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Nonequilibrium steady states in a closed inhomogeneous asymmetric
exclusion process with generic particle nonconservation
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We study the totally asymmetric exclusion process (TASEP) on a nonuniform one-dimensional ring consisting
of two segments having unequal hopping rates, or defects. We allow weak particle nonconservation via Langmuir
kinetics (LK), which are parametrized by generic unequal attachment and detachment rates. For an extended
defect, in the thermodynamic limit the system generically displays inhomogeneous density profiles in the steady
state—the faster segment is either in a phase with spatially varying density having no density discontinuity,
or a phase with a discontinuous density changes. Nonequilibrium phase transitions between the above phases
are controlled by the inhomogeneity and LK. The slower segment displays only macroscopically uniform bulk
density profiles in the steady states, reminiscent of the maximal current phase of TASEP but with a bulk density
generally different from half. With a point defect, there are spatially uniform low- and high-density phases as
well, in addition to the inhomogeneous density profiles observed for an extended defect. In all the cases, it is
argued that the mean particle density in the steady state is controlled only by the ratio of the LK attachment and
detachment rates.
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I. INTRODUCTION

The effects of nonuniformities or disorders on the macro-
scopic properties of equilibrium systems are well understood
by now within the general framework of statistical mechan-
ics [1]. In contrast, the effects of quenched disorders on
the dynamics and nonequilibrium steady states (NESS) of
out-of-equilibrium systems are much less understood [2]. The
totally asymmetric simple exclusion process (TASEP) and its
variants with open boundaries in one dimension serve as simple
models of restricted one-dimensional (1D) transport [3].
Natural realizations of TASEP include motions in a nuclear
pore complex of cells [4], motion of molecular motors along
microtubules [5], fluid flow in artificial crystalline zeolites [6],
and protein synthesis by a messenger RNA (mRNA) ribosome
complex in cells [7]; see, e.g., Refs. [3] for basic reviews
on asymmetric exclusion processes. Subsequently, studies on
TASEP with particle nonconservation in the form of on-off
Langmuir kinetics (LK) [8] in the limit when LK competes
with the hopping movement of TASEP reveal an unusual
phase coexistence in the NESS, not found in pure TASEP.
Furthermore, open TASEPs with defects [9], both point and
extended, have been studied, which investigated the effects of
the defects on the NESS and currents. The open TASEP with a
single point defect along with LK is shown to display a variety
of phases and phase coexistence as a result of the competition
between the defect and LK [10].

Studies of TASEP in a closed ring are relatively few and far
between. Translational invariance ensures that TASEP in a ho-
mogeneous ring, with or without LK produces a homogeneous
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density profile in the steady state. Nonuniform or inhomoge-
neous steady states are expected only with explicit breakdown
of the translation invariance, e.g., by means of quench disorder
in the hopping rates at different sites. Exclusion processes
in closed inhomogeneous rings with strict particle number
conservation have been shown to display inhomogeneous
NESS [11–13]. More recently, TASEP in a ring with quench
disordered hopping rates together with nonconserving LK
having equal rates of particle attachment and detachment has
been studied in Ref. [14]. Quite unexpectedly, the model
admits only macroscopically inhomogeneous NESS, in the
forms of two- and three-phase coexistence, regardless of
extended or point defects, a feature that has been explained in
general terms in Ref. [14]. Equal attachment and detachment
rates, as used in Ref. [14], are actually an idealization and
simplification. In typical physical realizations of this model,
e.g., vehicular/pedestrian traffic and ribosome translocations
along closed mRNA loops in the presence of defects with
particle nonconservation, attachment and detachment rates are
generically expected to be unequal. This calls for studies to
find how unequal rates will affect the results of Ref. [14], or
the robustness of the results in Ref. [14] against variation in the
ratio K of the attachment and detachment rates. In this work,
we set out to study this question by considering TASEP in a
two-segment ring having unequal hopping rates with LK. How
LK dynamics with K �= 1 affects the phases of an open TASEP
is studied in Ref. [8]. Here, we analyze how the interplay
of LK with K �= 1 and quenched inhomogeneity affects the
NESS of a TASEP on a ring. The latter admits only strictly
uniform density due to the particle number conservation and
translational invariance, and it has no phase transitions. In the
present study, we find that with an extended defect, in the
NESS the faster segment displays either an inhomogeneous
(spatially nonuniform) phase with no discontinuity in the
density (hereafter a continuous density phase, or CDP) and
a phase with a discontinuous change or a shock (hereafter a
shock phase, or SP) in the density profile for all values of
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the defect strength (i.e., the hopping rate along the extended
defect) and the ratio of the attachment and detachment rates.
Steady-state density profiles in the CDP are found to have
three parts—two parts with nonzero spatial gradients of the
density, and an intervening part having a constant magnitude of
n0 = K/(1 + K), i.e., with zero slope. In general, n0 �= 1/2 for
K �= 1, unlike the corresponding result in Ref. [14]. The CDP
and SP, respectively, are the direct generalizations of the three-
and two-phase coexistence for K = 1 [14]. By tuning the
model parameters, nonequilibrium transitions between CDP
and SP are observed. The steady-state density in the slower
segment is always macroscopically uniform. Being controlled
solely by the LK attachment and detachment rates, the value
of the steady-state density in the slower segment is n0. This
is reminiscent of the maximal current (MC) phase of TASEP,
but with a current generically less than 1/4 for K �= 1. In
contrast, for a point defect, the model can display spatially
macroscopically uniform steady states for either K very small
or very large, yielding either low-density (LD) or high-density
(HD) phases. For intermediate values of K , the model exhibits
nonuniform phases—either CDP or SP, as with an extended
defect. Nonequilibrium transitions between all three types of
phases are again controlled by the LK attachment-detachment
rates and inhomogeneity. Lastly, in all the phases of both
extended and point defects, the mean particle density in the
NESS of the system is argued to be n0, i.e., controlled only by
K . Our study is a close-ring analog of the model in Ref. [8] that
considered an open system. Our results, as described in detail
below, manifestly reveal the significance of the ring geometry
in controlling NESS. The rest of the article is organized as
follows: In Sec. II, we define our model. Then, a short review
of the results for K = 1 is presented in Sec. II A. In Secs. III A
and III B, we analyze the NESS of the model with an extended
and a point defect, respectively. A brief comparison of the
results in the present work with the corresponding results for
K = 1 is made in Sec. IV. We summarize in Sec. V at the end
of the paper.

