
PHYSICAL REVIEW E 95, 012117 (2017)

Beyond Flory theory: Distribution functions for interacting lattice trees
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While Flory theories [J. Isaacson and T. C. Lubensky, J. Physique Lett. 41, 469 (1980); M. Daoud and J.
F. Joanny, J. Physique 42, 1359 (1981); A. M. Gutin et al., Macromolecules 26, 1293 (1993)] provide an
extremely useful framework for understanding the behavior of interacting, randomly branching polymers, the
approach is inherently limited. Here we use a combination of scaling arguments and computer simulations
to go beyond a Gaussian description. We analyze distribution functions for a wide variety of quantities
characterizing the tree connectivities and conformations for the four different statistical ensembles, which
we have studied numerically in [A. Rosa and R. Everaers, J. Phys. A: Math. Theor. 49, 345001 (2016) and
J. Chem. Phys. 145, 164906 (2016)]: (a) ideal randomly branching polymers, (b) 2d and 3d melts of interacting
randomly branching polymers, (c) 3d self-avoiding trees with annealed connectivity, and (d) 3d self-avoiding
trees with quenched ideal connectivity. In particular, we investigate the distributions (i) pN (n) of the weight, n, of
branches cut from trees of mass N by severing randomly chosen bonds; (ii) pN (l) of the contour distances, l, be-
tween monomers; (iii) pN (�r) of spatial distances, �r , between monomers, and (iv) pN (�r|l) of the end-to-end distance
of paths of length l. Data for different tree sizes superimpose, when expressed as functions of suitably rescaled
observables �x = �r/

√
〈r2(N )〉 or x = l/〈l(N )〉. In particular, we observe a generalized Kramers relation for the

branch weight distributions (i) and find that all the other distributions (ii–iv) are of Redner-des Cloizeaux type,
q(�x) = C |x|θ exp (−(K|x|)t ). We propose a coherent framework, including generalized Fisher-Pincus relations,
relating most of the RdC exponents to each other and to the contact and Flory exponents for interacting trees.

DOI: 10.1103/PhysRevE.95.012117

I. INTRODUCTION

A randomly branched tree is a finite connected set of
bonds that contain no closed loops and which is embedded
in a d dimensional space. Aside from their importance in
statistical physics [1] and the intriguing connection to relevant
physical problems such as percolation [2], randomly branched
trees have received particular attention for being practically
implicated in the modeling of branched [3], ring [4–10], and
supercoiled [11] polymers.

As customary in polymer physics [3,12], the behavior of
randomly branched trees can be analyzed in terms of a small
set of exponents describing how expectation values for ob-
servables characterizing tree connectivities and conformations
vary with the weight, N , of the trees or the contour distance,
L, between nodes:

〈Nbr(N )〉 ∼ Nε, (1)

〈L(N )〉 ∼ Nρ, (2)

〈R2(L)〉 ∼ L2νpath , (3)〈
R2

g(N )
〉 ∼ N2ν, (4)

〈Nc(N )〉 ∼ Nγc , (5)〈
N inter

c (N )
〉 ∼ Nβ. (6)

Here, 〈Nbr(N )〉 denotes the average branch weight; 〈L(N )〉
the average contour distance or length of paths on the tree;
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〈R2(L)〉 the mean-square spatial distance between nodes with
fixed contour distance; 〈R2

g(N )〉 the mean-square gyration
radius of the trees; 〈Nc(N )〉 the average number of intratree
pair contacts; 〈N inter

c (N )〉 the average number of pair contacts
between different trees in melt. By construction, ν = ρ νpath,
and the relation ε = ρ is expected to hold in general [13].

Exact values for the exponents are known only for a very
few number of cases. For ideal noninteracting trees, the ex-
ponents ρ ideal = εideal = ν ideal

path = 1/2 and ν ideal = 1/4 [14,15].
Furthermore, γ ideal

c = 2 − dν ideal where d denotes the dimen-
sion of the embedding space. For interacting trees, the only
known exact result [16] is the value ν = 1/2 for self-avoiding
trees in d = 3. On the other hand, numerical results [13,17–19]
as well as approximate theoretical calculations [20,21] confirm
that Flory theories [8,22–25] provide a useful framework for
discussing the average behavior, Eqs. (1) to (4), of a wide range
of interacting tree systems. While being remarkably successful
though, due to its simplicity Flory theory is inevitably affected
by serious known shortcomings and limitations [26,27]. They
are, for instance, manifest in (small) deviations of predicted
from observed or exactly known values for exponents as those
defined in Eqs. (1) to (5), and, importantly, it does not give any
insight for the equally relevant exponent β, Eq. (6). In the case
of linear chains, these limitations are much more pronounced
in the distribution functions for the corresponding observables,
which contain a wealth of additional information.

Little seems to be known about the even larger range
of configurational distribution functions for interacting trees.
In the following, we present numerical results based on a
detailed analysis of five different tree ensembles, which we
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have simulated in Refs. [18,19]: (i) ideal randomly branching
polymers, (ii) 2d and 3d melts of interacting randomly
branching polymers, (iii) 3d self-avoiding trees with annealed
connectivity, and (iv) 3d self-avoiding trees with quenched
ideal connectivity. We analyze the distributions along the lines
of known relations for ideal trees and linear chains and propose
a coherent framework, including generalized Fisher-Pincus
relations, relating most of the exponents characterizing the
distribution functions to each other and to the contact and
Flory exponents for interacting trees.

The paper is organized as follows: In Sec. II we briefly
summarize the theoretical background and list a number of
useful results for ideal and interacting linear chains and trees.
In Sec. III we give a few details on the numerical method-
ologies employed for simulating the trees and analyzing their
connectivity. Finally, we present and discuss our results in
Sec. IV and briefly conclude in Sec. V.

II. THEORETICAL BACKGROUND

A. Ideal trees

Consider a tree of mass N defined as N + 1 monomers
connected by N bonds or Kuhn segments. For ideal trees,
Daoud and Joanny [23] calculated the partition function ZN

in the continuum approximation:

ZN = I1(2 λ N)

λ N
�

{
e2λN

2π1/2(λN)3/2 , λN � 1

1 + (λN)2

2 , λN � 1
, (7)

where I1(x) is the first modified Bessel function of the first
kind, λ the branching fugacity, and Z0 = 1. Removing a
randomly chosen bond splits a branch of size n < N/2 from
the remaining tree of size N − n − 1. For ideal trees, the
probability distribution, pN (n), of branch sizes is given by
the Kramers theorem [3],

pN (n) = Zn ZN−1−n∑N−1
n=0 Zn ZN−1−n

, (8)

and related to sum over all possible ways of splitting the tree.
From this expression, it is possible to derive the following
asymptotic relations:

pN (n) �

⎧⎪⎨
⎪⎩

λ (λN)3/2

4 π1/2(λn)3/2(λ(N−n))3/2 , λn � 1
λ

4 π1/2(λn)3/2 , λN � λn � 1
1
N

, λN � 1

, (9)

with 〈Nbr(N )〉 ∼ N1/2 ≡ N2−x , where x = 3/2 is the scaling
exponent describing the decay of pN (n) in the large-N limit,
Eq. (9).

