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First-passage-time problems are ubiquitous across many fields of study, including transport processes in
semiconductors and biological synapses, evolutionary game theory and percolation. Despite their prominence,
first-passage-time calculations have proven to be particularly challenging. Analytical results to date have often
been obtained under strong conditions, leaving most of the exploration of first-passage-time problems to direct
numerical computations. Here we present an analytical approach that allows the derivation of first-passage-time
distributions for the wide class of nondifferentiable Gaussian processes. We demonstrate that the concept of sign
changes naturally generalizes the common practice of counting crossings to determine first-passage events. Our
method works across a wide range of time-dependent boundaries and noise strengths, thus alleviating common
hurdles in first-passage-time calculations.
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I. INTRODUCTION

A frequent question in the study of stochastic systems is to
determine when a particular event happens for the first time.
Such first-passage-time (FPT) problems are ubiquitous in the
physical sciences, and applications include trapping reactions
[1], earthquakes [2], goodness-of-fit tests [3], habitat selection
[4], dark matter halos [5], decision making [6,7], diffusion
in complex environments [8,9], and ion channel dynamics
[10–12]. For a recent review on the wider applications of FPTs,
see Refs. [13,14]. Although the concept of FPTs is easily
stated, the actual computation poses substantial challenges.
Researchers can now draw on an extended suite of mathe-
matical techniques to evaluate FPTs, ranging from analytical
descriptions for special cases including asymptotic expansions
to semianalytical approaches based on integral equations to
direct numerical simulations [15–31]. Notwithstanding these
practical methods, the general solution to one of the most
fundamental FPT problems is still unknown: diffusion to an
arbitrary boundary [24,32–34]. This is even more remarkable
since diffusion processes are often used to approximate the
dynamics of more complicated stochastic systems [16,35].

The seminal work by Wiener and Rice [36,37] has been
instrumental in advancing our understanding of FPT problems.
They derived a series representation of the FPT distribution for
a sufficiently smooth stationary stochastic process through a
constant boundary. A common interpretation of this smooth-
ness condition is that the stochastic process is differentiable in
the mean-square sense. For a stationary stochastic process,
differentiability arises from the behavior of its covariance
function at the origin. If it is differentiable there, the process is
differentiable in the mean square sense [38]. Interestingly, this
condition is already violated for any diffusion process based on
Brownian motion [39], most notably the ubiquitous Ornstein-
Uhlenbeck process (OUP) and geometric Brownian motion.

A distinct advantage of the Wiener-Rice approach is that
it often gives rise to compact analytical expressions, which
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in turn provide great insight into the stochastic system under
investigation, as, e.g., illustrated in Refs. [40,41]. In this paper,
we show how the concepts that underlie the Wiener-Rice series
can be generalized to nondifferentiable stochastic processes
with arbitrary boundaries, thus translating the versatility and
efficacy of the Wiener-Rice approach to a much enhanced
range of physically relevant dynamics.

II. SIGN CHANGING PROBABILITIES

Consider a stationary stochastic process X(t) and a time-
dependent boundary S(t). Let N ([0,t]) denote the number of
crossings of X(t) and S(t) in a fixed interval [0,t]. If X(t) is
differentiable, the mean number of crossings of X(t) through
S(t) in any given finite time interval is always finite, i.e.,
E{N ([0,t])} < ∞ [36,37]. This entails that we can count the
number of crossings, and in particular that there is at most
one crossing within a sufficiently small time interval of length
�. When we introduce the new process Z(t) = X(t) − S(t),
we see that Z(t) changes sign as soon as X(t) crosses
through S(t), and hence instead of counting crossings, we
could count sign changes. If X(t) is nondifferentiable, Rice’s
seminal work shows that E{N ([0,t])} = ∞. While this seems
counterintuitive, infinite means are not uncommon in physics.
A prominent example are power-law probability distributions
of the form p(x) ∼ x−α , α > 0 [42,43]. The divergence of
E{N ([0,t])} does not allow us to count the number of crossings
or sign changes anymore. In particular, the divergence holds for
any t > 0, so we cannot choose an infinitesimal time interval
� to overcome it. In turn, this prevents us from using the
original results by Wiener and Rice.

