedback matrix: Wishart ensemble

The feedback matrix W = K sb T (�ss)−1 K sb is a positive
definite symmetric matrix of size Nb × Nb, where Nb is the
number of hidden variables, i.e., the number of components
of the vector xb. We assume throughout in the following that
the elements of the N s × Nb matrix K sb are independent zero
mean Gaussian random variables of fixed variance k2/Nb. If
�ss = σ 2

s 1 is isotropic, W is then a sample from a Wishart
random matrix ensemble, whose spectral properties are well
understood [25]. In the thermodynamic limit of infinitely
large matrices, Nb → ∞, and up to an overall scale of the
eigenvalues, the eigenvalue density of W is thus given by the
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Marčenko-Pastur law (MP) [33]

ρα(ŵ) = (1 − α)�(1 − α)δ(ŵ) + fα(ŵ), (12)

where

fα(ŵ) = 1

2πŵ

√
(ŵ − ŵ−)(ŵ+ − ŵ) (13)

and is to be read as nonzero only when ŵ lies in the
interval [ŵ−,ŵ+] with ŵ± = (√

α ± 1
)2

. The delta peak at
ŵ = 0 in (12) contributes only when α < 1, as indicated
by the Heaviside step function �(·). Here we have defined
α = N s/Nb = Nobserved/Nhidden as the fundamental parameter
of our analysis, giving the ratio and thus the relative importance
of the sizes of the observed and unknown “sectors” of our
network. This parameter resembles the storage ratio [4,6], or
number of training examples per parameter to be learned, in
neural network learning. Indeed, in the context of learning
linear relationships from examples, the distribution (12) also
gives the spectrum of the input correlation matrix governing
the learning dynamics [7–9,11].

In the spectrum (12) the δ peak at ŵ = 0 arises from the
Nb − N s = Nb(1 − α) directions in the hidden state space
that are not directly constrained by observations when α <

1. The remaining fα(ŵ) piece is a semicircle in the interval
[ŵ−,ŵ+], distorted by a factor 1/ŵ. For α > 1 this is the only
contribution; in the limit α 	 1 the relative variance of the
eigenvalues around their mean 〈ŵ〉 = α goes to zero.

B. Self-interacting hidden variables

1. Inference error and relaxation times

We assume below that the noise acting on bulk variables is
isotropic, �bb = σ 2

b 1, as already assumed for the subnetwork
noise. This is equivalent to assuming that the amplitude
of fluctuations is homogeneous within the hidden system,
as it would be if it was given by a physical temperature.
Anisotropies would add nontrivial correlations between d.o.f.
that would obscure the effect of interactions, which is our
main focus here. In this section we further restrict ourselves to
interactions between bulk and subnetwork, by taking K bb =
−λ1 where the self-interaction λ is the only interaction among
hidden variables. Given this, any interesting behavior has to
come from observations.

By simultaneously diagonalizing W and A, (10) reduces
to a scalar equation relating the eigenvalues of these matrices,
respectively, w and a, as

σ 2
b a2 + 2λ a = k2

σ 2
s

ŵ, (14)

where we have extracted from w an amplitude factor by writing
w = k2ŵ/σ 2

s , k being the amplitude for the K sb entries and ŵ a
dimensionless Wishart random variable. The physical solution
for a is

a = −λ + √
λ2 + σ 2ŵ

σ 2
b

, (15)

with the shorthand σ = σbk/σs. By diagonalizing (9) one then
gets for the eigenvalues of K bb|s, which we denote by r:

r = −λ − a σ 2
b = −

√
λ2 + σ 2ŵ. (16)

From (8) and (11), the distribution of −r gives the relaxation
rate spectrum of the posterior dynamics, and (16) shows that
these rates are increased by observations, i.e., correlations get
shorter in time. As expected this effect gets stronger as the
hidden-observed interaction amplitude k increases, at fixed
ratio σb/σs.

From (16) we can now find the spectrum of r as the
appropriate transformation of the MP law,

ρ(r) = (1 − α)�(1 − α)δ(r + λ) + f (ŵ(r))|ŵ′(r)|, (17)

where f (ŵ(r)) is defined only between r± =√
σ 2(

√
α ± 1)2 + λ2 and ŵ(r) = −(r2 + λ2)/σ 2 is the

inverse function of (16). The first piece, a δ function at
r = −λ, describes the behavior for hidden state space
directions unconstrained by observations. The above result
for the spectrum can also be expressed as a spectrum
ρ(τ ) = ρ(r)/τ 2 of relaxation times τ = −1/r for the
posterior dynamics. We sometimes plot ρ(ln τ ) = τρ(τ ) to
show the full range of τ ; this ln τ spectrum is the same as
the one of ln r up to a sign change, with spectral edges at
τ± = −1/r∓ [see Fig. 1(a)].

The long-time (t − t ′ 	 1) behavior of the posterior co-
variance is an exponential decay whose characteristic time
can be defined in different ways. The slowest relaxation time
is τmax = 1/rmin, where rmin is the minimum eigenvalue of
−K bb|s:

rmin =
√

λ2 + σ 2ŵmin

=
{
λ α � 1√

λ2 + σ 2(
√

α − 1)2 α > 1.
(18)

One can also look at a relaxation time defined as the average
over the spectrum ρ(τ ), i.e., 〈τ 〉 = ∫

dτρ(τ ) τ . Or finally one
can consider a root mean square correlation decay time

τ ∗ 2 =
∫ +∞
−∞ t2C(t) dt

2C̃(0)
= − 1

2C̃(0)

d2C̃(iω)

d2ω

∣∣∣∣
ω=0

, (19)

where the power spectrum C̃(iω) is obtained by setting z = iω
in the Laplace transform [see Eq. (24) below] of the correlator
C(t − t ′) = Tr C(t − t ′) (trace normalized by Nb). It is easy
to verify that all three relaxation times exhibit the same
asymptotic decay ∼1/(σ

√
α) for large α. In Fig. 2(a) we show

a comparison at smaller α. With only few observations, all
measures of posterior correlation time are close to the α = 0
value 1/λ while for α > 1 they start decreasing, crossing over
to the 1/

√
α large α tail; τmax shows the least smooth transition

between these two regimes. We can summarize the behavior by
saying that with more observations the posterior fluctuations
(or error bars on the inferred means) become less correlated in
time as predictions become more “tied” to the data observed
at any specific moment. This effect is seen in more detail in
Fig. 1(b) where with increasing α the relaxation time spectrum
becomes more peaked and shifts towards shorter times. The
posterior covariance matrix C has the same set of eigenmodes
as K bb|s in the current scenario because in (7) all matrices can
be simultaneously diagonalized. The eigenvalues C of C give
the posterior variance for each mode, which from (7) is related
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FIG. 1. (a) Spectral density ρ(τ ) for α = 0.5: the vertical line
indicates the δ peak of height 1 − α at τ = 1/λ, the relaxation time
in the absence of observations. (b) Spectral density ρ(ln τ ) = τρ(τ )
of ln τ : this shifts to smaller ln τ as α increases, indicating shorter
posterior correlation times. The spectrum also narrows and becomes
concentrated around τ = 1/σ