B. Flory theory of interacting trees

Flory theories are formulated as a balance of an entropic
elastic term and an interaction energy [28]:

F = Fel(N,R) + Finter(N,R). (10)

In the standard case of self-avoiding walks, Fel(N,R)
kBT

∼ R2

l2
KN

represents the entropic elasticity of a linear chain, while
Finter(N,R)

kBT
∼ v2

N2

Rd represents the two-body repulsion between

segments, which dominates in good solvent. For interacting
trees, the elastic free energy takes the form [24]

Fel

kBT
∼ R2

lKL
+ L2

Nl2
K

. (11)

The expression reduces to the entropic elasticity of a linear
chain for unbranched trees with quenched L = lKN . The first
term of Eq. (11) is the usual elastic energy contribution for
stretching a polymer of linear contour length L at its ends [24].
The second term penalizes deviations from the ideal branching
statistics, which lead to longer paths and hence spatially
more extended trees. More formally, it is calculated from the
partition function of an ideal branched polymer of N bonds
with L bonds between two arbitrary fixed ends [15,24,29]. For
trees with quenched connectivity, Eq. (11) has to be evaluated
for the given mean path length L and then minimized with
respect to R. For trees with annealed connectivity, Eq. (11)
needs to be minimized with respect to both R and L.

In this form, the theory predicts values for the exponents
ν, ρ, and νpath for a wide range of tree systems [18,19,25]
as a function of the embedding dimension, d, as well as
relations between these exponents. For example, optimizing
L for annealed trees for a given asymptotic, R ∼ Nν , yields

ρ = 1 + 2ν

3
, (12)

νpath = 3ν

1 + 2ν
, (13)

independently of the type of volume interactions causing the
swelling in the first place. Plausibly, a fully extended system,
ν = 1, is predicted not to branch, ρ = 1, and to have a
fully stretched stem, νpath = ν = 1. For the radius of ideal
randomly branched polymers, ν = 1/4, one recovers ρ = 1/2
and Gaussian path statistics, νpath = 1/2.

C. Linear chains beyond Flory theory

In spite of its simplicity, the Flory theory is undoubtedly
accurate. Yet—and even for linear polymers—there is more
than can be described by means of Flory theory. Let us take,
for instance, the number of self-avoiding walks, which is given
by Refs. [27,30],

ZSAW(N ) ∼ μNNγ−1, (14)

with a universal exponent γ and a nonuniversal constant μ

characteristic of the employed lattice. Flory theory can neither
predict the functional form of Eq. (14), nor the numerical value
of γ [31], nor the related contact probability [27],

pc ∼ N−ν(d+θ), (15)

θ = γ − 1

ν
. (16)

Furthermore, Flory theory incorrectly predicts that stretched
chains exhibit essentially Gaussian behavior with volume
interactions becoming quickly negligible. Instead, the end-
to-end distance distribution of self-avoiding walks is to
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an excellent approximation [32] given by the Redner-des
Cloizeaux (RdC) [27,33] distribution,

pN (�r) = 1

〈R2(N )〉d/2
q

[
�r√

〈R2(N )〉

]
, (17)

q(�x) = C xθ exp[−(Kx)t ], (18)

with q(�x) independent of N . For small distances, Eq. (18) is
dominated by the power law with the exponent θ given by
the contact exponent Eq. (15). For large distances, the chain
behaves like a string of N/g blobs of size ξ ∼ gν . For a given
extension r/ξ , the free energy of kBT per blob implies that the
exponents t is given by [34,35]

t = 1

1 − ν
. (19)

Interestingly, knowledge of the two exponents is sufficient
to reconstruct the entire distribution function, because the
constants C and K are determined by the conditions (1)
that the distribution is normalized (

∫
q(�x)d �x ≡ 1) and (2)

that the second moment was chosen as the scaling length
(
∫ |x|2q(�x)d �x ≡ 1):

C = t
�

(
1 + d

2

)
�

d+θ
2

(
2+d+θ

t

)
d πd/2 �

2+d+θ
2

(
d+θ

t

) , (20)

K2 = �
(

2+d+θ
t

)
�

(
d+θ

t

) . (21)

III. MODEL AND METHODS

In this section, we account very briefly for the algo-
rithms used for generating equilibrated configurations of trees
(Sec. III A) and the numerical schemes employed for their
analysis (Sec. III B). The reader interested in more technical
details may look into our former works [18,19]. A longer
discussion is dedicated to how we extracted and extrapolated
scaling exponents for RdC functions and contacts (Sec. III C).
Quantitative details as well as tabulated values for single-tree
statistics are presented in the Appendix.

A. Generation of equilibrated tree configurations
for different ensembles

To simulate randomly branching polymers with annealed
connectivity, we employ a slightly modified version of the
“amoeba” Monte Carlo algorithm [36] for trees on the cubic
lattice with periodic boundary conditions. In the model,
connected nodes occupy adjacent lattice sites. As there is
no bending energy term, the lattice constant equals the Kuhn
length, lK , of linear paths across ideal trees. The functionality
of nodes is restricted to the values f = 1 (a leaf or branch tip),
f = 2 (linear chain section), and f = 3 (branch point). We
have studied ideal noninteracting trees, 3d self-avoiding trees,
and 2d and 3d melts of trees.

In addition, we have studied randomly branched trees
with quenched ideal connectivity. For this ensemble, we
have resorted to an equivalent off-lattice bead-spring model
and studied it via molecular dynamics simulations. In this
model, trees are represented by the same number of degrees

of freedom, with bonds described as harmonic springs of
average length equal to lK . This allows a one-to-one mapping
to and from the lattice model. Furthermore, beads interact
with a repulsive soft potential whose strength is tuned in
such a way that the gyration radii of self-avoiding lattice trees
remain invariant under the switch to the off-lattice model, if
their quenched connectivities are drawn from the ensemble of
self-avoiding on-lattice trees with annealed connectivity.

For all our ensembles, the tree sizes are 3 � N � 1800 for
ideal and self-avoiding trees [18] and 3 � N � 900 for melts
of trees [19].

B. Analysis of tree connectivity

We have analyzed tree connectivities using a variant of
the “burning” algorithm for percolation clusters [37,38]. The
algorithm works iteratively: each step consists in removing
from the list of all nodes the ones with functionality = 1 and
updating the functionalities and the indices of the remaining
ones accordingly. The algorithm stops when only one node
(the “center” of the tree) remains in the list. In this way, by
keeping track of the nodes that have been removed it is possible
to obtain information about the mass and shape of branches.
The algorithm can be then generalized to detect the minimal
path length li,j between any pair of nodes i and j : it is in fact
sufficient that both nodes “survive” the burning process.

C. Finite-size effects

As discussed in detail in our former works [18,19],
extrapolation to the large-N limit of scaling exponents is
a delicate issue. In general, in fact, our data are affected
by finite-size effects and extracted exponents are either (i)
effective (crossover) exponents valid for the particular systems
and system sizes we have studied or (ii) estimates of true,
asymptotic exponents, which suffer from uncertainties related
to the extrapolation to the asymptotic limit.

1. Extrapolating scaling exponents of distribution functions

Pairs of exponents (θl,tl), (θpath,tpath), and (θtree,ttree) are
obtained by best fits of data for distribution functions pN (l),
pN (�r|l), and pN (�r) to the corresponding two-parameter
Redner-des Cloizeaux functions [Eqs. (26), (32), and (35),
respectively]. As shown in Tables II–IV, the values obtained
from these fits display nonnegligible finite-size effects. Then,
the search for extrapolated values has required two separate
strategies.