Progress can be made here by a change of perspective. We
generally identify a crossing event in some interval [t,t + �]
with Z(t) and Z(t + �) having opposite signs, i.e., we evaluate
Z at the end points of the interval. For sufficiently small � and a
differentiable stochastic process, this is equivalent of a crossing
anytime during the interval and hence justifies the practice
of evaluating Z at the end points. For a nondifferentiable
stochastic process, we can still evaluate Z(t) and Z(t + �)
and check for sign changes. The only difference is that this
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FIG. 1. An OUP (solid black line) with mean v (dashed black
line) crosses through time dependent boundaries S(t) (green dashed
line). The boundaries are (a) S(t) = −5 cos(t) exp {−[0.1 cos(t)]2} +
t and (b) S(t) = ∑

n αn[2(t − Tn)]4 exp[−2(t − Tn)]H (t − Tn) with
α ∈ {0.8,0.75}, T ∈ {4,10}. Parameter values are (a) τ = 1.0, v =
10.0, D = 2.0 and (b) τ = 2.0, v = 4.0, D = 0.2. H denotes the
Heaviside step function.

does not inform us about the number of crossings but about
the existence of at least one crossing. Given a sufficiently small
�, this is the key information for practical calculations. Sign
changes of Z(t) and Z(t + �) can therefore be used to identify
FPTs for both differentiable and nondifferentiable stochastic
processes.

The versatility of sign changes in computing FPTs is best
illustrated with cases that cannot be solved with existing
analytical techniques, yet frequently occur in applications.
Figure 1 shows prototypical examples to which current
approaches cannot be applied since the boundaries are neither
convex nor concave. These boundaries can be found in areas
as diverse as neuronal dynamics [Fig. 1(a)] and molecular
transition theory [Fig. 1(b)]. It is worth pointing out that the
boundary in Fig. 1(a) originates from transforming a FPT
problem for a driven stochastic system with constant threshold.
In general, these problems cannot be solved analytically due to
the explicit time-dependence of the stochastic dynamics [44].
However, by shifting the time-dependence to the threshold
as we do here, the problem becomes analytically tractable.
The example in Fig. 1(b) illustrates motion in a complex
energy landscape with a time-dependent metastable state
[45,46]. While this is most reminiscent of problems in physical

chemistry, the same scenario occurs in general phase space
dynamics [47].

The specific FPT problem that we will investigate is to
determine when a Gaussian process X(t), whose initial value
is drawn from its stationary distribution, crosses through
S(t) from above for the first time, i.e., we are interested
in the random variable T = inf {t > 0|X(t) � S(t)} with a
corresponding probability distribution F(t). While the theory
presented here is valid for any Gaussian process, we will
illustrate our results with an OUP given its prominence across
so many fields of study. The dynamics of the OUP is governed
by

dX = −X − v

τ
dt +

√
DdW (t), (1)

where W (t) is a standard Brownian motion, v is the mean of
the OUP and τ , D > 0. The stationary variance and correlation
coefficient of the OUP are given by Dτ/2 and exp(−|t |/τ ),
respectively.

To begin our analysis, we define the conditional sign change
probability p+−(t |x0) = P(Z(t) > 0,Z(t + �) < 0|x0), i.e.,
the probability of a sign change in [t,t + �] given a
value of X(0) = x0. Let f2(x1,x2|x0) = P(X(t1) = x1,X(t2) =
x2|X(0) = x0) denote the conditional bivariate probability
function of X(t), we see that

p+−(t |x0) =
∫ ∞

S(t)
dx1

∫ S(t+�)

−∞
dx2 f2(x1,x2|x0). (2)

Note that Eq. (2) is always well defined and does not rely on
whether X(t) is differentiable or not. Since X(t) is Gaussian, f2

is Gaussian again, and the corresponding mean and covariance
matrix can be obtained in closed form. By expanding the
integrals in Eq. (2) to lowest orders in � following Ref. [48],
we find

p+−(t |x0) = 1

π

√
�/τ

2[1 − ρ(t)2]
exp

{
[S(t) − m1(t)]2

2σ 2
1 (t)

}
, (3)

where m1(t) = v + (x0 − v)ρ(t), σ 2
1 (t) = σ 2[1 − ρ(t)2], and

ρ(t) and σ 2 denote the correlation coefficient and
the variance of X(t), respectively. Hence, p+−(t |x0) =
σ
√

�/(πτ )f1(S(t)|x0), where f1 presents a conditional uni-
variate Gaussian probability function. The value of x0 has
been fixed but arbitrary so far. By integrating it out we obtain
the probability I1(t) = ∫ ∞