√
α for large α. As the posterior

variance C ∝ τ for each hidden space mode, the distributions of
ln C differ only from those of ln τ by a horizontal shift.

to r or τ by

C = −σ 2
b

2r
= σ 2

b

2
τ = σ 2

b

2
√

λ2 + σ 2ŵ
. (20)

This shows that C decreases with increasing feedback values
ŵ: observations increase prediction accuracy as they should.
Because C ∝ τ , the above results for the spectrum of τ also
apply to that of C; see Figs. 1 and 2(a). For large α in
particular the spectrum of C becomes a narrow peak around
the asymptotic inference error C ≈ σ 2

b /(σ
√

α).
We note as an aside that from the proportionality C ∝ τ

one can show that the relaxation time τ ∗ defined in (19) can

FIG. 2. (a) Characteristic posterior relaxation time τ as a function
of α, for λ = 0.1 and σ = 1, defined in three different ways (see text).
For α → 0 all three curves approach τ = 1/λ = 10; asymptotically
they decay as 1/

√
α. (b) Posterior power spectrum [obtained by

setting z = iω in (24)] for various α, at λ = 0. The power spectrum
diverges as ω → 0 when α � 1. For small α the divergence is ∝ 1/ω2,
crossing over to ∝ 1/ω as α → 1. Beyond ω ∼ O(1) the curves for
all α exhibit a standard Lorentzian tail 1/ω2. See Ref. [18] for a
derivation of these power laws.

be written in terms of spectral averages as

τ ∗ =
√

〈τ 4〉
〈τ 2〉 . (21)

Because 〈τ 〉2〈τ 2〉 � 〈τ 4〉, this implies generally 〈τ 〉 � τ ∗ in
agreement with the results in Fig. 2(a).

2. Posterior covariance in Laplace space

We next turn to the temporal dependence of the posterior
covariance (11). Its trace, normalized by Nb, is an average of
the contributions from the different eigenmodes of K bb|s. In
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terms of the relevant eigenvalues ŵ and using (20) these are

Cŵ(t − t ′) = er|t−t ′ |C = −σ 2
b

2r
er|t−t ′ |, (22)

with an added subscript ŵ to indicate this is the contribution
from a single eigenmode, characterized by a specific value of
ŵ. We take the double-sided Laplace transform

C̃ŵ(z) = σ 2
b

2r

∫ +∞

−∞
e−(z+r)|t ′−t | dt ′

= σ 2
s

k2

1
λ2−z2

σ 2 + ŵ
, (23)

where we have substituted (16) for r in terms of the self-
interaction λ and the feedback matrix eigenvalues k2ŵ/σ 2

s .
In the thermodynamic limit, we can then get the Laplace

transform of the overall covariance normalized trace C(t −
t ′) = Tr C(t − t ′) by averaging over the Marčenko-Pastur
spectrum ρ(ŵ), yielding

C̃(z) = σ 2
s

2k2

σ 2

(λ2 − z2)

{
1 − α −

(
λ2 − z2

σ 2

)

+
√[

1 − α −
(

λ2 − z2

σ 2

)]2

+ 4

(
λ2 − z2

σ 2

)}
. (24)

One can verify that C̃(0) has a divergence for λ/σ → 0 and
α � 1; the small α curves in Fig. 2(b) illustrate this effect. See
also Ref. [18] for a systematic study of the approach to such
divergences.

C. Symmetric hidden-hidden couplings

In this section we generalize the above scenario by assum-
ing that K bb = −λ1 + J . Here the matrix J provides explicit
hidden-to-hidden interactions beyond the self-interaction term
−λ1 we have had so far. To ensure stability of the hidden
system, one requires λ > λc where λc is the largest eigenvalue
of J .

We assume that J is symmetric, which is required for any
steady state of the whole system to be at equilibrium, i.e., to
obey detailed balance. The posterior drift K bb|s from (9) is
then also a symmetric matrix. This is crucial as it allows one
to solve (7) and (10) in closed form. Equation (7) gives

C = −σ 2
b

2
(K bb|s)−1, (25)

which is positive definite because K bb|s = (−λ + J) − σ 2
b A

is negative definite. To eliminate the unknown A, note from
(10) that [

(−λ + J) − σ 2
b A
]2

= (−λ + J)2 + σ 4
b A2

−σ 2
b (−λ + J)A − A(−λ + J)σ 2

b

= (−λ + J)2 + σ 2
b W

.= M, (26)

where the last equality defines M. Hence

C = σ 2
b

2
M−1/2, K bb|s = −M1/2, (27)

where M1/2 is the positive definite square root of M and M−1/2

its inverse.

1. Free probability

From (27), the spectrum of M directly determines those of
C and K bb|s. As a paradigmatic example where this spectrum
can be obtained in the thermodynamic limit we consider the
case where the elements of J are independently drawn from
a Gaussian distribution, i.e., we set J = j Ĵ with Ĵ a random
matrix from the Wigner ensemble [25]. From the Wigner
semicircular law this has largest eigenvalue 2, thus λc = 2j .
We will write the feedback matrix as in Sec. III B 2: W = k2

σ 2
s

Ŵ

with Ŵ from the Wishart ensemble.
With the above assumptions, M = (−λ + J)2 + σ 2

b W is a
sum of two independently drawn, symmetric random matrices
with known spectrum. Its spectrum can then be found using
free probability theory. Reviews can be found in Ref. [34] for
the theory and Refs. [35,36] for applications to RMT. Briefly,
the sum defining M is effectively a free addition [34] in the
sense that because of independent sampling, the eigenvector
bases of the two matrices in the sum are randomly rotated
against each other. It then turns out that the spectrum of the
sum depends only on the eigenvalues and not the eigenvectors
of the individual matrices. The intuition beyond this is that,
in the limit of infinite matrix size, the detailed statistics of
eigenvalues, e.g., whether they are correlated or not, can be
neglected [36]. While in an ordinary sum of independent
random variables it is the cumulants that add, in a free sum of
two random matrices it is the R-transforms that are additive
[34], and this allows the spectrum of the sum to be determined.

