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Ising spin glasses in dimension five
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Ising spin-glass models with bimodal, Gaussian, uniform, and Laplacian interaction distributions in dimension
five are studied through detailed numerical simulations. The data are analyzed in both the finite-size scaling
regime and the thermodynamic limit regime. It is shown that the values of critical exponents and of dimensionless
observables at criticality are model dependent. Models in a single universality class have identical values for each
of these critical parameters, so Ising spin-glass models in dimension five with different interaction distributions
each lie in different universality classes. This result confirms conclusions drawn from measurements in dimension
four and dimension two.
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I. INTRODUCTION

The statistical physics of second-order transitions has been
intensively studied in standard systems exemplified by pure
ferromagnets, and a thorough understanding of the critical
behavior has been reached based on renormalization group
(RG) theory. RG theory provides an elegant explanation of
the universality of critical exponents, which is the property
that all systems within the same universality class (determined
only by the physical dimension d and the spin dimension
N ) have identical values for each critical exponent and for
characteristic dimensionless critical parameters. It has been
implicitly or explicitly assumed that in spin glasses the form
of the interaction distribution is not a relevant parameter for the
determination of the universality class, so that, in particular,
all Ising spin glasses (ISGs) in a given dimension are expected
to have the same critical exponents and critical parameters.
The ISG situation is, in fact, much less clear-cut; it has been
stated that a fundamentally different theoretical approach to
transitions is required [1–5]. Our “working hypothesis” is
that the standard RG rules relating exponents hold for each
ISG model independently and we then check whether the law
of universality among models holds. The scaling rules are
discussed in detail in Ref. [6] from the finite-size scaling
point of view, and in Ref. [7] from the high-temperature
series expansion (HTSE) thermodynamic limit point of
view.

We have found from numerical studies on ISGs in di-
mensions 4 and 2 having bimodal and Gaussian interaction
distributions [8–10] that the critical exponents and the critical
values for dimensionless constants are not identical for the
two models in a given dimension but that they vary with the
interaction distribution. It was concluded that the universality
class of an ISG depends not only on the physical dimension of
the system but also on the form of the interaction distribution.

Here numerical simulation data on ISGs in dimension 5
are presented and analyzed. We are aware of no analogous
simulation measurements on ISGs in dimension 5, but some
of the present measurements can be compared to results on
the same models obtained from the HTSE technique [11,12].
Again, as in dimensions 4 and 2 the values for critical

dimensionless constants and for the critical exponents are
found to vary with the form of the interaction distribution,
confirming that the nonuniversality conclusion reached for
ISGs can be generalized.

Dimension 5 is close to the ISG upper critical dimension
d = 6. For reference, the ε-expansion ISG exponent values
to leading order in ε = 6 − d [13] are γ = 1 + (6 − d), ν =
1/2 + 5(6 − d)/12, and η = −(6 − d)/3, so for dimension 5
the leading-order exponent values are γ = 2, ν = 11/12 ≈
0.92, and η = −1/3 ≈ −0.33. The terms of higher order in
ε are strong and no summations over all terms are known.
There are no interaction-distribution-dependent terms in the
standard ε-expansion expressions but hierarchical spin-glass
calculations [1–5] show that the numerical values of the
ε-expansion coefficients depend on the disorder distribution.
The leading-order ε-expansion exponent values are all in rough
agreement with, but are about 25% stronger than, the range
of numerical estimates for the five-dimensional (5D) ISG
exponents given below in the Conclusion (Table I), where, for
instance, the γ estimates run from 1.73(2) for the bimodal
interaction model to 1.49(2) for the Laplacian interaction
model.

II. HISTORICAL NOTE

In 1894 Van der Waals introduced the concept of critical
exponents, in the context of transitions in liquids; he derived
values for the exponents in terms of what is now called a
mean-field theory [14]. His student Verschaffelt made very
precise experimental measurements on capillarity and in 1900
published experimental estimates for the exponents which
were not equal to the mean-field values [15]. His results were
ignored for 60 years because they had no theoretical support
(see Ref. [16] for an excellent historical account). The situation
changed only with Onsager’s analytic proof of non-mean-field
exponent values in the 2D Ising model [17], which finally led
on to the establishment of the principle of universality, within
the RG theory concept [18].

Verschaffelt employed temperature-dependent effective ex-
ponents in his analyses. Effective exponent analyses were
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TABLE I. Estimates of the critical inverse temperatures, ex-
ponents, and critical dimensionless parameters βc, γ, ν, η, g(βc),
ξ/L(β,L), h(β,L), Wq (β,L) and for 5D bimodal, uniform, Gaussian,
and Laplacian distribution ISG models.

Model Bimodal Uniform Gaussian Laplacian
Kurtosis 1 1.8 3 6
colrule βc 0.3885(5) 0.4000(5) 0.4190(5) 0.455(1)
γ 1.73(2) 1.625(20) 1.600(5) 1.49(2)
ν 0.77(2) 0.72(1) 0.720(5) 0.69(1)
η − 0.25(3) − 0.26(3) − 0.22(2) − 0.21(2)
g(βc) 0.35(1) 0.294(1) 0.300(5) 0.265(5)
ξ/L(βc) 0.450(5) 0.42(1) 0.425(3) 0.401(3)
PW (βc) 1.415(10) 1.425(5) 1.425(10) 1.438(4)
Pskew(βc) 1.41(1) 1.422(10) 1.422(10) 1.442(2)
Wq (βc) 0.155(5) 0.125(2) 0.128(2) 0.115(3)
h(βc) 0.267(5) 0.235(3) 0.228(3) 0.196(5)

reintroduced much later for experimental [19] and numeri-
cal [7,20] ferromagnetic data. Below we also will use effective
exponents in the analysis of ISG simulation data.