II. THE MODEL

Consider a TASEP of N sites together with LK on a 1D
periodic ring with spatial inhomogeneity. Due to exclusion,
the particle occupation ni at each site i is either 0 or 1.
In TASEP, a particle can only hop to its immediate vacant
neighbor in one direction, say anticlockwise (see Fig. 1).
Spatial inhomogeneity in the model is then introduced by
unequal hopping rates of the particles in the two segments, one
faster and the other slower, marked CHI and CHII, respectively,
in Fig. 1. The hopping rates in CHI and CHII, respectively, are
1 and p(<1). Let N1 and N2 be the respective sizes of CHI and
CHII, such that N1 + N2 = N . We define l = N1/N as the
fraction of the total sites in CHI; N1 = Nl,N2 = (1 − l)N .
Note that since the hopping rates do not evolve in time,
the spatial inhomogeneities considered here are quenched.
Further, due to LK, a particle can detach from a given site
with rate ω or attach to a given site with rate ωK . We work in
the regime where TASEP competes with LK dynamics, such
that the net flux due to TASEP must be comparable to the total
flux due to LK. To ensure this, we apply the scaling relations
� = ωN , where N is a large but finite number, and we study
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FIG. 1. TASEP and LK dynamics on a 1D ring with unequal
hopping rates in CHI and CHII; the LK detachment and attachment
rates are ω and ωK , respectively; see the text.

the system in the limit � ∼ O(1) [8,14]. For convenience, we
label the sites by a continuous variable x in the thermodynamic
limit, defined by x = i/N,0 < x < 1. In terms of the rescaled
coordinate x, the lengths of CHI and CHII are l and 1 − l,
respectively. The coordinate x rises from junction B (x = 0)
to junction A (x = l) in the anticlockwise direction.

A. Short review of the results for K = 1

We briefly review the results for K = 1 [14], i.e., with
equal attachment and detachment rates. The mean-field (MF)
equations are set up in both CHI and CHII. The steady-state
densities are then calculated by observing that current is
conserved locally, and hence current conservation can be
applied very close to junctions A and B:

nI(y)[1 − nI(y)] = pnII(y)[1 − nII(y)], (1)

where y = junction A or B. The steady-state densities are
given by

nIB(x) = �x + 1 − √
1 − p

2
, (2)

nIA(x) = �(x − l) + 1 + √
1 − p

2
, (3)

such that both Eqs. (2) and (3) depend upon the density values
at junctions B and A, respectively. In contrast,

nIb(x) = 1
2 (4)

and

nII(x) = 1
2 (5)

are the bulk solutions independent of the densities at the
junctions, and they are an analog of the MC phase in an open
TASEP. In CHI, let xα and xβ , respectively, be the points where
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the left solution nIB(x) and the right solution nIA(x) meet with
the bulk solution nIb. It was shown that

xβ − xα = l −
√

1 − p

�
. (6)

Thus if xα < xβ , the system is in a three-phase (LD-MC-HD)
coexistence. But if xα > xβ , the system can be only in a two-
phase (LD-HD) coexistence. The critical line separating the
two phases can thus be determined by setting xα = xβ . Further,
the global average density of the system is always n0 = 1/2,
irrespective of the chosen values of p and �.

III. STEADY-STATE DENSITIES

We perform MF analysis of our model, supplemented by
extensive Monte Carlo simulations (MCS). We present our
results for an extended and a point defect separately below.
We consider only K < 1; the results for K > 1 may be
obtained from those for K < 1 together with the particle-hole
symmetry. In our MCS studies, we use a random-sequential
update scheme. We measure the average site density 〈ni〉 over
approximately 2 × 109 Monte Carlo steps after relaxing the
system for 109 Monte Carlo steps. We separately study an
extended and a point defect. For an extended defect here,
0 < l < 1, whereas for a point defect, l → 1. In Ref. [8], the
authors solved the steady-state densities in the analogous open
system in terms of the Lambert W functions. Here, we use the
implicit solutions of the densities in the steady state, which
suffice for our purposes.