The R transform of a random matrix is related to its Green’s
function by

G(z) = 1

z − R(G(z))
. (28)

The Green’s function or resolvent, in turn, is defined for a
generic random matrix M as the normalized trace GM (z) =
Tr(z − M)−1. It can be written in terms of the eigenvalue
density ρ(m) as

GM (z) =
∫

ρ(m)

z − m
dm, (29)

which is also known as a Stieltjes transform. Conversely, ρ(m)
can be retrieved from the Green’s function via

ρ(m) = − 1

π
lim

ε→0+
Im GM (m + iε). (30)

The route to finding the spectrum of M in our case is then
clear: we need to write the Green’s functions and associated
R transforms of (−λ + J)2 and σ 2

b W , respectively, add these
two R transforms to obtain the R transform of M, and then
work backwards to GM (z) and finally ρ(m).

We denote by G1(z) the Green’s function of (−λ + J)2,
which is given by the integral

G1(z) =
∫

ρ(ĵ )

z − (−λ + j ĵ )2
dĵ

=
∫ 2

−2

√
4 − ĵ 2

2π

1

z − (−λ + j ĵ )2
dĵ , (31)
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where the Wigner semicircular law has been used. The integral
can be performed in closed form

G1(z) = 1

2j 2
− 1

4j 2

√
(λ − √

z)2 − 4j 2

z

− 1

4j 2

√(
λ + √

z)2 − 4j 2

z
(32)

and (28) then gives the R transform

R1(z) = j 2

1 − zj 2
+ λ2

(1 − 2zj 2)2
. (33)

The Green’s function for a Wishart matrix is well known [11],
and the related R transform reads

R2(z) = αv

1 − vz
, (34)

where we recall that α = N s/Nb and v, the variance, in
our case is v = k2σ 2

b /σ 2
s . The two above R transforms now

simply add to give the one for M, RM (z) = R1(z) + R2(z).
The result can be written as an implicit expression for the
Green’s function GM (z), given that from (28) one has generally
z(G) = 1/G + R(G)

z = 1

G
+

α
k2σ 2

b
σ 2

s

1 − k2σ 2
b

σ 2
s

G
+ j 2

1 − j 2G
+ λ2

(1 − 2j 2G)2
. (35)

We have abbreviated G ≡ GM on the r.h.s. here. Rearranging
the above equation one sees that G(z) is the solution of a fifth
order polynomial equation. This can be found numerically,
with the correct solution branch being determined from the
asymptotic behavior G ≈ 1/z for large z. Once G(z) is in
hand, ρ(m) can be found using (30).

By a transformation of the spectrum of M we can
characterize the spectrum of the posterior covariance matrix
C = σ 2

b M−1/2/2 as well as the spectrum of relaxation rates
as determined by the effective drift K bb|s = −M1/2. The
spectrum of (−K bb|s)−1 = M−1/2 then gives the distribution
of relaxation times. As this matrix is proportional to C , plots
of ρ(τ ) (Fig. 3) provide information also about the inference
error as a function of α. The overall picture is that predictions
become increasingly precise when the pool of observed data
is expanded, i.e., α increases, while correlation times between
posterior fluctuations decrease in proportion.

For qualitative analysis one can rewrite (35) in dimension-
less variables z̃ = σ 2

s z/(k2σ 2
b ) and G̃ = k2σ 2

b G/σ 2
s as

z̃ = 1

G̃
+ α

1 − G̃
+ (γp)2

1 − (γp)2G̃
+ p2

[1 − 2(γp)2G̃
]2 , (36)

where γ = j/λ and p = λ/σ . This reduces the number of
parameters and variables, from seven (α, j , k, λ, σs, σb, z)
to four (p, γ , α, z̃). Here γ and 1/p measure the strength of
hidden-hidden and hidden-observed couplings relative to the
decay weight λ.

We have seen in Fig. 1(a) that for γ = 0, i.e., in the absence
of hidden-hidden interactions (see Sec. III B 1) the spectrum
consists of two separate pieces for α < 1, while with such
interactions present (γ > 0) the spectrum can be supported
on a single interval. There must be a transition between these

FIG. 3. Spectral density ρ(ln τ ) = τρ(τ ), of relaxation times τ ,
for different values of α. We plot ρ(ln τ ) to make the normalization
of the densities more obvious. The spectra of posterior variances C,
which define the inference error, are identical up to a horizontal shift
as C ∝ τ . (a) At small α the spectrum is broad, indicating that there
is much variation in how different hidden state space directions are
constrained by observations. For increasing α the spectrum becomes
more peaked, and centered around decreasing τ or C: different
directions become determined more strongly, and more evenly, by
observations, a trend more clearly visible in (b).

two cases at some value of γ that will depend on p and α;
see Fig. 4(a). Locating this transition numerically gives the
results shown in Fig. 4(b). The spectrum consists of a single
piece above the line drawn in the (p,γ ) plane. One sees that
for large p = λ/σ = λσs/(σbk), i.e., weaker hidden-observed
couplings, small values of γ = j/λ and hence weak hidden-
hidden interactions are sufficient to merge the two pieces of
the spectrum.
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FIG. 4. (a) Spectral density ρ(ln τ ) = τρ(τ ), at γ = j/λ = 0.5
(critical value for internal stability, with j = 0.2 and λ = 0.4) and
α = 0.5 for different values of p: the two pieces of the spectrum at
p = 0.2 merge at p = 0.3, giving a spectrum supported on a single
interval for p > 0.3. (b) Curve in the (p,γ ) plane for which the two
pieces of the spectrum merge when coming from low γ : the black
line refers to α = 0.5, the case shown in (a). The two-piece region
near the origin shrinks (see curve for α = 0.9, blue dotted line) and
vanishes for α → 1.

2. Posterior correlations in Laplace space

From (11) and (27) we can obtain explicitly the posterior
correlations in time: for t > t ′,

C(t − t ′) = σ 2
b

2
e−M1/2(t−t ′) M−1/2. (37)

We consider the trace, which at t = t ′ gives the total posterior
variance. The double-sided Laplace transform can then be
shown to have the simple form

C̃(z) = σ 2
b Tr(−z2 + M)−1 = −σ 2

b GM (z2). (38)

This relation to the Green’s function is in fact a statement of
the Fluctuation-Dissipation Theorem [37] (see Ref. [38] for
details) and holds true because of the symmetry of J .