For exponents (θl,tl) and (θtree,ttree), we follow a procedure
similar to the one outlined first in Ref. [13] and adopted later
by us in Refs. [18,19]. It combines together the two following
extrapolation schemes:

(1) A fit of the data for θl and θtree to the following three-
parameter fit functions:

log θl = a + bN−�0 − b(� − �0)N−�0 log N

≡ a + be−�0 log N − b(� − �0)e−�0 log N log N (22)

and

θtree = a + bN−�0 − b(� − �0)N−�0 log N

≡ a + be−�0 log N − b(� − �0)e−�0 log N log N (23)
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and analogous expressions for tl and ttree. Equations (22)
and (23) correspond to a self-consistent linearization of the
three-parameter fit θl,tree = a + b 1

N� around � = �0. We have
carried out a one-dimensional search for the value of �0 for
which the fits yield vanishing N−�0 log N term. Note that we
have analyzed data for θl (and tl) in Eq. (22) in the form “log θl

versus log N” (log-log), while for θtree (and ttree) we have used
in Eq. (23) data in a log-linear representation, “θtree versus
log N .” These two different functional forms have been found
to produce the best (statistical significant) fits.

(2) In the second method we fixed � = 1, and we calcu-
lated the corresponding two-parameter best fits to the same
data.

Results from the two fits are summarized separately in
Tables II and IV and their averages taken for our final estimates
of scaling exponents (see the corresponding boldfaced num-
bers). In the tables, we have also reported which ranges of N

have been considered for the best fits to the data. Unfortunately,
for θpath and tpath an analogous scheme cannot be applied
because we have data only for very limited ranges of l. Then,
our best estimates come from simply averaging single values
together (see boldfaced numbers in Table III).

2. Extrapolating scaling exponents of tree contacts

Tabulated values for intrachain contacts, 〈Nc(N )〉 ∼ Nγc ,
and interchain contacts in tree melts, 〈N inter

c (N )〉 ∼ Nβ , are
given in Table V. Corresponding extrapolated values of critical

exponents γc and β were obtained by the same methodology
reported in our previous articles [18,19]. For brevity, it
was summarized in the caption of Table V. Otherwise, the
interested reader can look into the above-mentioned works for
more details.

In all cases, the quality of the fits is estimated by standard
statistical analysis [39]: normalized χ -square test χ̃2 ≡ χ2

D−f
,

where D − f is the difference between the number of data
points, D, and the number of fit parameters, f . When
χ̃2 ≈ 1 the fit is deemed to be reliable. The corresponding
Q(D − f,χ2) values provide a quantitative indicator for the
likelihood that χ2 should exceed the observed value, if the
model were correct [39]. The results of all fits (Tables II–V)
are reported together with the corresponding errors, χ̃2 and Q
values. Unless otherwise said, all error bars for the estimated
asymptotic values (boldfaced numbers in Tables II–V) are
written in the form ±(statistical error)±(systematic error),
where the “statistical error” is the largest value obtained
from the different fits [13] and the “systematic error” is the
spread between the single estimates. For brevity, these are
combined together into one single error bar in Table I as√

(statistical error)2 + (systematic error)2.

IV. RESULTS AND DISCUSSION

We begin with distribution functions for observables char-
acterizing the tree connectivity: the distribution of branch

TABLE I. Critical exponents for distribution functions of lattice trees. (Top panel) Theoretical predictions by using the results of the Flory
theory for νpath, ρ, and ν [18,19]. (Bottom) Corresponding numerical results obtained by: (a) Extrapolation to N → ∞ of “effective” exponents
for trees of size N ; see also Tables II–V for details. (b) Substitution of numerical asymptotic exponents (from Refs. [18,19] and this work) into
the scaling relations summarized in the top. Mean values and corresponding error bars have been rounded to the first significant decimal digit.

Flory theoretical values of critical exponents

Relation to Ideal trees, 2d melt of trees, 3d melt of trees, 3d self-avoiding trees, 3d self-avoiding trees,
other exponents annealed connect. annealed connect. annealed connect. annealed connect. quenched ideal connect.

θl = 1
ρ

− 1 1 1
2 = 0.5 4

5 = 0.8 4
9 ≈ 0.444 –

tl = 1
1−ρ

2 3 9
4 = 2.25 13

4 = 3.25 –
θpath – 0 >0 >0 >0 >0
tpath = 1

1−νpath
2 4 5

2 = 2.5 9
2 = 4.5 ∞

θtree min(θpath,
1
ν

− d) 0 0 0 − 8
7 ≈ −1.143 −1

ttree = 1
1−ν

4
3 ≈ 1.333 2 3

2 = 1.5 13
6 ≈ 2.167 2

γc =2 − ν(d + θtree) 5
4 = 1.25 1 1 1 1

β =2 − ν(d + θpath) – 1 − θpath

2 < 1 1 − θpath

3 < 1 – –

Numerical values of critical exponents
Ideal trees, 2d melt of trees, 3d melt of trees, 3d self-avoiding trees, 3d self-avoiding trees,

annealed connect. annealed connect. annealed connect. annealed connect. quenched ideal connect.
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

θl 1.1 ± 0.2 1.0 ± 0.2 0.593 ± 0.003 0.63 ± 0.02 0.85 ± 0.07 0.9 ± 0.2 0.53 ± 0.02 0.56 ± 0.05 – –
tl 2.0 ± 0.1 2.0 ± 0.2 2.35 ± 0.01 2.58 ± 0.05 2.17 ± 0.07 2.1 ± 0.2 2.435 ± 0.006 2.8 ± 0.2 – –
θpath 0 – 0.63 ± 0.04 – 0.28 ± 0.02 – 1.07 ± 0.08 – 1.23 ± 0.07 –
tpath 2 2.04 ± 0.04 4.2 ± 0.1 4.6 ± 0.1 2.7 ± 0.1 2.46 ± 0.04 3.8 ± 0.1 3.9 ± 0.3 3.8 ± 0.2 7.7 ± 1.8
θtree −0.1 ± 0.2 0 −0.14 ± 0.02 0.08 ± 0.09 −0.3 ± 0.1 0.1 ± 0.2 −0.96 ± 0.02 −0.9 ± 0.2 −0.84 ± 0.07 −0.8 ± 0.3
ttree 1.3 ± 0.3 1.33 ± 0.04 1.857 ± 0.005 1.92 ± 0.07 1.52 ± 0.04 1.47 ± 0.04 2.19 ± 0.02 1.9 ± 0.2 2.10 ± 0.01 1.9 ± 0.2
γc 1.27 ± 0.02 1.3 ± 0.1 1.00 ± 0.08 1.11 ± 0.05 1.1 ± 0.1 1.14 ± 0.09 0.98 ± 0.02 1.02 ± 0.09 1.00 ± 0.02 1.0 ± 0.2
β – – 0.628 ± 0.002 0.74 ± 0.07 0.881 ± 0.003 0.95 ± 0.07 – – – –
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FIG. 1. Distribution functions of branch weight n, pN (n), for trees of total mass N (left-hand side panels) and the same distributions
rescaled by N2−ε and as functions of n(N − 1 − n) (right-hand side panels). Data for (a) ideal trees, with solid lines in the left-hand side panel
corresponding to Eq. (9); (b) 3d self-avoiding trees with annealed connectivity; (c, d) 2d and 3d melt of trees. Left-hand side and right-hand
side insets show the differential fractal exponents x = x(n) ≡ − log pN (n+1) / pN (n)

log (n+1) / n
and x = x(n) ≡ − log pN [(n+1)(N−2−n)] / pN [n(N−1−n)]

log [(n+1)(N−2−n)] / [n(N−1−n)] (data were
smoothed for better visualization) compared to the asymptotic scaling relation limn→∞ x(n) = 2 − ε (the narrow strip within dashed lines,
corresponding to the best estimates “ε ± (error bars)” as reported in Refs. [18,19]).
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FIG. 2. Distribution functions, pN (l), of linear paths of length l for trees of total mass N . Data for: (a) ideal trees; (b) 3d self-avoiding
trees with annealed connectivity; (c, d) 2d and 3d melt of trees. Orange solid lines correspond to the one-dimensional Redner-des Cloizeaux
function, Eq. (26), with parameters θl and tl obtained from the best fits to data for N = 1800 (ideal and self-avoiding trees) and N = 900 (2d

and 3d melt of trees); see Table II for detailed values of fit parameters. Inset: same plots in log-log representation.

weights (Sec. IV A) and path lengths (Sec. IV B). Then, we
turn to the conformational statistics of linear path on the
tree (Sec. IV C) and the distribution of internal distances
(Sec. IV D).