A. MF analysis and MCS results for an extended defect

We set up our MF analysis by closely following the logic
outlined in Ref. [14]. In our MF analysis, we describe the
model as a combination of two TASEPs—CHI and CHII—
joined with each other at the junctions A and B; see Fig. 1.
Thus, junctions B and A are effective entry (exit) and exit
(entry) ends of CHI (CHII). This allows us to analyze the
phases of the system in terms of the known phases of the
open-boundary LK-TASEP [8]. Without LK, the steady-state
densities of a TASEP in an inhomogeneous ring are completely
determined by the total particle number (a conserved quantity)
in the system in the steady state and the inhomogeneity
configurations [11–13]. Due to the nonconserving LK dy-
namics, however, the particle current here is conserved only
locally, since the probability of attachment or detachment
at a particular site vanishes as 1/N [8,14]. Hence, the total
particle number in the NESS is not a conserved quantity.
The steady-state densities nI(x) and nII(x) in CHI and CHII,
respectively, follow [8,14]

[2nI(x) − 1]
∂nI(x)

∂x
− �(1 + K)

(
nI(x) − K

1 + K

)
= 0 (7)

and

p[2nII(x) − 1]
∂nII(x)

∂x
− �(1 + K)

(
nII(x) − K

1 + K

)
= 0.

(8)

Before we attempt to solve Eqs. (7) and (8), we define an
average density n0 in a given NESS that remains a constant

on average, although the model dynamics does not admit
any conservation law for the total particle number. In the
homogeneous limit of the model, i.e., with p = 1, CHI and
CHII are identical and the steady-state density is spatially
uniform, due to the translational invariance for p = 1 for all
K . Equation (7) or (8) then yields

n0 = K

K + 1
. (9)

Thus, the average hole density is 1 − n0 for p = 1. A global
deviation of the mean density from n0 should indicate either
more particles or more holes entering into the system in
the steady state than that given by n0. However, even when
inhomogeneity is introduced (p < 1), there is nothing that
favors either particles or holes, since the inhomogeneity that
acts as an inhibitor for the particle current acts equally as
an inhibitor for the hole current. Hence, it is not expected
to affect the value of n0. This forms a major result of this
work that is in agreement with the MCS studies; see below.
Notice that this argument does not preclude any local excess
of particles or holes, since the particles and the holes move
in opposite directions, and hence the presence of a defect
should lead to excess particles on one side and excess holes
(equivalently deficit particles) on the other. This holds for
any � and K . When K = 1, n0 = 1/2, in agreement with
Ref. [14]. Equations (7) and (8) are first-order differential
equations, each having one constant of integration in their
solutions. These may be determined by considering the current
conservation or “boundary conditions” at junctions A and B.
In addition, Eqs. (7) and (8) admit a third spatially constant
solution independent of the boundaries, given by K/(1 + K).
Since CHI has a higher hopping rate (1 > p), on physical
grounds there cannot be a pileup of particles in CHII behind
junction B. In the same way, we do not expect an x-dependent
nII(x) that decreases with x from junction A to B. Thus, nII(x)
should be macroscopically uniform in the bulk. We are then left
with only one solution nII(x) = K/(1 + K). This solution is
independent of the boundaries A and B, and is thus akin to the
maximal current (MC) phase of TASEP. There is, however, a
crucial difference: in an MC phase of a TASEP, the steady-state
bulk density reaches its maximum value of 1/2. However,
with nII = K/(1 + K), the steady-state bulk density in CHII
is always less than 1/2 (with K < 1).

We therefore call it the generalized MC (GMC) phase [16];
see also Ref. [8] for analogous results in a similar open system.
Now consider CHI: since the bulk steady-state density in CHII
is K/(1 + K) = n0, the average steady-state density in CHI
must also be K/(1 + K), in order to have n0 as the mean
density in the whole system. Notice that a uniform nI(x) = n0

does solve (7) above. However, this solution is not admissible,
as it manifestly violates current conservations at A and B. Thus,
CHI can only admit macroscopically nonuniform density
profiles in its NESS. If there are spatially varying LD phases in
CHI (monotonically rising from B to A, remaining less than 1/2
everywhere), the current conservation at either junction A or B
will be violated. This rules out a spatially varying LD phase in
CHI. Clearly then, an analogous HD phase in CHI is also ruled
out. Therefore, on physical grounds one part of the solution for
nI(x) should be <1/2 (near junction B) and another part >1/2
(near A) to maintain current conservation at both A and B; see
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Eqs. (10) and (11) below. This leaves us with two possibilities:
(a) the two parts of the solutions match smoothly with the
bulk solution nI(x) = n0, without any density discontinuity
(CDP solution), or (b) the two parts do not meet with the bulk
solution, leading to a density discontinuity (SP solution), as
discussed below. These arguments are used below to analyze
the phases in the model.