From (38), the Laplace transformed posterior correlation
function has to satisfy the equation for −σ 2

b GM (z2), giving

z2 = −σ 2
b

C̃
+

α
k2σ 2

b
σ 2

s

1 + k2

σ 2
s
C̃

+ j 2

1 + j 2

σ 2
b
C̃

+ λ2(
1 + 2 j 2

σ 2
b
C̃
)2 , (39)

where we have set C̃(z) = C̃. Interestingly, and similarly
to (35), which determines the spectrum of M, this equa-
tion does not become singular at λ = 0. This fact can be
understood in the following way. If directions exist along
which the hidden dynamics would grow exponentially without
observations, then these always have a nonzero overlap with
directions constrained by observed data. This is clear from the
independent sampling of the two terms in M and explains
how the posterior variance, the uncertainty on the hidden
dynamics, can stay finite even when the hidden dynamics
without observations would diverge. Nevertheless, such a
diverging hidden dynamics is an unphysical situation. We
therefore continue to consider only parameter sets with λ > λc,
the internal dynamical condition for a finite and well-defined
marginal dynamics of the bulk.

Finally, by setting z = iω one can evaluate the posterior
power spectrum C̃(iω). It can be written in terms of a
dimensionless function Cα,p,γ (�):

C̃(iω) = σ 2
s

k2
Cα,p,γ (�), (40)

with � = ω/σ a rescaled frequency. The prefactor shows
that the entire power spectrum of the posterior variance or
prediction uncertainty is directly proportional to the dynamical
noise acting on the observed subnetwork σ 2

s and inversely
proportional to k2, the strength with which it interacts with
the bulk. As before one can find from (39) an equation for the
dimensionless part C

− �2 = − 1

C + α

1 + C + (γp)2

1 + (γp)2C + p2

[1 + 2(γp)2C]2
,

(41)

where γ and p are defined as before. One can verify that
for p = 0 and 0 � α � 1, C(0) has a divergence, implying
also that the time integral of Tr C(t − t ′) diverges. This comes
physically from the fact that while a fraction α of hidden space
directions have variances (and covariances) of the expected
order ∝ 1/k2, the others have variances that are independent
of k and therefore much larger for large k.

A second region in the α, p, γ parameter space where C(0)
diverges is α → 0 and γ → γc = 1/2. This is as expected:
without observations, the hidden dynamics starts to diverge
at λ → λc = 2j , hence at γc = 1/2. We refer to Ref. [18] for
further discussion of the behavior in the vicinity of such critical
points.

The results of this section are of conceptual and practical
significance. First, Eq. (35) for the Green’s function provides
a tool to study in a controlled way how spectra change with
the number of observations and the interaction strength: this is
what we show in Figs. 1, 3, and 4. Second, as more thoroughly
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analyzed in Ref. [18], from Eqs. (39) and (41) one can calculate
posterior equal time variances (by Fourier Transform) and
relaxation times [by the second derivative at zero frequency;
see (19)], which are exact in the thermodynamic limit and thus
expected to be good approximations for large size data sets.
Importantly, exact values such these can serve as a reference
point around which one could systematically investigate finite
size effects.

IV. THERMODYNAMIC LIMIT BY DYNAMICAL
FUNCTIONALS

So far we have studied the posterior variance and time-
dependent covariance in settings where the dynamics of the
entire network obeys detailed balance, and where the relevant
Green’s functions can be derived using RMT tools.

In the absence of detailed balance, dynamical functionals
can be used as an alternative, within a statistical mechan-
ics approach to inference (for a systematic discussion see
Refs. [4,39]). The main result here is a generalization of (39) to
any degree of symmetry, which therefore provides important
insights into the strength of nonequilibrium effects on the
inference error. We recall that the aim is to characterize a
posterior path distribution, P (Xb|X s), known to be Gaussian.
The likelihood of the observed trajectory P (X s) can be seen
as a “partition function” Z that is obtained by summing
P (Xb,X s) over all possible hidden paths Xb. From Z, one can
define a free energy (density) to study macroscopic quantities
such as mean and covariance of P (Xb|X s). If the interactions
are chosen randomly, they act as quenched disorder and the
physically relevant quantity is the quenched average of the free
energy,

f = −limN→∞N−1〈ln Z( J,K sb)〉J,K sb , (42)

where we have abbreviated Nb ≡ N . The free energy
−N−1 ln Z is self-averaging, i.e., its fluctuations around f

for different realizations of the disorder vanish for N → ∞.
The same is true for the order parameters that arise in
the calculation, which include the posterior variance, i.e.,
inference error.

Dynamical functionals appear in the above approach once
we write the joint path probability P (Xb,X s) defined by the
dynamics (1) and (2) in Onsager-Machlup form as proportional
to

P (Xb,X s)

∝ exp

[
− 1

2σ 2
b

∫ T

0

∣∣∣∣∂t xb − K bsxs(t) − K bbxb(t)
∣∣∣∣2dt

]

· exp

[
− 1

2σ 2
s

∫ T

0

∣∣∣∣∂t xs − K ssxs(t) − K sbxb(t)
∣∣∣∣2dt

]
,

(43)

with K bb = −λ1 + J . From the Gaussian form of this,
the second order statistics of the posterior P (Xb|X s) are
independent of the value of the observed X s. Hence to
obtain the posterior variance it is sufficient to consider zero
observations, i.e., xa(t) = 0 for all a and t . All xb are then
effectively deviations δxb from the posterior mean, though we
will not write the δ explicitly to save space. The only remaining

contribution from observations in (43) is in the couplings Kaj ,
and the relevant partition function becomes

Z =

�

exp

⎡
⎢⎣− 1

2σ 2
s

N s∑
a=1

∫ T

0

⎛
⎝ N∑

j=1

Kajxj (t)

⎞
⎠

2

dt

⎤
⎥⎦
�

x

, (44)

where x ≡ xb = {xi}Ni=1. The average is the marginalization
over the hidden dynamics with the weight given by the second
term in (43). This weight corresponds to the dynamics of the
isolated hidden network,

∂txi(t) = −λxi(t) +
∑

j

Jij xj (t) + ξi(t), (45)

with white noise 〈ξi(t)ξj (t ′)〉 = σ 2
b δij δ(t − t ′) as before.