A. Branch weight statistics and generalized Kramers relation

In Fig. 1 we show the distribution, pN (n), of the weight,
n, of the branches generated by cutting randomly selected
bonds in trees of size N . Obviously, it is possible to cut larger
branches from larger trees, but independently of N the vast
majority of the branches is small. This follows immediately
from the fact that for all our systems a large fraction (≈40% for
ideal and melt of trees and ≈27% for annealed self-avoiding
trees [18,19]) of the nodes is one-functional: cutting the bonds
joining them to the tree generates branches of weight n = 0.

To gain some intuition for the form of these distributions,
it is useful to reconsider the case of ideal trees [Sec. I,
Eqs. (7)–(9)], where Zn ∼ e2λn/(λn)3/2. In that case, pN (n) ∼

N3/2

n3/2(N−n−1)3/2 , which simplifies to pN (n) ∼ n−3/2 for small
1 < n � N . As expected, by plotting data for pN (n) in log-log
plots as a function of n (left-hand column of Fig. 1) we find
good agreement with the expected power law for small n, while
plotting data as a function of n(N − 1 − n) (right-hand side)
produces nearly perfect power-law behavior over the entire
range 1 � n � N/2.

Interestingly, we find similar power-law behavior for inter-
acting trees, too. We therefore tentatively generalize Eq. (7)
for the tree partition function to

Zn ∼ cnn−x. (24)

In fact, this form is compatible with the Kramers theorem,
Eq. (8), since

∑N−1
n=0 Zn ZN−1−n = cN

∑N−1
n=0 n−x(N − 1 −

n)−x ∼ cNN−x = ZN . The resulting average branch weight
of 〈Nbr(N )〉 ∼ N2−x implies x = 2 − ε. As shown in the
corresponding insets, the relation x = 2 − ε is well satisfied
with values for ε taken from Refs. [18,19]. The numerical
prefactor c is related to the asymptotic branching probability
(see Fig. 4 in Ref. [18] and Fig. 3 in Ref. [19]), since in
the limit N → ∞, 〈n3〉/N = 〈n1〉/N = 2pN (n = 0) [18], and
pN (n = 0) = ZN−1/ZN = c−1(N−1

N
)
ε−2 � c−1.

B. Path length statistics for trees

As illustrated in Fig. 2, the measured path length distribu-
tion functions, pN (l), fall onto universal master curves, when
plotted as a function of the rescaled path length x = l/〈L(N )〉:

pN (l) = 1

〈L(N )〉 q

(
l

〈L(N )〉
)

. (25)
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These master curves are well described by the one-dimensional
Redner-des Cloizeaux (RdC) form (orange lines in Fig. 2):

q(x) = Cl x
θl exp[−(Klx)tl ]. (26)

The constants,

Cl = tl
�θl+1[(θl + 2)/tl]

�θl+2[(θl + 1)/tl]
, (27)

Kl = �[(θl + 2)/tl]

�[(θl + 1)/tl]
, (28)

follow from the conditions that pN (l) is normalized to 1 and
that the first moment, 〈L(N )〉, is the only relevant scaling
variable. Estimated values for (θl,tl) obtained from best fits

of Eq. (26) to data for specific values of N and extrapolated
values to large N are summarized in Table II.

Interestingly, we can give a physical interpretation of the
observed (effective) exponents. For small path lengths, results
are not affected by the total tree size. We thus expect to find
n(lmax) ∼ l

1/ρ
max segments at a contour distance l � lmax from

any node. Since p(lmax) ∼ dn(lmax)/dlmax, this suggests the
scaling relationship

θl = 1

ρ
− 1. (29)

To estimate the probability for observing very long paths, it
is tempting to adjust the Pincus-blob argument [35] cited in
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FIG. 3. Distribution functions, pN (r|l), of end-to-end spatial distances, r , for linear paths of length l on trees of total mass N . Data for:
(a) ideal trees; (b, c) 3d self-avoiding trees with annealed and quenched ideal connectivities; (d, e) 2d and 3d melt of trees. Orange solid
lines correspond to theoretical predictions: for ideal trees data match the Gaussian distribution, while melt of trees and self-avoiding trees are
described by the Redner-des Cloizeaux function, Eq. (32), with parameters θpath and tpath obtained from the best fits to data for N = 1800 and
l = 64 (self-avoiding trees) and N = 900 and l = 32 (melt of trees); see Table III for detailed values of fit parameters. Insets: Same plots in
log-log representation.
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Sec. II C. A stretched tree should behave like a string of N/g

unperturbed trees of size ξ ∼ gρ , suggesting that

tl = 1

1 − ρ
. (30)

The argument works well [see bottom panel of Table I, columns
(a) and (b)] when comparing the asymptotic values for tl in
different ensembles to the corresponding numerical values for
ρ taken from Refs. [18,19]. Interestingly, being only functions
of ρ, θl , and tl can also be explicitly calculated in terms of
results for ρ from the Flory theory [18,19]; see top panel
of Table I. Interestingly, the Flory theory gives a remarkable
accurate prediction for most of the cases discussed.

C. Conformational statistics of linear paths

Figure 3 shows measured end-to-end vector distributions,
pN (�r|l), for paths of length l on trees of mass N . The
data superimpose, when expressed as functions of the scaled
distances, x = |�r|/

√
〈R2(l,N )〉:

pN (�r|l) = 1

〈R2(l,N )〉3/2
q

(
|�r|√

〈R2(l,N )〉

)
. (31)

Moreover, they are in excellent agreement with the RdC
distribution [Eqs. (18), (20), and (21) and orange lines in
Fig. 3]:

q(x) = C xθpath exp(−(Kx)tpath ). (32)

The shape of the rescaled distributions, and hence the char-
acteristic exponents, θpath and tpath, depend on the universality
class. Not surprisingly, paths on ideal trees are well described
by the Gaussian distribution; i.e., θpath = 0 and tpath = 2. Fitted
values for the other cases are listed in Table III. Given the
limited range of available path lengths l, we have found no
meaningful way to estimate asymptotic values. We have then
simply taken the average of the available fitted values (see
boldfaced numbers in Table III). Again, the observed values
can be given a physical interpretation.