1. Phase diagrams and density profiles with an extended defect

As pointed out in the previous section, CHII is always in
the GMC phase, with nII(x) = n0 in the bulk. Since a pure LD
(hence an HD) phase is ruled out in CHI, it should only have
macroscopically inhomogeneous densities. This means there
are no boundary layers in CHI at the junctions A and B. Then,
applying the current conservation as given by Eq. (1), we get

nI(0) = α1 = 1

2

[
1 − 1

1 + K

√
(1 + K)2 − 4pK

]
<

K

1 + K

(10)

and

nI(l) = α2 = 1

2

[
1 + 1

1 + K

√
(1 + K)2 − 4pK

]
>

1

2
. (11)

We also obtain the general solution to Eq. (7),

1

a

[
2nI(x) −

(
1 + 2b

a

)
ln |anI(x) + b|

]
= x + C, (12)

where a = �(1 + K) and b = −�K . The constant of inte-
gration, C, is to be determined appropriately by using either
the boundary conditions (10) or (11), yielding generally two
different solutions. Defining nIB(x) and nIA(x) as the solutions
of Eq. (7) corresponding to the boundary conditions (10)
and (11), respectively, we find

2[nIB(x) − α1] −
(

1 + 2b

a

)
ln

∣∣∣∣anIB(x) + b

aα1 + b

∣∣∣∣ = ax (13)

and

2[nIA(x) − α2] −
(

1 + 2b

a

)
ln

∣∣∣∣anIA(x) + b

aα2 + b

∣∣∣∣ = a(x − l).

(14)

Given the physical expectation that nI(x) cannot decrease
as x rises, we identify two points xα and xβ , at which
nIB(x) and nIA(x), respectively, meet with the bulk solution
nI(x) = n0. Defining jIB(x) and jIA(x) as the spatially varying
currents corresponding to the densities nIB(x) and nIA(x), re-
spectively: jIB(x) = nIB(x)[1 − nIB(x)], jIA(x) = nIA(x)[1 −
nIA(x)], and j0(x) = n0(1 − n0), xα and xβ may be obtained
from jIB(x) = j0 and jIA(x) = j0. As in Ref. [14], three
different scenarios are possible:

(i) Continuous density phase (CDP) corresponding to xα <

xβ : nI(x) rises from nI(x = 0) to reach nI(x) = n0 at xα , and
then rises again from xβ to reach nI(x) = nI(x = l). Ignoring
boundary layers, nII(x) = n0, i.e., the GMC phase for CHII
ensues. See Fig. 2 for a representative plot with CDP for
nI(x), where results from MFT and MCS studies are plotted
together; good agreement between the MFT and MCS results
are evident. Enumeration of xα and xβ from MFT is shown in
the inset.
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FIG. 2. Plots of the density profiles in CDP (K = 0.5, p =
0.2, � = 4.5, l = 1/2, N = 2000). Mean-field solutions nIB(x)
(black dotted line), nIA(x) (blue solid line), and the corresponding
MCS results nI(x) (red squares) are shown. MCS results for nII(x)
are shown with magenta triangles; xα and xβ are extracted from MCS
data (see the text). n0 (green dotted line) is the average density of the
system. Inset: mean-field values of the currents jIB(x), jIA(x), and
j0(x) are plotted; xα and xβ are extracted (see the text), which match
well with their corresponding MCS results.

While with K = 1, nI(x) takes a very simple form as a func-
tion of x [14], for K �= 1 its functional form is more complex.
Nonetheless, from the structures of Eqs. (7), (13), and (14),
we can make the following general observations. (a) In
general, nIA > n0 = nII(x) > nIB; (b) the slopes ∂nIB,A/∂x →
0 as nIB,A(x) → K/(1 + K) at some points in the bulk; (c)
with K < 1, ∂nIB(x)/∂x never diverges, whereas ∂nIA(x)/∂x

diverges as nI(x) → 1/2. Thus broadly, the slope nIA(x) should
be steeper than that of nIB(x) [15]. It is also clear that nIA(x)
starts from nIA(x = xβ) = n0 < 1/2 for K < 1 to rise to (11)
that is larger than 1/2. Thus, nIA(x) is a combination of LD-HD
phases. For K = 1, nIA(x) is necessarily more than 1/2, and
hence fully HD. (d) Lastly, nI(x) starts from LD (i.e., LD near
junction B) and ends in HD (i.e., HD near junction A) always.
These are consistent with our observations from MCS results;
see Fig. 2.

(ii) Shock phase (SP) corresponding to xα > xβ [14].
There is no intervening flat portion in nI(x). Instead, nI(x)
discontinuously changes from its value nIB to nIA at x = xw,
yielding a density shock or a localized domain wall (LDW) at
x = xw. The condition jIB(xw) = jIA(xw) yields xw. Density
nII(x) remains at its GMC phase, i.e., nII(x) = n0, just like
the CDP. See Fig. 3 for a representative plot for SP of nI(x).
Again, the agreement between MFT and MCS results is close.
In the inset, enumeration of xw from MFT is shown.