0 p+−(t |x)p(x)dx for a sign change
in the interval [t,t + �]. Since both p(x) and p+−(t |x) are
Gaussian, the integral can be performed analytically, and we
arrive at

I1(t) =
√

�

8π2τ
exp[e(t)]{1 + erf[f (t)]}, (4)

where 2e(t) = ω(t)2σ 2
1 (t) − (S(t) − v)2/σ 2

1 (t), f (t) = [v −
ω(t)σ 2

1 (t)]/
√

2σ 2
1 (t), and ω(t) = ρ(t)[v − S(t)]/σ 2

1 (t). We
compare the analytical expression for I1 with direct Monte
Carlo (MC) simulations in Fig. 2 for the two choices of S(t)
shown in Fig. 1. The agreement is excellent, capturing the
multimodal character of the crossing probability induced by
the nonmonotonicity of S(t) and spanning more than three
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FIG. 2. Crossing probability I1(t) for the two cases shown in
Fig. 1 obtained from MC simulations (green circles) and from Eq. (4)
(black dashed line).

orders of magnitude, with probabilities reaching values smaller
than 10−5.

III. FPT PROBABILITIES

From a conceptual point of view, I1(t) corresponds to
the first term J1(t) of the FPT expansion derived by Wiener
and Rice. Their original results for the full FPT distribution
F(t) that measures crossings in the interval [t,t + �] can be
expressed as

F(t) =
∞∑

n=0

(−1)n

n!
Jn+1(t), (5)

where Jn(t) = ∑∞
k=n qk(t)(k − 1)!/(k − n)! and qn(t) denotes

the probability of n crossings during the time [0,t + �] includ-
ing one in [t,t + �]. Therefore,J1(t) = ∑∞

k=1 qk(t) represents
the probability of a crossing in [t,t + �] irrespective of how
many other crossings have occurred prior to t . In comparison,
I1(t) measures the probability of a sign change in [t,t + �]
regardless of the behavior of X(t) before t . Therefore, we
expect I1(t) to constitute a first-order approximation G1(t) of
F(t): F(t) ≈ G1(t) = I1(t). This is confirmed in Fig. 3.

For ease of comparison, we provide separate panels for
the first two peaks of the FPT distribution for both bound-
aries shown in Fig. 1. For all cases G1(t) lays on top of
MC results and only starts to overestimate F(t) for times
very close and larger than the local maximum of the FPT
distribution. This is analogous to the Wiener-Rice expansion.
For later times, it becomes more likely that the detected sign
changes are not the first ones and hence do not constitute a
FPT. We therefore count too many trajectories in G1(t). To
alleviate this problem, we need to subtract the probability
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FIG. 3. FPT probability F(t) corresponding to Fig. 1(a) (a, b) and Fig. 1(b) (c, d) obtained from MC simulations (solid gray line), Eq. (4)
(dashed green line), and Eq. (9) (green circles).
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FIG. 4. Crossing probability for two disjunct intervals I2(s,t) for
the two cases shown in Fig. 1 for a fixed time t indicated by the solid
vertical black line at t = 3.1 (a) and t = 5.75 (b) obtained from MC
simulations (green circles) and Eq. (8) (black line).

for the trajectories that we falsely included in G1(t). The
leading correction term to G1(t) accounts for all trajecto-
ries that have sign changes in [t,t + �] and [s,s + �] for
s < t [40]. Let p+−+−(s,t |x0) = P(X(s) > S(s),X(s + �) <

S(s + �); X(t) > S(t),X(t + �) < S(t + �)|x0) denote the
probability for sign changes in two disjunct intervals, then

p+−+−(s,t |x0)

=
∫ ∞

S(t)
dx3

∫ S(t)+�

−∞
dx4f2(x3,x4|x0)p+−(s|x0,x3,x4), (6)

where p+−(s|x0,x3,x4) is defined analogously to Eq. (2), the
only difference being that here we condition on three instead
of one value of X(t). By expanding Eq. (6) to lowest order in
� and using Eq. (3), we find

p+−+−(s,t |x0) = σ 2 �

πτ
f2(S(t),S(s)|x0). (7)

Since p+−+− is a Gaussian, we can again integrate out
the dependence on x0 to obtain the probability I2(s,t) =∫ ∞

0 p+−+−(s,t |x)p(x)dx for sign changes in two disjunct
intervals [s,s + �] and [t,t + �] in closed form,

I2(s,t) = σ 2 �

4π2τ

exp[E(s,t)](1 + erf[F (s,t)]

G(s,t)
. (8)