The exponent θpath describes the reduction of the contact
probability, Eq. (15), relative to a naı̈ve Gaussian estimate.
Importantly, it is a genuinely novel exponent, i.e., it is inde-
pendent from all other exponents discussed in Refs. [18,19]
and in this work. In the case of self-avoiding walks, θ is related
to the entropy exponent γ , Eq. (16) [27,30]. Interestingly,
Grosberg and colleagues argued [24] that the identical Flory
predictions of ν = 3/(d + 2) for self-avoiding walks and for
the path statistics in melts of annealed lattice trees suggests
a deeper analogy between the two problems [8]. Using
γ2d ≈ 1.344 and γ3d ≈ 1.162 for two- and three-dimensional
self-avoiding walks [30] and Eq. (16) suggests θpath,2d ≈
0.459 and θpath,3d ≈ 0.276. In particular, the 3d value is
in very good agreement with our finding θ3d = 0.28 ± 0.02
(Tables I and III), while the 2d value appears smaller than
the reported θ2d = 0.63 ± 0.04. Notice though, that these
exponents were measured for path length l = O(50) and
then finite-size effects may likely induce a bias on the final
result.

The exponent tpath controls the nonlinear path elasticity
at large elongations. The measured effective values can be
compared to the Fisher-Pincus relation, Eq. (19), for self-

avoiding walks [34,35],

tpath = 1

1 − νpath
, (33)

where specific values for νpath are taken from Refs. [18,19];
see bottom panel of Table I, columns (a) and (b). In general,
agreement is overall good. The only exception is for 3d self-
avoiding trees with quenched ideal statistics, which, again,
may be ascribed to the limited range of path lengths of our
simulated trees. As for θl and tl and being a function of νpath

only, specific values for tpath can be also obtained by using the
Flory results [18,19] for νpath (top panel of Table I): again, for
most of the cases, there exist fair agreement with numerical
predictions.

D. Conformational statistics of trees

Figure 4 (left panels) shows distributions pN (�r) of vec-
tors �r connecting all tree nodes. The data superimpose,
when expressed as functions of the scaled distances, x =
|�r|/

√
2〈R2

g(N )〉:

pN (�r) = 1(
2
〈
R2

g(N )
〉)3/2 q

⎛
⎝ |�r|√

2
〈
R2

g(N )
〉
⎞
⎠. (34)

Again, the distributions are in excellent agreement with the
RdC form [Eqs. (18), (20), and (21) and orange lines in Fig. 4]:

q(x) = C xθtree exp
(−(Kx)ttree

)
. (35)

The extracted exponents and corresponding extrapolations to
N → ∞ are listed in Table IV.

In the following, we relate the characteristic exponents θtree

and ttree to our previous results by using Eqs. (32) and (26)
together with the convolution identity,

pN (r) =
∫ ∞

0
pN (r|l) pN (l) dl, (36)

which states that the local density can be calculated by
adding up the contributions from paths of all possible length,
1 � l � N . The behavior of pN (r) for large distances, r > Rg ,
can be estimated from the contour distance l∗(r), which
makes the dominant contribution to particle pairs found
at the spatial distance r . Combining the arguments of the
compressed exponentials in Eqs. (26) and (32), this requires
the minimization of ( l

〈L(N)〉 )
tl + ( r√

〈R2(l)〉 )tpath and yields

ttree = tl tpath

tl + tpath νpath
= 1

1 − ν
. (37)

Results from computer simulations for asymptotic exponents
ttree and ν [18,19] support well this relation [see bottom panel
of Table I, columns (a) and (b)].

In the limit of small distances, r < Rg , there are two
possibilities. If there is no power-law divergence in the small
l limit, the integral is dominated by contributions from long
paths with 〈R2(l)〉 � r2, allowing us to set the exponential
term in Eq. (32) equal to one. The only r-dependence comes
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FIG. 4. Distribution functions, pN (r), of spatial distances, r , between pairs of nodes. Data for: (a) ideal trees; (b, c) 3d self-avoiding trees
with annealed and quenched ideal connectivities; (d, e) 2d and 3d melt of trees. Orange solid lines correspond to the Redner-des Cloizeaux
distribution function, Eq. (35), with parameters θtree and ttree obtained from the best fits to data with N = 1800 (ideal and self-avoiding trees)
and N = 900 (2d and 3d melt of trees); see Table IV for detailed values of fit parameters. Insets: same plots in log-log representation.

through the explicit rθpath term and hence,

θtree = θpath if θpath <
1

ν
− d. (38)

In the opposite limit, short paths dominate. The apparent
divergence of the integrand in the limit l → 0 is removed by
the exponential tail of Eq. (32): paths with vanishing contour
lengths up to l ∼ r1/νpath do not contribute to the monomer
density for finite spatial distances r . For longer paths, we can
set the exponential to one. In this case,

θtree = 1

ν
− d if

1

ν
− d < θpath. (39)

Summarizing,

θtree = min

(
θpath,

1

ν
− d

)
(40)

=
{

0 for ideal trees in d � 4
1
ν

− d else
, (41)

since θpath ≡ 0 for ideal trees and since we expect θpath > 0 and
ν � 1/d for interacting trees. Table I compares the asymptotic
results to theoretical predictions. Again, the general agreement
is fairly good. Finally, as for θl , tl , and tpath, specific values for
θtree and ttree can be calculated by resorting to the Flory results
for ν (top panel of Table I). Once again, the predictions prove
to be remarkably accurate.
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FIG. 5. Distribution functions of spatial distances, �δr , of nodes from the tree center of mass, compared to the Gaussian distribution (yellow
line). Data for: (a) ideal trees; (b, c) 3d self-avoiding trees with annealed and quenched ideal connectivities; (d, e) 2d and 3d melt of trees.
Insets: same plots in log-log representation.

To conclude the section, in Fig. 5 we focus on the
distribution functions, pN (δ�r), of nodes spatial distances from
the centers of mass of corresponding trees. Clearly, for the
central node this distribution is Gaussian. On the other hand,
distant nodes cannot distinguish between the central node and
the tree center of mass and their positions hence follow again a
RdC distribution. Averaged over node identities, the monomer
distribution around the tree center of mass seems to become
Gaussian for self-avoiding trees [Figs. 5(b) and 5(c)], but not
for ideal trees or trees in melt [Figs. 5(a), 5(d), and 5(e)].
Interestingly, the latter effect was already noted a long time
ago for ideal linear chains [40].

E. Self-contacts

We turn then to the average number of self-contacts per
tree, 〈Nc(N )〉 ∼ Nγc (left-hand panel of Fig. 6 and Table V).

Consider an arbitrary pair of monomers. The probability to
find them in close contact scales as N−ν(d+θtree). Since there are
O(N2) different monomer pairs, we have

γc = 2 − ν(d + θtree) (42)

=
{

2 − d
4 for ideal trees in d � 4

1 else
.

This prediction compares extremely well with our numerical
estimates for γc; see Table I. Note that the mean-field estimate
γc = 2 − dν holds only for ideal trees in d � 4 dimensions.
The melt case is marginal in that we expect ν = 1/d and thus
γc = 1: by using the estimated asymptotic values of ν in 2d

and 3d [19] and θtree, the different values for γc compare well
for all studied ensembles [see bottom panel of Table I, columns
(a) and (b)]. In all other cases, γc = 1 independently of ν, θpath

and θtree, indicating that the local monomer density is finite
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FIG. 6. (Left) Average number of intra-chain contacts per node, 〈Nc(N )〉/(N + 1) ∼ Nγc−1, in the different ensembles. (Right) Comparison
to the average number of inter-chain contacts per node, 〈N inter

c 〉/(N + 1) ∼ Nβ−1, in 2d and 3d melts. Dashed lines mark the ranges of
corresponding asymptotic behaviors with scaling exponents γc and β; see Table I.

and independent of tree size. This is yet another illustration of
the subtle cancellation of errors in Flory arguments, which are
built on the mean-field estimates of contact probabilities [26].