A. Asymmetric hidden-hidden couplings

1. Annealed average

The average of ln Z over the quenched couplings J
and K sb would conventionally be performed by the replica
method. However, for fully connected systems with quadratic
interaction terms such as the one here, similar calculations
[9,10] indicate that the annealed calculation, which replaces
〈ln Z〉 by ln〈Z〉, will give the exact result. We therefore
calculate

f = −limN→∞N−1 ln〈Z( J,K sb)〉J,K sb . (46)

We shall again assume J and K sb to have Gaussian-distributed
elements with zero mean, but now consider the case where J is
asymmetric, i.e., 〈JijJji〉 = 0, thus breaking detailed balance.
(We comment on the case of general symmetry of J below.)
For the calculation we introduce

χi(t) =
N∑

j=1

Jij xj (t) + ξi(t), (47)

φa(t) =
N∑

j=1

Kajxj (t). (48)

With regards to the quenched disorder average these are two
Gaussian fields, which become independent when conditioned
on the xi . Defining as before amplitudes j and k so that 〈J 2

ij 〉 =
j 2/N and 〈K2

aj 〉 = k2/N , we have

〈χi(t)χi(t
′)〉J = σ 2

b δ(t − t ′) + j 2C(t,t ′), (49)

〈φa(t)φb(t ′)〉J = k2C(t,t ′)δab, (50)

where we have introduced the order parameter

C(t,t ′) .= 1

N

N∑
j=1

xj (t)xj (t ′). (51)

Hence, we will calculate

Zann =
〈

exp

[
1

2σ 2
s

N s∑
a=1

∫ T

0
φ2

a(t) dt

]〉
φ,x

, (52)
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where now the process has an effective prior dynamics given
by

∂txi(t) = −λxi(t) + χi(t). (53)

Here φ = {φa}N s

a=1 and χ = {χi}Ni=1 are still coupled to x
because of the covariances C(t,t ′).

2. Decoupling the degrees of freedom

To decouple the degrees of freedom we constrain the value
of the order parameter function C(t,t ′). Formally this means
writing Zann as an integral of exp(N�[C]) over all possible
values of C(t,t ′), where

�[C] = 1

N
ln

*
exp

{
− 1

2σ 2
s

N s∑
a=1

∫ T

0
φ2

a(t) dt

}

×
∏
t,t ′

δ

{
NC(t,t ′) −

N∑
i=1

xi(t)xi(t
′)

}+
φ,x

≡ �1[C] + �2[C] (54)

with

�1[C] = 1

N
ln

〈∏
t,t ′

δ

{
NC(t,t ′) −

N∑
i=1

xi(t)xi(t
′)

}〉
x

,

(55)

�2[C] = N s

N
ln

〈
exp

{
− 1

2σ 2
s

∫ T

0
φ2(t) dt

}〉
φ

. (56)

In Eq. (56) the decoupling has allowed us to drop the index a

and consider a representative φ.
The first equation (55) is dealt with by introducing an

order parameter to C(t,t ′). This means that for N → ∞, we
replace the “hard” δ constraints by an extra Gaussian term
yielding a new effective measure over independent xi (t), which
is adjusted such that 〈xi(t)xi(t ′)〉e = C(t,t ′) (here e denotes
the effective “posterior” average). Equivalently one can write
δ function constraints in Fourier representation and evaluate
exp(N�[C]) using a saddle point method. Either way one has

�1 = 1

2

∫ T

0
dt

∫ T

0
dt ′ D(t,t ′)C(t,t ′)

+ ln

〈
exp

{
−1

2

∫ T

0
dt

∫ T

0
dt ′ D(t,t ′)x(t)x(t ′)

}〉
x

.

(57)

This path integral is now also for a single representative
coordinate x. Extremization over D(t,t ′) is understood in (57),
and similarly one needs to extremize over C(t,t ′) in evaluating
the resulting Zann.

3. Evaluating the order parameters

As before we focus on the steady state of the system for t →
∞. The order parameters then depend on time differences only
and the path integrals can be evaluated using Fourier or Laplace
modes x̃(z). These decouple into independent Gaussians, and

we get from (49), (50), and (53) that

C̃0(z)
.= 〈|x̃(z)|2〉x̃ = j 2C̃(z) + σ 2

b

−z2 + λ2
, (58)

〈|φ̃(z)|2〉φ̃ = k2C̃(z). (59)

C̃0(z) is the covariance of the prior effective dynamics while
C̃(z) relates to the posterior dynamics that includes the
conditioning on observations. Carrying out the prior average,
the second term in (57) becomes

ln

〈
exp

{
−1

2

∫ T

0
dt

∫ T

0
dt ′ D(t,t ′)x(t)x(t ′)

}〉
x

= −1

2

∫
dz ln{1 + C̃0(z)D̃(z)}. (60)

In a similar way, we have for �2, from (56)

�2 =
〈
exp

{
− 1

2σ 2
s

∫ T

0
φ2(t) dt

}〉
φ

= −1

2

∫
dz ln

[
1 + k2

σ 2
s

C̃(z)

]
. (61)

Hence, finally, by substituting (60) into (57) and from (61) we
get

� = 1

2

∫
dz[D̃(z)C̃(z) − ln{1 + C̃0(z)D̃(z)}]

− α

2

∫
dz ln

{
1 + k2

σ 2
s

C̃(z)

}
, (62)

where α = N s/N as before. The order parameter equations
∂�/∂C̃(z) = 0 and ∂�/∂D̃(z) = 0 result as

D̃(z) = αk2

σ 2
s + k2C̃(z)

+ D̃(z)

1 + C̃0(z)D̃(z)

j 2

−z2 + λ2
, (63)

C̃(z)

C̃0(z)
+ D̃(z)C̃(z) = 1. (64)

Combining these and using (58) gives a closed algebraic
equation for C̃(z)

z2 =
⎡
⎣−σ 2

b

C̃
+

α
k2σ 2

b
σ 2

s

1 + k2

σ 2
s
C̃

⎤
⎦(1 + j 2

σ 2
b

C̃

)2

+j 2

(
1 + j 2

σ 2
b

C̃

)
+ λ2 (65)

with the abbreviation C̃(z) = C̃. This is the analog of (39) for
the nonequilibrium case of asymmetric couplings J , and our
final result for this section.

B. Generalization to arbitrary interaction symmetry

The above approach based on dynamical functionals can
be extended to the case of hidden-hidden interactions of
arbitrary degree of symmetry, defined by 〈JijJji〉 = ηj 2/N .
Asymmetric couplings (Sec. IV A) correspond to η = 0 while
η = 1 gives symmetric J (Sec. III C). We do not detail the
calculations for the case of general η here. The main change is
that the nonzero correlation 〈JijJji〉 causes the effective prior
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dynamics to contain a response term where each xi(t) reacts
to its values xi(t ′) in the past (see, e.g., Ref. [28]).

The final result is again a closed algebraic equation for C̃(z)

z2 =

⎡
⎢⎣−σ 2

b

C̃
+

α
k2σ 2

b
σ 2

s

1 + k2

σ 2
s
C̃

+ j 2

1 + j 2

σ 2
b
C̃

+ λ2{
1 + (1 + η) j 2

σ 2
b
C̃
}2

⎤
⎥⎦

×
[

1 + (1 − η)
j 2

σ 2
b

C̃

]2

. (66)

For η = 1 and η = 0 this leads back to (39) and (65),
respectively, as it should.