We provide details for E(s,t), F (s,t), and G(s,t) in the
Appendix. Note the structural similarity between Eqs. (4) and
(8). In Fig. 4 we plot I2(s,t) as a function of s for fixed values
of t . There is almost no difference between the analytical
expression and direct MC simulations, with the agreement
ranging over three orders of magnitude in Fig. 4(b). For a
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FIG. 5. (a, b) An OUP (solid black line) with mean v (dashed black line) crosses through a time dependent boundary S(t) =
−40 cos(t) exp {−[4 cos(t)]2} + 1.5t (green dashed line). Parameter values are τ = 0.2, v = 7 and (a) D = 2.0, (b) D = 10. (c, d) FPT
probabilities F(t) corresponding to (a) and (b) obtained from MC simulations (solid gray line), Eq. (4) (dashed green line), and Eq. (9) (green
circles).
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first-passage event at time t , second crossings can happen
at any moment s < t . Therefore, we obtain the second-order
approximation G2(t) of F(t) by summing I2(s,t) over all
possible values of s that are commensurate with � and subtract
this probability from G1(t):

G2(t) = I1(t) −
∑

n

I2(n�,t), (9)

where we respect the strict inequality n� < t . Figure 3 shows
that G2(t) provides a significantly improved approximation
of F(t) as compared with G1(t). Note that G2(t) generally
captures the rising phase of the FPT distribution very well,
even including the maximum in Fig. 3(b). This behavior is
consistent with other, although technically more limited, series
expansions [49,50]. While G1(t) tends to overestimate F(t),
G2(t) underestimates the true FPT statistics when it deviates
at larger times. This is expected since we subtract too many
trajectories in the computation of G2(t) [40], and can be
remedied by including higher-order terms in our expansion.

A particularly useful property of our approach is that it
allows for explorations beyond the small noise limit. Figure 5
shows results when the noise strength D is increased by a factor
of 5 above an already moderate noise level. As expected, the
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FIG. 6. (a) I1(t) obtained from MC simulations (green circles)
and Eq. (4) (red dashed line). (b) FPT distribution obtained from MC
simulations (gray lines) and using for p(x0) = δ(v + 2 − x0) (red).
The boundary is given by S(t) = −40 cos(t) exp {−[4 cos(t)]2} +
1.5t , and the parameter values of the OUP are τ = 10.0, v = 10.0,
D = 2.0.

FPT distributions shift to smaller times for stronger noise, but
the the agreement between numerics and analytics persists.

For the computation of I1(t) and I2(s,t) we integrated out
the dependence on the initial values of the OUP. This could
be done analytically since the OUP was initially Gaussian
distributed. As the theory stands it can equally well deal with
highly skewed initial distributions or sharp initial values as,
e.g., used in Ref. [51]. As an illustration of this point, we
chose x0 ∈ [v + 2,v + 2.1], which corresponds to a strongly
localized initial distribution. Figure 6 shows results for I1(t)
and F(t). For the analytical results, we used p(x0) = δ(v +
2 − x0) due to the narrow support of the distribution of x0. We
observe reasonably good agreement between numerical and
analytical results. Importantly, the theory is able to capture
the small peak in the FPT distribution just before t = 2.
The main reason for the difference between the analytical
and numerical results lies in the MC error. Indeed, the
discrepancy between the analytical and numerical value for
I1(t) in Fig. 6(a) at times t ≈ 2 and t ≈ 14 decreases with
more MC realizations and hence is not a systematic error of the
approach.

IV. DISCUSSION AND CONCLUSION

In the present work, we have derived an analytical approach
to FPT calculations for stationary nondifferentiable Gaussian
processes. Using the concept of sign changes, the results
presented here overcome the often strong limitations of exist-
ing analytical techniques, such as convexity of the boundary,
time-scale separations, or crossings being rare [24,37,49,52],
and allow us to construct high-fidelity approximations of the
full FPT statistics, which are notoriously hard to compute. Our
approach is based on the ideas of Wiener and Rice to appro-
priately count random trajectories and thus demonstrates that
their seminal concept for differentiable Gaussian processes can
be generalized to nondifferentiable stochastic processes. Given
that the computation ofG2(t) is entirely based on the evaluation
and summation of Gaussian distributions, it is numerically
fast and allows us to accurately describe events even when
they occur with low probability, for which MC simulation are
numerically expensive. While we illustrated our approach with
the OUP, it works for any Gaussian process since Eqs. (3) and
(6) do not assume a specific form of the correlation coefficient
ρ(t). What the time-dependence of ρ(t) determines is the
scaling of I1(t) and I2(s,t) with �. Interestingly, for the OUP
with ρ(t) ∼ exp(−|t |), we find I1(t) ∼ √

� when t > �/2, a
condition that is almost always satisfied due to the smallness
of �. By changing the correlation coefficient such that the
stochastic process becomes differentiable, e.g., the widely used
ρ(t) ∼ exp(−t2), we recover the original findings by Wiener
and Rice [48].