For tree melts, we have also considered the average number
of contacts between nodes on different trees, 〈N inter

c (N )〉 ∼ Nβ

(right-hand panels of Fig. 6 and Table V). In the melt, the
average number of contacts per node 〈Nc(N)〉

N
+ 〈N inter

c (N)〉
N

is
N -independent (see also Table V), hence β ≈ 1 − �, where
� is the exponent of the power-law correction to the large-
N behavior of 〈Nc(N )〉: 〈Nc(N )〉 ≈ a Nγc (1 − b N−�) =
a N (1 − b N−�) with a and b numerical prefactors. � can be
calculated by considering the two leading terms in Eq. (36)
for small r’s after substituting the upper bound of the
integral with O(Nρ). Since θpath > 1

ν
− d we get pN (r) ∼

( r
Nν )1/ν−d (1 − O( r

Nν )d+θpath−1/ν). The average number of self-
contacts per tree 〈Nc(N )〉 is proportional to the integral of the
former expression from 0 to some small cutoff spatial distance,
or 〈Nc(N )〉 = a N (1 − b N1−ν(d+θpath)). Consequently, � =
−1 + ν(d + θpath) and

β = 1 − � = 2 − ν(d + θpath). (43)

In particular, Eq. (43) implies that β < 1. By employing the
asymptotic values of ν [19] and θpath, Eq. (43) shows good
agreement with direct estimates of β values [see bottom panel
of Table I, columns (a) and (b)].

V. SUMMARY AND CONCLUSION

In the present article, we have pursued our investigation
of the conformational statistics of various types of lattice
trees with volume interactions [18,19,25]: 2d and 3d melts
of lattice trees with annealed connectivity as well as 3d

self-avoiding lattice trees with annealed and with quenched
ideal connectivity. The well understood case of ideal, noninter-
acting lattice trees with annealed connectivity [14,15] always
serves as a useful reference. Here we have complemented
the earlier analyses [18,19] of the average behavior by
reporting results for distribution functions for observables
characterizing tree conformations and connectivities. In par-
ticular, we found that branch weight distributions follow a
generalized Kramers relation, Eq. (8), with Zn ∼ cnnε−2 and

that path length and distance distributions are non-Gaussian
and closely follow Redner-des Cloizeaux [27,33] distributions
Eqs. (25), (26); (31), (32); and (34), (35) of the type

pN (�r) =
(

1

〈r2〉N

)d/2

q

(
|�r|√
〈r2〉N

)
,

q(�x) = C(θ,t) |x|θ exp(−(K(θ,t) |x|)t ),

which are fully characterized by pairs of additional exponents,
θ and t , summarized in Table I. The various exponents t

describe the compressed exponential large distance (large
path length) behavior of the distribution. Our results suggest
that they obey generalized Fisher-Pincus [34,35] relations,
Eqs. (30), (33), and (37). The exponents θ characterize small
distance (small path length) power-law behavior and are hence
related to contact probabilities [Eqs. (42) and (43)]. We have
related them to each other and the other tree exponents
[Eqs. (29) and (40)]. The only exception is the exponent
θpath for the small distance behavior of the path end-to-end
distance distribution. The situation is similar to the well-known
case of linear self-avoiding walks, where the corresponding
exponent θ and the closure probability are related to the
entropy exponent γ , which cannot be predicted by Flory
theory. Additional work is required to corroborate the proposed
relation [8] between the self-avoiding walk exponents and
those characterising tree melts.

In conclusion, interacting randomly branching polymers
exhibit an extremely rich behavior and swell by a combination
of modified branching and path stretching [24]. As previously
shown [25], the average behavior [18,19] in the various
regimes and crossovers can be well described by a generalized
Flory theory. Our present results demonstrate that this is
not the case for distribution functions. Nonetheless, their
non-Gaussian functional form can be characterized by a small
set of exponents, which are related to each other and the
standard trees exponents. The good agreement of the predicted
relations with the numerical data suggests that we now dispose
of a coherent framework for describing the connectivity and
conformational statistics of interacting trees in a wide range
of situations.
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APPENDIX: SUPPLEMENTAL TABLES

The Appendix contains four supplemental tables reporting
the measured values for the effective and asymptotic exponents
introduced and discussed in this work. Specifically: (1)
Table II is for exponents θl and tl (path length statistics,

discussed in Sec. IV B); (2) Table III is for exponents θpath

and tpath (conformational statistics of linear paths, discussed
in Sec. IV C); (3) Table IV is for exponents θtree and ttree

(conformational statistics of trees, discussed in Sec. IV D); (4)
Table V is for exponents γc and β (intrachain and interchain
contacts, discussed in Sec. IV E).

TABLE II. Path length statistics. Effective exponents θl and tl obtained by best fits of the Redner-des Cloizeaux function, Eq. (26), to the
numerical distributions pN (l) of linear paths of length l at different N (Fig. 2). Extrapolations to N → ∞ were obtained by employing three-
(� as free parameter) and two-parameter (� fixed to 1) fit functions, see Sec. III C. Final estimates with corresponding statistical and systematic
errors are given at the end of the table (in boldface).

θl

Self-avoid. trees
N Ideal trees 2d melt of trees 3d melt of trees anneal. connect.

20 0.525 ± 0.034 0.390 ± 0.026 0.391 ± 0.025 0.365 ± 0.038
30 0.537 ± 0.019 0.443 ± 0.017 0.447 ± 0.016 0.365 ± 0.019
45 0.563 ± 0.012 0.484 ± 0.011 0.497 ± 0.010 0.391 ± 0.011
75 0.608 ± 0.009 0.525 ± 0.007 0.556 ± 0.007 0.409 ± 0.006
150 0.677 ± 0.007 0.563 ± 0.004 0.623 ± 0.005 0.443 ± 0.003
230 0.722 ± 0.007 0.580 ± 0.003 0.658 ± 0.004 0.466 ± 0.003
450 0.778 ± 0.005 0.587 ± 0.003 0.708 ± 0.003 0.471 ± 0.002
900 0.831 ± 0.004 0.588 ± 0.002 0.751 ± 0.002 0.486 ± 0.002
1800 0.875 ± 0.003 0.501 ± 0.001
Best fit for N� 20 20 20 20
� 0.242 ± 0.027 1.110 ± 0.081 0.390 ± 0.025 0.374 ± 0.001
χ̃ 2 0.750 1.164 0.064 3.786
Q 0.610 0.324 0.997 0.001
N → ∞ 1.188 ± 0.075 0.594 ± 0.003 0.905 ± 0.031 0.543 ± 0.011
Best fit for N� 450 230 230 450
� 1 1 1 1
χ̃ 2 6.212 0.281 6.780 7.274
Q 0.013 0.596 0.009 0.007
N → ∞ 0.909 ± 0.004 0.592 ± 0.003 0.785 ± 0.004 0.512 ± 0.001

1.049 0.593 0.845 0.528
±0.075 ±0.003 ±0.031 ±0.011
±0.140 ±0.001 ±0.060 ±0.016

tl

Self-avoid. trees
N Ideal trees 2d melt of trees 3d melt of trees anneal. connect.