The result (66) characterizes the average case posterior
variance, and hence inference error, for our partially observed
network dynamics. Remarkably, it does so across an entire
range of nonequilibrium settings parameterized by η. Equation
(66) is derived within the annealed approximation, but as
discussed above this should be exact here so that our result acts
as a baseline for the assessment of other approximations. One
such approximation, the Extended Plefka Expansion [17,18],
can be shown to give exactly (66), demonstrating that this
approximate scheme is also exact (in the large system limit
studied here).

The dependence on various parameters, especially the level
of symmetry η, of inference errors and posterior relaxation
times as they result from (66) is sufficiently rich that we devote
a separate paper to it [18]. It turns out that the behavior can
be organized around critical regions in the parameter space of
α, γ and p. There are two such regions. Generalizing from
Sec. III C 2, these are defined by p → 0 for 0 � α � 1 for the
first region, and for the second α → 0 and γ → γc = 1/(1 +
η). One key finding is that across the entire range of η from
0 to just below 1, i.e., the regime where interaction symmetry
is broken, there are no qualitative changes in behavior. On the
other hand, interesting crossovers then occur in the vicinity of
η = 1, i.e., as interaction symmetry is approached. We refer
the interested reader to Ref. [18] for further details.

V. DISCUSSION AND CONCLUSIONS

We have considered in this paper linear stochastic dynamics
in a large network of continuous degrees of freedom, where
given a time trajectory of the nodes in some observable part
of the network the task is to infer the trajectory of the hidden
nodes. By varying interaction symmetry we were able to study
both equilibrium and nonequilibrium settings, thus creating a
paradigmatic example of inference from temporal data. Given
the increasing availability of large-scale temporal data sets
such problems are becoming prevalent in, e.g., biology, where
interpretation of data and prediction are highly challenging
when observations only partially characterize a system.

Our main goal was to explore the average case inference
error. To ensure analytical tractability we focused on stationary
dynamics on large networks. More precisely it is the variance
of hidden state estimates that becomes stationary in time; mean
predictions for the hidden states have to depend on time in our
dynamical context. The large network assumption is realistic in
many situations, e.g., for metabolic or neural networks that can

be composed of thousands of interacting elements (chemical
species, neurons, etc).

We deployed two different methods of analysis. For the first,
the starting point (Sec. II) is a Lyapunov-type equation for the
posterior variance matrix C , where an effective drift matrix
K bb|s captures the effect of the observations. In Sec. III we de-
rived average case performance results by appeal to RMT. This
is possible because the Lyapunov equation can be solved in the
case of self-interacting hidden variables (Sec. III B) or more
generally, symmetric hidden-hidden couplings (Sec. III C),
corresponding to equilibrium dynamics. With suitable assump-
tions of couplings being Gaussian and long-range, and taking
the thermodynamic limit of large networks, we then used free
probability methods to derive the Green’s functions and then
the spectra of C and K bb|s, which are closely linked.

For the opposite case of asymmetric hidden-hidden cou-
plings, where the dynamics is nonequilibrium, we presented
in Sec. IV A a calculation based on dynamical functionals. This
leads to an algebraic equation for the stationary posterior vari-
ance (in Laplace space). We sketched how the approach can be
extended to the analysis of nonequilibrium stationary regimes
arising from couplings of generic symmetry (Sec. IV B).

We focused on the inference error as an average macro-
scopic quantity. For large networks this is independent of the
specific realization of the microscopic (Gaussian) interactions
but does depend on structural parameters such as overall
interaction strengths as well as α, the ratio between the
number of hidden and observed nodes. Predictions on such
structural dependences of macroscopic properties should be
testable in practice and may give information on microscopic
features such as the degree of interaction symmetry. The
emerging picture, consisting of algebraic expressions that link
inference errors and parameters, suggests possible connections
to experiment design, as we discuss further in Ref. [18]. There
we quantify these dependences in terms of scaling laws; of
particular importance is the dependence on α, as it tells us
how many observed nodes are needed to attain a specified
precision for the hidden node inference.

The RMT approach to our problem has the benefit that it
gives information on spectral densities, our main focus here,
including the spectrum of relaxation times in the posterior dy-
namics. This then allowed us to compare different definitions
of a characteristic posterior relaxation time, such as slowest
mode and average time (Sec. III B 1). The spectral shapes
proved revealing: when there are few observations (small α),
the spectrum can be split into two parts corresponding to
constrained and unconstrained directions (Sec. III C), but this
distinction is then lost as hidden nodes interact more strongly.

One open question for the inference setting we have
considered is to answer the question of the spectral density
of relaxation times and its support in the nonequilibrium case
η < 1. For example, does our result (66) for generic η still have
a free probability interpretation? Generalizing the derivation of
the equilibrium (η = 1) result (39) to η < 1 appears nontrivial.
One might consider assuming that the equilibrium relation
C̃(z) = −σ 2

b G̃(z2) continues to hold and analyze the spectrum
corresponding to the Green’s function G̃(z).

There are a number of avenues for further work, as
the setting we have begun to study is still rather new in
the statistical physics community [12–14,16]. An obvious
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extension would be to sparse networks, where for static
analyses statistical mechanics has been successfully deployed
[30,40]. The sparse case would be worth developing because of
its relevance to applications such as gene expression networks
[1]. As a starting point one could investigate progressive
degrees of dilution. Consider, for example, an average degree
of connectivity c, which corresponds to the Jij being drawn
as Gaussian random variables with probability c/N , and
zero with probability 1 − c/N ; one would set then the
amplitude of the nonzero Jij such that 〈J 2

ij 〉 = j 2/c in order
to obtain a sensible thermodynamic limit. In this paper, we
have effectively considered c = N , but from previous studies
[41,42] it is clear that one can take c � N (in fact as low
as c ∼ ln N ) without changing the results derived in this
paper. This already goes a long way towards making our
work applicable to real networks. The strong dilution regime,
where c = O(1), would require a separate analysis that goes
beyond the scope of the present paper. Cavity and population
dynamics methods developed for sparse network spectra (e.g.,
Refs. [30,40]) would probably need to be deployed there.

A second important consideration for applications to real
networks is their finite size N . We have begun to investigate
the resulting finite size effects numerically. Encouragingly, we
find [17] that even for moderate network sizes (N ≈ 100) there
is good agreement between numerically exact calculations of
the inference error on the one hand and our large-N theory on
the other.

Variants of the dynamics could also be considered, for
example, by adding nonlinearities that can be treated perturba-
tively. One could also extend to measurements of the trajectory
of the observable nodes that would be available at a regular or
irregular grid of time points only rather than along the entire
time interval considered, or to measurements which are noisy
rather than just incomplete as in our case [43,44].