(iii) The borderline case with xα = xβ : this corresponds to
jIB(x) = jIA(x) = j0 at x = xα = xβ . A representative profile
of nI(x) with xα = xβ , i.e., at the boundary between SP and
CDP, is shown in Fig. 4; the inset shows a plot of the numerical
evaluation of xα = xβ from the MFT. Unlike for K = 1, for
which the density profiles at xα = xβ are linear [14] [because
the factor 1 + 2b

a
appearing in Eq. (12) becomes zero for K =

1], for K < 1 the same factor is not zero and hence we do not
get a linear density profile at the borderline case separating the
CDP and SP regions. It may be noted that our above results
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FIG. 3. Plots of the density profiles in SP (K = 0.5, p =
0.2, � = 2.25, l = 1/2, N = 2000). Mean-field solutions nIB(x)
(black dotted line), nIA(x) (blue solid line), and the corresponding
MCS results nI(x) (red squares) are shown. MCS results for nII(x)
are shown with magenta triangles; xw is extracted from MCS data
(see the text). n0 (green dotted line) is the average density of the
system. Inset: mean-field values of the currents jIB(x) and jIA(x) are
plotted; xw has been extracted (see the text), which match well with
their corresponding MCS results.

hold well for all l, 0 < l < 1; we have reported here the results
only for l = 1/2.

In Figs. 5 and 6, the phase diagrams for l = 1/2 in the
�-p plane for K = 0.5 and 0.2, respectively, as obtained from
our MCS and MFT approaches, are shown. Unsurprisingly,
there are only two phases—CDP and SP—in both of them.
The phase boundary between CDP and SP is determined from
the condition xα = xβ (see above). Similar to Ref. [14], the
MCS and MFT results mutually agree qualitatively as well
as quantitatively. The phase diagrams in Figs. 5 and 6 are
qualitatively similar to each other, and they are also similar
to the corresponding phase diagram for K = 1 in Ref. [14].
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FIG. 4. Plots of the density profiles in the borderline case (K =
0.5, p = 0.2, � = 3.75, l = 1/2, N = 2000). Mean-field solutions
nIB(x) (black dotted line), nIA(x) (blue solid line), and the corre-
sponding MCS results nI(x) (red squares) are shown. MCS results
for nII(x) are shown with magenta triangles; xα and xβ are extracted
from MCS data (see the text). n0 (green dotted line) is the average
density of the system. Inset: mean-field values of the currents jIB(x),
jIA(x), and j0(x) are plotted; xα and xβ are extracted (see the text),
which match well with their corresponding MCS results.
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FIG. 5. Phase diagram in the �-p plane for extended defects, with
K = 0.5: mean-field result (red continuous line) and MCS results
(black circles) are shown, which agree well. Here l = 1/2 and N =
1000.

Still, Figs. 5 and 6 do not match quantitatively, nor do they
agree quantitatively with the corresponding phase diagram for
K = 1 in Ref. [14].

The region occupied by SP in Fig. 6 is noticeably larger than
in Fig. 5, which in turn is larger than the two-phase region for
K = 1; see Ref. [14]. This trend may be explained in simple
terms. From Eqs. (10) and (11), it is clear that for small K ,
the jump in the values of nI(x) across the extended defect is
large. On the other hand, ∂nI(x)/∂x is clearly controlled by
the factor �(1 + K); see Eq. (7). Now in order for the CDP to
exist, nI(x) must rise (fall) sharply enough from its value α1

at x = 0 (α2 at x = l) to match with n0 = K/(1 + K) in the
bulk. Since ∂nI(x)/∂x is smaller for smaller K for a given �,
a larger � is clearly needed with smaller K to ensure CDP.
This explains why for K = 0.2 the CDP requires a higher �

than for K = 0.5, which in turn has a higher-� threshold than
that for three-phase coexistence for K = 1 [14].

The changes in the phase diagrams given in Figs. 5 and 6
with variation in K are also reflected in the corresponding plots
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SP CDP

FIG. 6. Phase diagram in the �-p plane for extended defects,
with K = 0.2: mean-field result (red continuous line) and MCS
results (black circles) are shown, which agree well. Note that while
Fig. 6 is quantitatively different from Fig. 5, the phase diagrams are
qualitatively similar as they separate the same phases from each other.
Here l = 1/2 and N = 1000.
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FIG. 7. Plots of the density profiles in SP (K = 0.2, p =
0.2, � = 4.5, l = 1/2, N = 2000). Mean-field solutions nIB(x)
(black dotted line), nIA(x) (blue solid line), and the corresponding
MCS results nI(x) (red squares) are shown. MCS results for nII(x)
are shown with magenta triangles; xα and xβ are extracted from MCS
data (see the text). n0 (green dotted line) is the average density of the
system. Inset: mean-field values of the currents jIB(x), jIA(x), and
j0(x) are plotted; xα and xβ are extracted (see the text), which match
well with their corresponding MCS results.

of nI(x) versus x. For instance, compare Fig. 2 (K = 0.5) with
Fig. 7 (K = 0.2). Clearly, as K is reduced, a CDP density
profile for nI(x) gives way to a SP density profile. This is
consistent with the trends observed in the above two phase
diagrams.