20 2.787 ± 0.131 3.325 ± 0.152 3.373 ± 0.155 2.394 ± 0.135
30 2.742 ± 0.074 3.043 ± 0.084 3.098 ± 0.083 2.524 ± 0.078
45 2.691 ± 0.045 2.842 ± 0.049 2.879 ± 0.046 2.519 ± 0.045
75 2.599 ± 0.030 2.659 ± 0.026 2.699 ± 0.028 2.536 ± 0.024
150 2.457 ± 0.021 2.513 ± 0.014 2.516 ± 0.016 2.464 ± 0.012
230 2.384 ± 0.018 2.454 ± 0.010 2.441 ± 0.013 2.432 ± 0.009
450 2.290 ± 0.012 2.405 ± 0.008 2.359 ± 0.009 2.422 ± 0.006
900 2.212 ± 0.008 2.384 ± 0.006 2.278 ± 0.006 2.429 ± 0.006
1800 2.169 ± 0.005 2.435 ± 0.002
Best fit for N� 20 20 20 20
� 0.273 ± 0.092 0.853 ± 0.141 0.458 ± 0.109 1.110 ± 1.208
χ̃ 2 0.823 0.264 0.401 3.316
Q 0.552 0.933 0.848 0.003
N → ∞ 1.911 ± 0.075 2.347 ± 0.012 2.105 ± 0.040 2.431 ± 0.003
Best fit for N� 450 230 230 450
� 1 1 1 1
χ̃ 2 0.179 0.059 6.789 0.025
Q 0.672 0.809 0.009 0.873
N → ∞ 2.130 ± 0.008 2.360 ± 0.008 2.228 ± 0.008 2.439 ± 0.004

2.021 2.353 2.167 2.435
±0.075 ±0.012 ±0.040 ±0.004
±0.110 ±0.007 ±0.062 ±0.004
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TABLE III. Conformational statistics of linear paths. Effective exponents θpath and tpath obtained by best fits of the Redner-des Cloizeaux
function, Eq. (32), to the numerical distributions pN (r|l) of end-to-end spatial distances of linear paths of length l at given N (Fig. 3). Final
estimates with statistical and systematic errors are given at the end of the table (in boldface).

3d self-avoiding trees, 3d self-avoiding trees,
2d melt of trees 3d melt of trees annealed connect. quenched ideal connect.

N l θpath tpath θpath tpath θpath tpath θpath tpath

450 16 0.596 ± 0.012 4.098 ± 0.045 0.273 ± 0.010 2.749 ± 0.017 1.022 ± 0.022 3.833 ± 0.045 1.141 ± 0.020 3.672 ± 0.047
450 32 0.638 ± 0.005 4.179 ± 0.021 0.278 ± 0.004 2.521 ± 0.006 1.077 ± 0.008 3.698 ± 0.017 1.269 ± 0.014 3.835 ± 0.032
900 16 0.610 ± 0.012 4.127 ± 0.048 0.274 ± 0.011 2.775 ± 0.018 0.991 ± 0.013 3.934 ± 0.028 1.182 ± 0.020 3.587 ± 0.044
900 32 0.682 ± 0.006 4.324 ± 0.023 0.297 ± 0.004 2.552 ± 0.006 1.095 ± 0.008 3.743 ± 0.015 1.308 ± 0.007 3.901 ± 0.016
1800 16 0.994 ± 0.015 3.960 ± 0.033 1.165 ± 0.019 3.581 ± 0.043
1800 32 1.130 ± 0.004 3.786 ± 0.008 1.298 ± 0.003 3.902 ± 0.007
1800 64 1.210 ± 0.004 3.705 ± 0.008 1.259 ± 0.008 4.058 ± 0.021

0.631 4.182 0.281 2.649 1.074 3.809 1.232 3.791
±0.012 ±0.048 ±0.011 ±0.018 ±0.022 ±0.045 ±0.020 ±0.047
±0.033 ±0.087 ±0.010 ±0.114 ±0.074 ±0.098 ±0.063 ±0.168

TABLE IV. Conformational statistics of trees. Effective exponents θtree and ttree obtained by best fits the Redner-des Cloizeaux distribution
function, Eq. (35), to the numerical distributions pN (r) of spatial distances r between tree nodes at different N (Fig. 4). Extrapolations to N → ∞
were obtained by employing three- (� as free parameter) and two-parameter (� fixed to 1) fit functions; see Sec. III C. The three-parameter fit
fails for θtree of self-avoiding trees with quenched ideal connectivity. In this case, the reported statistical and systematic errors were based on
the ones of ideal trees where: (statistical error for three-parameter fit) ≈20(statistical error for two-parameter fit) ≈2(systematic error). Final
estimates with corresponding statistical and systematic errors are given at the end of the table (in boldface).

θtree

SA trees SA trees
N Ideal trees 2d melt of trees 3d melt of trees ann. connect. quen. ideal connect.

20 1.075 ± 0.522 0.424 ± 0.142 0.409 ± 0.386 −0.617 ± 0.200 –
30 0.518 ± 0.371 0.027 ± 0.059 −0.333 ± 0.156 −0.964 ± 0.088 −0.824 ± 0.020
45 −0.279 ± 0.166 −0.072 ± 0.035 −0.547 ± 0.082 −1.082 ± 0.042 –
75 −0.456 ± 0.086 −0.119 ± 0.018 −0.582 ± 0.039 −1.062 ± 0.022 −0.881 ± 0.003
150 −0.453 ± 0.041 −0.167 ± 0.004 −0.500 ± 0.017 −1.031 ± 0.010 –
230 −0.420 ± 0.026 −0.157 ± 0.003 −0.449 ± 0.011 −1.012 ± 0.007 −0.869 ± 0.004
450 −0.347 ± 0.013 −0.152 ± 0.002 −0.392 ± 0.005 −1.000 ± 0.003 −0.861 ± 0.002
900 −0.272 ± 0.007 −0.144 ± 0.001 −0.347 ± 0.002 −0.986 ± 0.002 −0.857 ± 0.002
1800 −0.225 ± 0.004 −0.978 ± 0.001 −0.842 ± 0.002
Best fit for N� 150 150 150 150 –
� 0.323 ± 0.175 0.609 ± 0.379 0.448 ± 1.52 0.492 ± 2.112 –
χ̃ 2 0.493 1.444 0.037 0.230 –
Q 0.611 0.230 0.847 0.794 –
N → ∞ −0.023 ± 0.158 −0.132 ± 0.016 −0.224 ± 0.094 −0.957 ± 0.017 –
Best fit for N� 450 230 230 450 450
� 1 1 1 1 1
χ̃ 2 0.454 2.004 2.425 0.223 16.245
Q 0.501 0.157 0.119 0.637 6 × 10−5

N → ∞ −0.184 ± 0.007 −0.140 ± 0.002 −0.310 ± 0.005 −0.971 ± 0.002 −0.842 ± 0.003
−0.104 −0.136 −0.267 −0.964 −0.842
±0.158 ±0.016 ±0.094 ±0.017 ±(0.060)
±0.081 ±0.004 ±0.043 ±0.007 ±(0.030)
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TABLE IV. (Continued.)

ttree

SA trees SA trees
N Ideal trees 2d melt of trees 3d melt of trees ann. connect. quen. ideal connect.