Finally, we have concentrated on the forward problem
of predicting hidden states given known interactions. This
is relevant also for inverse problems such as learning the
couplings from dynamical data, where typically a forward
problem has to be solved at every iteration (e.g., in Expectation
Propagation [45]). Learning which couplings are nonzero is
effectively a network reconstruction problem, with potential
applications to signaling pathways and gene expression data. In
either case, modeling data as explicitly dynamical rather than
as uncorrelated snapshots is expected to lead to performance
improvements in inference and learning. Such algorithmic
advances have already been achieved by adapting equilibrium
statistical physics tools [1,46] to learning of regulatory
networks from steady state data.

ACKNOWLEDGMENTS

This work was supported by the Marie Curie Training Net-
work NETADIS (FP7, Grant No. 290038). We are grateful to
Pierpaolo Vivo, Ludovica Bachschmid-Romano, and Reimer
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APPENDIX A: KALMAN FILTER AND SMOOTHER

In this Appendix we derive the results (7)–(11) in the main
text, using a reduction of our inference problem to a linear

Gaussian state space model, to which standard Kalman filter
techniques [21] can then be applied.

Let us consider a time discretized version of our dynamics
(1) and (2), with elementary time step �,

xb(t) − xb(t − �) = �K bsxs(t − �) + �K bbxb(t − �)

+�ξ̄
b
(t − �), (A1)

xs(t) − xs(t − �) = �K ssxs(t − �) + �K sbxb(t − �)

+�ξ̄
s
(t − �), (A2)

where the white noises ξ̄
s
and ξ̄

b
are averages of the continuous

time noise over the time interval � with covariance

〈ξ̄ s
(t)ξ̄

s T
(t ′)〉 = �−1�ssδtt ′ (A3)

and similarly for ξ̄
b
. The above dynamics is Markovian, with

transition probabilities

P (xb(t)|xb(t − �),xs(t − �))

= N (xb(t)|(1 + �K bb)xb(t − �)

+�K sbxs(t − �),��bb), (A4)

P (xs(t + �)|xb(t),xs(t))

= N (xs(t + �)|(1 + �K ss)xs(t) + �K sbxb(t),��ss),

(A5)

and we are interested in the posterior probability P (Xb|X s) of
a time trajectory Xb of hidden variables given a trajectory X s

of observed variables.
To bring this inference problem into a standard form,

we exploit the fact that the joint distribution P (Xb,X s) is
Gaussian, and hence so is the posterior P (Xb|X s). From
general properties of Gaussian conditioning, the second order
statistics of the posterior are then independent of the specific
observed trajectory X s. We can therefore choose the most
convenient X s to find the second order statistics, which is the
identically zero trajectory. The second order statistics we find
then determine the inference error, which is the trace of the
covariance matrix of xb(t). For zero observations, the transition
probabilities (A5) and (A6) simplify to

P (xb(t)|xb(t − �))

= N (xb(t)|(1 + �K bb)xb(t − �),��bb), (A6)

P (xs(t + �) = 0|xb(t))

= N (xs(t + �) = 0|�K sbxb(t),��ss). (A7)

These now have the conventional form of a linear-Gaussian
state space model [21], where (A6) specifies the dynamics
of the hidden state xb while (A7) defines the “emission
probability” at time t , with xs(t + �) taking the role of
the emitted signal or observation. To conform with standard
notation, we will shift the time index on xs(t + �) to xs(t)
for the rest of this discussion; see Fig. 5. Note that while
we are dealing with real-valued states and emissions here,
the probabilistic “graphical model” [21] of Fig. 5 could also
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x b (t)x b (t − ∆ b (t + ∆)

. .....

x s(t)x s(t − ∆

) x

) x s(t + ∆)

FIG. 5. Illustration of a linear-Gaussian state space model.

capture cases, e.g., Hidden Markov Models (HMMs) where
the hidden states are discrete.

The chain structure of Fig. 5 means that posterior probabil-
ities can be computed efficiently by message passing methods,
denoted Forward-Backward algorithm in the context of HMMs
[47] and Kalman filter [24,48] here.

The forward propagation computes forward messages α̂t

that absorb the effect of previous observations (the past), while
the backward propagation accounts for observations from the
future. Formally the messages can be defined as

α̂(xb(t)) = P (xb(t)|xs(�), . . . ,xs(t)) = α̂t , (A8)

β̂(xb(t)) = P (xs(t + �), . . . ,xs(T )|xb(t))
P (xs(t + �), . . . ,xs(T )|xs(�), . . . ,xs(t))

= β̂t . (A9)

Once α̂t and β̂t have been computed, the desired posterior
probability is simply

γt = α̂t β̂t = P (xb(t),X s)
P (X s)

= P (xb(t)|X s). (A10)

The forward propagation for continuous variables reads

α̂t ∝ P (xs(t)|xb(t))

·
∫

dxb(t − �)P (xb(t)|xb(t − �))α̂t−�. (A11)

In our case, all distributions involved are Gaussian, and we
denote in particular

α̂t = N (xb(t)|0,C f(t)). (A12)

C f(t) = 〈xb(t)xb(t)T 〉 is the equal time forward (or “filtered”)
posterior covariance. By substituting (A6), (A7), and (A12)
into (A11) and identifying the quadratic terms in xb(t) in the
exponents one obtains the recursive Kalman filter expression
for C−1

f (t)

C−1
f (t) = [(1 + �K bb) C f(t − �)(1 + �K bb)T + ��bb]−1

+�W , (A13)

where W = K sb T (�ss)−1 K sb is the feedback matrix. Equation
(A13) is a discrete time Riccati (i.e., second order matrix)
recursion. We are interested in the continuous time limit

� → 0, where it becomes

d

dt
C−1

f (t) = C−1
f (t)�bbC−1

f (t)

+ C−1
f (t)K bb + K bb T C−1

f (t) + W . (A14)

The backward propagation incorporates in the algorithm
the observations from all later time steps

β̂t ∝
∫

dxb(t + �)β̂t+�P (xs(t + �)|xb(t + �))

·P (xb(t + �)|xb(t)), (A15)

and we set

β̂t ∝ N (xb(t)|0,Cb(t)) (A16)

with Cb(t) = 〈xb(t)xb(t)T 〉 defined as the equal time posterior
variance in the backward propagation. Inserting (A16) into
(A15) one finds the backward recursion for C−1

b (t)

C−1
b (t) = (1 + �K bb)T (��bb)−1

· {1 − [
1 + ��bbC−1

b (t + �) + �2�bbW
]−1}

· (1 + �K bb). (A17)

Taking � → 0, which requires keeping all terms up to O(�)
on the r.h.s., gives the continuous time limit

d

dt
C−1

b (t) = −K bb T C−1
b (t) − C−1

b (t)K bb

−W + C−1
b (t)�bbC−1

b (t). (A18)

The changes of sign compared to (A14) come from the
backward direction.