In Table I, we compare the mean density in the NESS of
the whole system as obtained from MCS with the predictions
from MFT for an extended defect. Clearly, good agreement is
found. This validates our MFT arguments elucidated above.

B. MF analysis and MCS results for a point defect

For a point defect, junctions A and B merge. As a result,
the constraint from the constant bulk current in CHII on
jI(x) = nI(x)[1 − nI(x)] for an extended defect does not exist
for a point defect. In fact, CHII effectively ceases to exist, and
Eq. (8) no longer holds. The steady-state density nI(x) of CHI
now spans the whole system and satisfies Eq. (7),

[2nI(x) − 1]
∂nI(x)

∂x
− �(1 + K)

(
nI(x) − K

1 + K

)
= 0.

(15)
We now argue that (15) allows for a spatially uniform steady-
state density in CHI, with a localized peak at the location
of the point defect. Evidently, (15) allows for a uniform
solution nI(x) = K/(1 + K) < 1/2 (K < 1), in addition to
the space-dependent solutions, akin to the solutions of nI(x)

TABLE I. A comparison of the average density value n0 obtained
from MCS and MFT for an extended defect. Here � = 2.5 and p =
0.5, and N = 2000.

K 0.2 0.5 1.0

n0 (MCS) 0.166 672 0.333 547 0.499 187
n0 (MFT) 0.166 667 0.333 333 0.5
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(x
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nIB(MFT)
nIA(MFT)

n0

FIG. 8. Plots of the density profiles in the LD region for a point
defect located at x = 1 (K = 0.5, p = 0.6, � = 1.0, N = 2000).
Mean-field solutions nIB(x) (black dotted line), nIA(x) (blue solid
line), and the corresponding MCS results nI(x) (red squares) are
shown. n0 (green dotted line) is the average density of the system. We
have extended the x axis up to x = 1.1 to resolve the peak at x = 1
(the location of the point defect) properly.

in the extended defect case, in the NESS of the model.
As argued in Refs. [10,12], for a sufficiently low average
density, the effect of the point defect is confined to creating
a localized peak (or a dip) that has a vanishing width in the
thermodynamic limit in an otherwise homogeneous density
profile. In other words, the bulk density should be uniform
for sufficiently low average density. For a ring geometry,
this implies nI(x) = K/(1 + K), with nI(x) = n0 + h having
a localized peak of height h = n0(1 − p)/p at the location of
the point defect [10,12]. This is consistent with our discussions
above. See Fig. 8 for a representative plot of nI(x) as a function
of x in the LD phase. As n0 rises (i.e., K rises), or the
defect strength rises (i.e., p decreases), eventually this picture
breaks down and the point defect then leads to macroscopically
nonuniform density profiles. Following the logic outlined in
Refs. [10,12], we find the threshold of inhomogeneous phases
to be

K

1 + K
= p

1 + p
⇒ K = p. (16)

Therefore, as K exceeds p, spatially nonuniform density
profiles are to be formed in the NESS.

For K > p, the spatially varying solutions of nI(x) may be
analyzed as before. Without any loss of generality, we assume
that the site with the defect is located at x = 1. Assuming
that the particles hop anticlockwise as before, one expects
that n(1 − ε) > n(ε), where ε → 0. Let ρL and ρR be the
densities at the left and right of x = 1. Now assume phase
coexistence for nI(x) in the NESS, i.e., no boundary layers at
x = 1. Applying the current conservation at x = 1, we get

ρL(1 − ρL) = pρR(1 − ρL) = ρR(1 − ρR). (17)

This gives ρL = p

1+p
and ρR = 1

1+p
. The CHI density is then

obtained by using Eq. (7) along with the boundary conditions

nI(0) = p

1 + p
and nI(1) = 1

1 + p
. (18)
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FIG. 9. Plots of the density profiles in the CDP (K = 0.5, p =
0.05, � = 2.0, N = 2000). Mean-field solutions nIB(x) (black dotted
line), nIA(x) (blue solid line), and the corresponding MCS results
nI(x) (red squares) are shown; xw is extracted from MCS data (see
the text). n0 (green dotted line) is the average density of the system.
Inset: mean-field values of the currents jIB(x) and jIA(x) are plotted;
xw has been extracted (see the text). Qualitative agreement with their
corresponding MCS results is evident.