20 0.783 ± 0.080 1.253 ± 0.065 0.993 ± 0.094 1.244 ± 0.095 –
30 0.900 ± 0.078 1.506 ± 0.045 1.306 ± 0.073 1.604 ± 0.080 1.816 ± 0.022
45 1.192 ± 0.065 1.617 ± 0.034 1.493 ± 0.056 1.845 ± 0.060 –
75 1.335 ± 0.047 1.689 ± 0.023 1.608 ± 0.034 2.012 ± 0.044 2.005 ± 0.005
150 1.401 ± 0.027 1.830 ± 0.006 1.597 ± 0.017 2.029 ± 0.023 –
230 1.410 ± 0.019 1.827 ± 0.005 1.574 ± 0.011 2.045 ± 0.018 2.104 ± 0.010
450 1.393 ± 0.010 1.850 ± 0.003 1.553 ± 0.005 2.072 ± 0.011 2.096 ± 0.007
900 1.354 ± 0.005 1.849 ± 0.003 1.543 ± 0.003 2.112 ± 0.007 2.080 ± 0.006
1800 1.332 ± 0.003 2.159 ± 0.004 2.127 ± 0.009
Best fit for N� 230 20 75 20 30
� 0.240 ± 4.265 1.401 ± 0.101 0.563 ± 0.432 0.609 ± 0.039 1.224 ± 0.110
χ̃ 2 0.961 3.645 0.302 5.354 7.785
Q 0.327 0.003 0.739 2 × 10−5 3 × 10−5

N → ∞ 1.198 ± 0.283 1.855 ± 0.003 1.516 ± 0.039 2.197 ± 0.016 2.104 ± 0.005
Best fit for N� 450 230 230 450 450
� 1 1 1 1 1
χ̃ 2 0.058 4.336 0.004 4.979 16.411
Q 0.809 0.037 0.948 0.026 5 × 10−5

N → ∞ 1.312 ± 0.005 1.859 ± 0.004 1.532 ± 0.005 2.187 ± 0.007 2.104 ± 0.010
1.255 1.857 1.524 2.192 2.104

±0.283 ±0.004 ±0.039 ±0.016 ±0.010
±0.057 ±0.002 ±0.008 ±0.005 ±0.000

TABLE V. (Top half of the table) 〈Nc〉/(N + 1), average number of intrachain contacts per node. 〈N inter
c 〉/(N + 1), average number of

interchain contacts per node in tree melts. (Bottom half of the table) Asymptotic (N → ∞) estimation of corresponding critical exponents,
γc and β. For ideal trees and melt of trees, the numerical extrapolation scheme follows Ref. [13] and was the same adopted in our former
works [18,19]. It combines best fits to the data of: (1) single power-law behavior (� = 0: log〈Nc〉 = c1 + γ �=0

c log N , for data corresponding
to the 3 largest N of each set) and (2) power-law behavior with a correction-to-scaling term (� �= 0: log〈Nc〉 = c2 + c3N

−� + γ � �=0
c log N ,

for data with N � 10). The reported values (last line of the table) are calculated as: γc = γ �=0
c +γ

��=0
c

2 ± (largest statistical error) ± (spread
between γ �=0

c and γ � �=0
c ), the last being an estimate for systematic errors due to finite-size effects [13]. Equivalent expressions hold for 〈N inter

c 〉.
For self-avoiding trees, finite-size effects appear completely negligible: then, γc was obtained by fitting data for N � 450 to just the single
power-law function.

Self-avoid. trees, Self-avoid. trees,
Ideal trees 2d melt of trees 3d melt of trees annealed connect. quen. ideal connect.

N 〈Nc〉/(N + 1) 〈Nc〉/(N + 1) 〈N inter
c 〉/(N + 1) 〈Nc〉/(N + 1) 〈N inter

c 〉/(N + 1) 〈Nc〉/(N + 1) 〈Nc〉/(N + 1)

3 0.2284 ± 0.0025 0.2865 ± 0.0030 1.6775 ± 0.0038 0.1923 ± 0.0018 1.7675 ± 0.0026 0.0000 ± 0.0000 0.0210 ± 0.0032

5 0.3241 ± 0.0040 0.3610 ± 0.0027 1.2774 ± 0.0033 0.2400 ± 0.0016 1.4079 ± 0.0022 0.0000 ± 0.0000 0.0083 ± 0.0017

10 0.5306 ± 0.0067 0.4890 ± 0.0022 0.9235 ± 0.0023 0.2958 ± 0.0015 1.1255 ± 0.0018 0.0146 ± 0.0056 0.0062 ± 0.0010

20 0.7626 ± 0.0026 0.5990 ± 0.0017 0.6976 ± 0.0017 0.3475 ± 0.0009 0.9572 ± 0.0011 0.0085 ± 0.0009

30 0.9201 ± 0.0027 0.6604 ± 0.0014 0.5967 ± 0.0013 0.3785 ± 0.0008 0.8861 ± 0.0008 0.0082 ± 0.0007 0.0082 ± 0.0007

45 1.0893 ± 0.0030 0.7190 ± 0.0007 0.5122 ± 0.0007 0.4088 ± 0.0008 0.8291 ± 0.0008 0.0064 ± 0.0005

75 1.3286 ± 0.0030 0.7861 ± 0.0005 0.4238 ± 0.0005 0.4471 ± 0.0006 0.7703 ± 0.0006 0.0073 ± 0.0005 0.0091 ± 0.0005

150 1.6951 ± 0.0032 0.8660 ± 0.0004 0.3277 ± 0.0004 0.4971 ± 0.0005 0.7042 ± 0.0005 0.0066 ± 0.0003

230 1.9390 ± 0.0034 0.9078 ± 0.0004 0.2805 ± 0.0003 0.5272 ± 0.0004 0.6685 ± 0.0004 0.0068 ± 0.0002 0.0086 ± 0.0003

450 2.3936 ± 0.0038 0.9648 ± 0.0003 0.2181 ± 0.0002 0.5726 ± 0.0004 0.6177 ± 0.0004 0.0070 ± 0.0002 0.0084 ± 0.0002

900 2.9351 ± 0.0061 1.0115 ± 0.0004 0.1690 ± 0.0003 0.6197 ± 0.0006 0.5680 ± 0.0006 0.0071 ± 0.0001 0.0084 ± 0.0001

1800 3.5665 ± 0.0100 0.0069 ± 0.0001 0.0085 ± 0.0001

〈Nc〉 ∼ Nγc 〈Nc〉 ∼ Nγc 〈N inter
c 〉 ∼ Nβ 〈Nc〉 ∼ Nγc 〈N inter

c 〉 ∼ Nβ 〈Nc〉 ∼ Nγc 〈Nc〉 ∼ Nγc

� 0.446 ± 0.094 0.214 ± 0.057 1.238 ± 0.217 0.156 ± 0.192 1.129 ± 0.216 – –

χ̃2 0.803 1.104 0.969 0.739 1.467 – –

Q 0.567 0.356 0.435 0.566 0.209 – –

γc = 1.253 ± 0.010 γc = 0.931 ± 0.018 β = 0.629 ± 0.001 γc = 1.011 ± 0.082 β = 0.884 ± 0.001 – –

� 0 0 0 0 0 0 0

χ̃2 2.665 367.197 2.126 8.733 0.432 0.649 10−5

Q 0.103 <10−6 0.119 0.003 0.511 0.421 0.998

γc = 1.288 ± 0.002 γc = 1.076 ± 0.001 β = 0.626 ± 0.001 γc = 1.116 ± 0.001 β = 0.878 ± 0.001 γc = 0.982 ± 0.017 γc = 1.002 ± 0.018

γc = 1.271 γc = 1.004 β = 0.628 γc = 1.064 β = 0.881 γc = 0.982 γc = 1.002
± 0.010 ± 0.018 ± 0.018 ± 0.073 ± 0.001 ± 0.002 ± 0.082 ± 0.053 ± 0.001 ± 0.003 ± 0.017 ± 0.018
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