To illustrate the versatility of our approach, we chose
examples to which, to the best of our knowledge, current
analytical methods cannot be applied since the time-dependent
boundaries are neither convex nor concave. It might therefore
be tempting to consider the stochastic process Z(t) as
introduced in Sec. II, which is the difference between the
stochastic process X(t) and the time-dependent boundary S(t).
Consequently, the FPT problem for Z(t) involves a constant
boundary at 0. However, the stochastic differential equation

012114-5
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for Z(t) is explicitly time-dependent, which again renders
the problem analytically intractable under general conditions
[44].

In the past, nondifferentiable stochastic processes have
often been dealt with by transforming them into differentiable
versions via smoothing. This is usually done by either
convolving the nondifferentiable stochastic process with a
kernel or by filtering the correlation function in frequency
space [53,54]. This requires, first, to find appropriate kernels
or filters, and second, to determine a bandwidth or cut-off
frequency. This is not a trivial task, and often choices can only
be justified a posteriori. From a practical point of view, this
is a severe limitation. In contrast, the approach presented here
works directly with the original nondifferentiable stochastic
process and thus avoids any of these complications.

On theoretical grounds, we expect that the dominant
contribution of I1 is in determining the rising phase of the
peaks of the FPT distribution. This is well captured by the
results shown in this study. Recently, the concept of few
encounters has been introduced [55], and it was shown that
the left part of the peaks of the FPT distribution is essential.
Given the compact expression for I1, our results may prove
useful in studying few encounters in more detail.

While we have focused on stationary stochastic processes,
an intriguing avenue for future research concerns the general-
isation of our findings to nonstationary stochastic processes.
The starting point is Eq. (3), but now both the mean and the
standard deviation become time-dependent. Results analogous
to Eqs. (4) and (8) would highlight the conceptual elegance
of sign changing probabilities and moreover demonstrate
that sign changing probabilities are a powerful and practical
concept for investigating FPT and general level crossing
[56,57] problems.
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APPENDIX: DETAILS FOR EQ. (8)

We here provide details for the sign changing probability in
two disjunct intervals, Eq. (8). The functions E(s,t) and F (s,t)
are given by E(s,t) = A(s,t) + B2(s,t)/
(s,t) and F (s,t) =
B(s,t)/

√

(s,t) with

A(s,t) = − v2

2σ 2
− α(s,t)

2(1 − ρ̃2)
,

B(s,t) = v

σ 2
− β(s,t)

2(1 − ρ̃2)
,


(s,t) = 2

[
1

σ 2
+ γ (s,t)

1 − ρ̃2

]
,

and

α(s,t) = Ss − v
(
1 − ρ2

s

)
σ 2

s

+ St − v
(
1 − ρ2

s

)
σ 2

t

− 2ρ̃

σsσt

[SsSt + Ssv(ρt − 1) + Stv(ρs − 1)

+ v2(1 − ρt − ρs + ρsρt )],

β(s,t) = 2(v(1 − ρs)ρs − Ssρs)
σ 2

s

+ 2(v(1 − ρt )ρt − Stρt )

σ 2
t

− 2ρ̃

σsσt

[−Ssρt − Stρs + vρt + vρs − 2vρsρt ],

γ (s,t) = ρ2
s

σ 2
s

+ ρ2
t

σ 2
t

− 2ρ̃

σsσt

ρsρt ,

while G(s,t) reads as

G(s,t) =
√

(1 − ρ̃2)σ 2
s σ 2

t +σ 2
(
ρ2

s σ
2
t + ρ2

t σ
2
s − 2ρ̃σsρsσtρt

)
,

ρ̃(s,t) = ρ(s − t) − ρ(s)ρ(t)√
1 − ρ(t)2

√
1 − ρ(s)2

.

For notational convenience, subscripts refer to time arguments,
e.g., σt = σ (t) = σ

√
1 − ρ2(t) and St = S(t).
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