As for the extended defect case, there are three different
solutions: two spatially varying depending upon the boundary
conditions (18), and a third bulk solution nI(x) = K/(1 +
K) = n0 that is independent of x. The spatially varying
solutions are

2

(
nIB(x) − p

1 + p

)
−

(
1 + 2b

a

)
ln

∣∣∣∣∣
anIB(x) + b

ap

1+p
+ b

∣∣∣∣∣ = ax

(19)

and

2

(
nIA(x) − 1

1 + p

)
−

(
1 + 2b

a

)
ln

∣∣∣∣∣
anIA(x) + b

a
1+p

+ b

∣∣∣∣∣
= a(x − 1). (20)

Again as in CDP with an extended defect, we can define
xα and xβ from the conditions nIB(xα) = n0 and nIA(xβ) = n0.
Equivalently, defining currents jIA(x) = nIA(x)[1 − nIA(x)],
jIB(x) = nIB(x)[1 − nIB(x)], and j0(x) = n0(1 − n0), xα and
xβ are obtained from jIB(xα) = j0 and jIA(xβ) = j0, respec-
tively. Similar to the extended defect case (see also Ref. [14]),
three distinct cases are possible:

(i) CDP for xα < xβ : nI(x) is qualitatively similar to its
analog for the extended defect case. A representative plot of
nI(x) in its CDP as a function of x is shown in Fig. 9.

(ii) SP with xα > xβ yielding an LDW at x = xw. A
representative plot of nI(x) in its SP as a function of x with an
LDW at x = xw is shown in Fig. 10.

(iii) The borderline case between CDP and SP given by
xα = xβ ; see Fig. 11.

To find out the phase boundary between the CDP and SP
regions, we proceed in the same way as in case of extended
defects, that is, we find out p and � values for which xα = xβ .
For K < p, the system is in a spatially homogeneous LD
phase. The phase diagram for the case of a point defect showing
the three distinct phase regions is shown in Figs. 12 and 13.
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FIG. 10. Plots of the density profiles in the SP phase (K =
0.5, p = 0.2, � = 0.75, N = 2000). Mean-field solutions nIB(x)
(black dotted line), nIA(x) (blue solid line), and the corresponding
MCS results nI(x) (red squares) are shown; xw is extracted from
MCS data (see the text). n0 (green dotted line) is the average density
of the system. Inset: mean-field values of the currents jIB(x) and
jIA(x) are plotted; xw has been extracted (see the text). Qualitative
agreement with their corresponding MCS results is evident.

Notice that the extent of the LD phase in Fig. 13 is distinctly
larger than that in Fig. 12. This is consistent with the fact that
the boundary between LD and the spatially inhomogeneous
phases (SP or CDP) in MFT is given by p = K (in agreement
with MCS results), which clearly yields a larger LD phase
in the �-p plane for a lower K . Next, consider the relative
preponderance of the SP over the CDP in Fig. 13 in comparison
with Fig. 12. Unlike the case with an extended defect, the jump
in an inhomogeneous nI(x) at the point defect depends only
on p, and not on K , regardless of SP or CDP. Nonetheless,
as discussed above, the slope ∂nI(x)/∂x in NESS is still
controlled by �(1 + K). Hence, for reasons similar to those
for an extended defect, in a �-p phase diagram the CDP starts
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FIG. 11. Plots of the density profiles in the borderline case for
a point defect located at x = 1 (K = 0.5, p = 0.2, � = 1.25, N =
2000). Mean-field solutions nIB(x) (black dotted line), nIA(x) (blue
solid line), and the corresponding MCS results nI(x) (red squares)
are shown; xα and xβ are extracted from MCS data (see the text).
n0 (green dotted line) is the average density of the system. Inset:
mean-field values of the currents jIB(x), jIA(x), and j0(x) are plotted;
xα and xβ are extracted (see the text), which match well with their
corresponding MCS results.
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FIG. 12. Phase diagram in the �-p plane for a point defect located
at x = 1, with K = 0.5: mean-field results (red solid line) and the
MCS results are shown. The green dotted horizontal line, separating
the LD phase from other phase regions, is obtained from MFT and
satisfies the equation p = K . The corresponding MCS data points
are represented by the blue triangles. Here N = 1000.

for a higher � with a lower K . For K = 1, there is no LD phase
even for a point defect. For a putative LD phase, one must have
p > K; for K = 1 this condition rules out an LD phase.

The quantitative dissimilarities between the phase diagram
in Ref. [14] for a point defect and the inhomogeneous parts
of those in Figs. 12 and 13 may be explained following
the logic outlined in the discussions on the phase diagrams
for an extended defect above. These differences can lead to
qualitative differences in the density profiles in the NESS. For
instance, compare Fig. 9 (K = 0.5) and Fig. 14 (K = 0.2) to
observe that the CDP density profile for K = 0.5 has become
a SP density profile for K = 0.2. This trend is similar to what
one finds for extended defects.