Finally the posterior γt also has a Gaussian form:

γt = N (xb(t)|0,Cbb|s(t)). (A19)

We drop the superscripts on Cbb|s(t) as in the main text and
write this overall (“smoothed”) covariance as C(t). From
(A10) one has C−1(t) = C−1

f (t) + C−1
b (t), so from the sum

of (A14) and (A18)

d

dt
C−1(t) = C−1(t)�bbC−1(t) + C−1(t)K bb|s

+ K bb|s T C−1(t), (A20)

where we have set

K bb|s = K bb − �bbC−1
b , (A21)

and we have taken C−1
b as the stationary limit of C−1

b (t).
To interpret K bb|s one can look at P (xb(t + �),xb(t)|X s),

given by the integrand of (A15). Conditioning on xb(t) and
using (A6), (A7), and (A16) one finds easily that the mean of
xb(t + �) conditioned on xb(t) is

[1 + �K bb|s(t) + O(�2)]xb(t). (A22)

Hence K bb|s(t) has the meaning of a posterior drift, i.e., it
determines the time evolution for the posterior dynamics.

Focusing on the stationary state now, we can drop all
dependences on t . From (A20), the posterior covariance C
then satisfies the Lyapunov equation (7)

K bb|sC + C K bb|s T + �bb = 0 (A23)
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with the stationary posterior drift K bb|s given by

K bb|s = K bb − �bbC−1
b (A24)

and the stationary backward covariance satisfying, from (A18),

C−1
b �bbC−1

b − K bb T C−1
b − C−1

b K bb = W . (A25)

Apart from the relabeling of C−1
b as A, we have therefore

derived (7), (9), and (10) in the main text. Note that C−1
b is

symmetric by definition; it is also positive semidefinite. As
it enters the effective drift with a minus sign, we see that
the presence of observations drives the hidden dynamics back
towards its mean (zero) more quickly.

To find the evolution of the two-time posterior variance
C(t,t ′), we first look at the case C(t ′ + �,t ′) of adjacent time
steps. Here (A22) gives directly

C(t ′ + �,t ′) = [1 + �K bb|s(t ′) + O(�2)]C(t ′,t ′). (A26)

This easily generalizes to the correlations τ steps apart as

C(t ′ + τ�,t ′) = [1 + �K bb|s + O(�2)]τ C, (A27)

where we have directly written the stationary version. Setting
t = t ′ + τ� and taking � → 0 then gives Eq. (11):

C(t − t ′) = eK bb|s(t−t ′)C. (A28)

APPENDIX B: VARIATIONAL METHOD

As is often the case, the fixed point of a recursion (such
as the Forward-Backward algorithm) can also be retrieved
variationally, i.e., as the solution of a constrained optimization
problem. We show this connection in this Appendix.

Let us start from P (Xb,X s), the joint probability of
subnetwork and bulk trajectories obeying (1) and (2), and
denote Q(Xb) a variational approximation to the posterior
P (Xb|X s) of the effective dynamics (8). As before if we are
interested only in the posterior second order statistics, we can
remove the means by assuming xs(t) = 0 ∀t and can then drop
the δ in (8). One aim is to determine the effective drift K bb|s by
variational methods. Note that parameterizing Q in terms of
K bb|s gives us enough flexibility to retrieve the exact posterior
because of the Gaussian nature of our problem.

We can write the joint trajectory probability and the
variational posterior, directly in continuous time form, as

P (Xb,X s)

∝ exp

{
−1

2

∫ T

0
dt
[
ξ b T (t)�bb −1ξ b(t) + ξ s T (t)�ss −1ξ s(t)

]}
(B1)

Q(Xb) ∝ exp

[
−1

2

∫ T

0
dt ξ b T (t)�bb −1ξ b(t)

]
, (B2)

where the noises ξ b and ξ s should be expressed as a function
of xb and xs using respectively equations (1) and (2) for
P (Xb,X s) and (8) for Q(Xb).

We find Q in the standard variational way by finding
the stationary point of the Kullback-Leibler divergence [49]

between P and Q,

KL(P ||Q) = −
〈

log
Q

P

〉
Q

= F, (B3)

which is analogous to a thermodynamic free energy. Inserting
(B1) and (B2) and simplifying gives

F =
∫ T

0
dt

1

2

〈
xb T (t)(K bb − K bb|s)T

×�bb −1(K bb − K bb|s)xb(t)
〉
Q

+
∫ T

0
dt

1

2

〈
xb T (t)W xb(t)

〉
Q

(B4)

with W
.= (K sb)T �ss −1 K sb the feedback matrix as before.

Here we have performed an integration by parts and assumed
that xb vanishes at the boundaries of the time domain.

In the stationary limit, we can drop the time integrals, drop
the resulting factor T and use the definition C = 〈xbxb T〉Q to
write

F = 1
2 Tr[(K bb − K bb|s)T �bb −1(K bb − K bb|s)C]

+ 1
2 Tr[W C]. (B5)

We now want to optimize over K bb|s, bearing in mind that the
stationary posterior variance C is linked to the effective drift
by the Lyapunov equation

K bb|sC + C K bb|s T + �bb = 0 (B6)

[see (7)]. Introducing a Lagrange multiplier matrix A/2 to
implement this constraint, we optimize

L[C,K bb|s,A] = F + 1
2 Tr[AT (K bb|sC + C K bb|s T + �bb)].

(B7)

Optimization w.r.t. K bb|s gives

∂L
∂ K bb|s = �bb −1(K bb|s − K bb)C + 1

2
(A + AT )C = 0,

(B8)

from which one has the expression (9) for the posterior drift
matrix

K bb|s = K bb − �bb

2
(A + AT ) = K bb − �bb As, (B9)

where we have denoted the symmetric part of A by As =
1
2 (A + AT ). We will then write A = As + Aa with Aa =
1
2 (A − AT ) the antisymmetric part. The second optimization
condition reads

∂L
∂C

= 1

2
(K bb|s − K bb)T �bb −1(K bb|s − K bb)

+ 1

2
W + 1

2
(AK bb|s + K bb|s T A) = 0. (B10)

By substitution of (B9) into (B10) one obtains

As�
bb As − K bb T As − As K bb − Aa(K bb − �bb As)

−(K bb T − �bb As)Aa − W = 0. (B11)
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The symmetric part of this determines As, which is all we need
for (B9), as

As�
bb As − K bb T As − As K bb = W . (B12)

This is Eq. (10) (we dropped the subscript “s” there) and shows
that the Lagrange multiplier A is identical to the (stationary)
inverse backward covariance matrix, C−1

b .
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