In Table II, we compare the values of the mean densities
obtained from MCS with the corresponding MFT results for
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FIG. 13. Phase diagram in the �-p plane for a point defect located
at x = 1, with K = 0.2: mean-field results (red solid line) and the
MCS results are shown. The green dotted horizontal line, separating
the LD phase from other phase regions, is obtained from MFT and
satisfies the equation p = K . The corresponding MCS data points
are represented by the blue triangles. Note that a lower value of K

corresponds to a lower attachment rate, and hence the LD profile
occupies a bigger region in the phase diagram than it does for a
higher value of K (see Fig. 12). Here N = 1000.
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FIG. 14. Plots of the density profiles in the SP for a point defect
located at x = 1 (K = 0.2, p = 0.05, � = 2.0, N = 2000). Mean-
field solutions nIB(x) (black dotted line), nIA(x) (blue solid line), and
the corresponding MCS results nI(x) (red squares) are shown; xα

and xβ are extracted from MCS data (see the text). n0 (green dotted
line) is the average density of the system. Inset: mean-field values
of the currents jIB(x), jIA(x), and j0(x) are plotted; xα and xβ are
extracted (see the text), which match well with their corresponding
MCS results.

different values of K . Again, similar to the extended defect
case, there is good quantitative agreement between the two,
lending credence to our MFT results.

IV. COMPARISON WITH K = 1

Having discussed the studies with K �= 1 for both extended
and point defects, let us now compare and contrast the results
here with the corresponding results for K = 1. There are some
similarities and some significant differences.

For instance, with an extended defect, the model yields
nonuniform densities in the faster segment for both K = 1
and K �= 1. However, for K = 1, the density profiles in the
faster part of the system consist of three clear segments, all
of which are straight lines, belonging to the LD, MC, and HD
phases. In contrast, with K �= 1, such a clear classification
fails; additionally, the density profiles are not straight lines.
Furthermore, the slower part of the system with an extended
defect is in the GMC phase, with a density generically different
from 1/2 in the bulk for K �= 1, whereas for K = 1, the
corresponding density is in the usual MC phase with a bulk
value of 1/2. The distinctiveness of K �= 1 manifests more
starkly for a point defect: it is now possible to have a pure LD
phase, which is ruled out for K = 1. In addition, the spatially
nonuniform density profiles with a point defect for K �= 1 can
no longer be characterized as simple combinations of LD, MC,
and HD phases, unlike for K = 1.

TABLE II. Table comparing the average density value n0 obtained
from MCS and MFT for a point defect. Here � = 1.0, p = 0.5 and
N = 2000.

K 0.2 0.5 1.0

n0 (MCS) 0.166 915 0.333 366 0.499 587
n0 (MFT) 0.166 667 0.333 333 0.5
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V. SUMMARY AND OUTLOOK

In this work, we have studied an asymmetric exclusion
process in an inhomogeneous ring with particle-nonconserving
LK dynamics. The attachment and detachment rates of LK
are generally assumed to be unequal. We have considered
both extended and point defects. The MFT analysis is done
by assuming the system to be a combination of two TASEP
channels CHI (of hopping rate 1) and CHII (of hopping rate
p < 1) of unequal hopping rates, which are joined together at
both the ends. For a point defect, CHII shrinks to a point. Our
MFT analysis, backed up by extensive MCS studies, clearly
reveals that with an extended defect, nII = K/(1 + K) in the
bulk of CHII, a constant that is independent of p(< 1) (i.e.,
independent of the boundaries or junctions at A and B). In
analogy with the MC phase of an open TASEP, we call this
the GMC phase. In contrast, CHI is found in either CDP or
SP. Unsurprisingly, CDP is favored for larger �, whereas SP
prevails for smaller � for fixed p,K , as in Ref. [14]. For a
point defect, for which CHII shrinks to a point, for K < p,
nI(x) is found in a uniform phase, unlike an extended defect.
The variations in the phase diagrams with K are explained
in simple physical terms. As in Ref. [14], the quantitative
agreement between the MCS and MFT results for an extended
defect is very high, as is evident in the corresponding phase
diagram; see Figs. 5 and 6. In contrast, the agreement for
the point defect case is weaker, particularly for small �. The
physical reasons behind these discrepancies are expected to be
the same as that elaborated in Ref. [14].

Our results clearly bring out the relevance of the ring or
closed geometry of the system in the presence of LK with
unequal attachment and detachment rates. The results here as
well as those in Ref. [14] clearly establish how the ring geom-

etry (or the lack of independent entry and exit events) restricts
the possible phases in these models, in comparison with the
results on the corresponding open system; see Refs. [8,10].
It would be interesting to numerically study the crossover
between the extended and point defect cases by varying N

while keeping the length of the slower segment unchanged. As
an alternative to our simple MFT, it should be interesting to
extend the boundary-layer formalism developed in Ref. [17]
for the present problem. The simplicity of our model limits
direct applications of our results to practical or experimental
situations. Nonetheless, our above results in the context of
vehicular traffic along a circular track, or railway movements
in series along a closed railway loop line with possibilities
of new carriages joining or existing carriages going off the
loop track in the presence of constrictions (regions of slow
passages due to, e.g., accidents or damages in the tracks), or
ribosome translocations along mRNA loops with defects and
random attachment and detachment, clearly demonstrate that
for extended defects, the steady-state densities are generally
inhomogeneous, whereas for a point defect, globally uniform
densities are possible for a sufficiently low average density. We
hope that experiments on ribosomes using ribosome profiling
techniques [18] and numerical simulations of more detailed
traffic models will qualitatively validate our results.
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