III. SIMULATION MEASUREMENTS

We are aware of no previous publications of precise
simulation data on ISGs in dimension 5. The standard ISG
Hamiltonian is

H = −
∑
ij

Jij SiSj , (1)

with the nearest-neighbor symmetric distributions normalized
to 〈J 2

ij 〉 = 1. The normalized inverse temperature is β =
(〈J 2

ij 〉/T 2)1/2. The Ising spins live on simple hypercubic
lattices with periodic boundary conditions. The spin overlap
parameter is defined, as usual, by

q = 1

Ld

∑
i

SA
i SB

i , (2)

where A and B indicate two copies of the same system. The
link overlap is defined analogously as

ql = 1

dLd

∑
ij

SA
i SA

j SB
i SB

j , (3)

where the sum is taken over the edges ij in the underlying
graph. We have studied the symmetric bimodal (±J ), Gaus-
sian, uniform [P (J ) = 1/[2 × 31/2] for −31/2 < J < 31/2]
and Laplacian P (J ) = 21/2 exp(−21/2|J |) distribution ISG
models in dimension 5. The principles of the data analysis
are the same as for studies on ISG models in dimensions 3
and 4.

The simulations were carried out using the exchange Monte
Carlo method for equilibration using so-called multispin
coding, on 212 individual samples at each size from L = 3 to
L = 10 for the bimodal and Gaussian models. (It can be noted
that an L = 10 sample in d = 5 contains more spins than an
L = 46 sample in d = 3, so the simulations are laborious.)
However, see the thermodynamic limit (ThL) figure-of-merit
discussion in Sec. VI. For the uniform distribution model
212 samples were studied up to L = 6, and 29 samples up

to L = 9, and for the Laplacian model 212 samples were
studied up to L = 6, and 29 samples up to L = 8. An exchange
was attempted after every sweep with a success rate of at
least 30%. At least 40 temperatures were used, forming a
geometric progression reaching a maximum β = 0.41 in the
bimodal model, β = 0.44 in the Gaussian model, β = 0.47 in
the uniform model, and β = 0.52 in the Laplacian model.
This ensures that our data span the critical temperature
region which is essential for the finite-size scaling (FSS)
analyses. Near the critical temperature the β step length was
at most 0.003. The various systems were deemed to have
reached equilibrium when the sample average susceptibility
for the lowest temperature showed no trend between runs.
For example, for L = 10 this means about 200 000 sweep-
exchange steps.

It should be pointed out that there is no single definitive
method for determining equilibration in all cases. This can
only be based on consistency between repeated experiments.
Stability between sample averages of 〈q2〉 at the highest
β value for long runs appears to be a strong indicator of
equilibration. We simply plot these values versus the number
of sweeps and stop the equilibration process when the data
appear constant (modulo noise). Note also that we use the
values at the largest β value, which is well beyond the βc value.
Thus, we can be confident that in the finite-size scaling regime
around βc, and a fortiori in the thermodynamic limit envelope
regime with β < βc, the systems are definitely equilibrated
as they are all at lower β and so will have equilibrated
faster.

After equilibration, at least 200 000 measurements were
made for each sample for all sizes, taking place after every
sweep-exchange step. Data were registered for the energy
E(β,L), the correlation length ξ (β,L), for the spin over-
lap moments 〈|q|〉, 〈q2〉, 〈|q|3〉, 〈q4〉 and the corresponding
link overlap q� moments. In addition, the correlations
〈E(β,L),U (β,L)〉 between the energy and the observ-
ables U (β,L) were also registered so that thermodynamic
derivatives could be evaluated using the thermodynamic
relation ∂U (β,L)/∂β = 〈U (β,L),E(β,L)〉 − 〈U (β,L)〉
〈E(β,L)〉, where E(β,L) is the energy [21].

As a double check for equilibration in the case of Gaussian
interactions, we verify that the systems obey the simple rule
[〈ql〉] + [〈E〉]/β = 1 to within 10−4 for large L at all β

values measured; this is an equilibration condition suggested
in Ref. [22]. This also provides us with an indirect estimate
of how many sweeps are required for equilibration for the
other interaction cases. In passing, we observe that 5D systems
tend to reach equilibration in a more distinct manner than
4D systems do, which, in turn, are considerably easier to
equilibrate than 3D systems.

Bootstrap analyses were carried out for the errors in the
observables U (β,L) as well as in their derivatives. Bootstrap-
ping (the nonparametric version) here refers to the simple
and quite general method (some care should be taken when
the underlying distribution is heavy tailed) for estimating
the error of some statistic through random sampling with
replacement. As a simple example, if we have Ns samples
(i.e., Jij configurations), each with its own 〈q2〉 and 〈q4〉, then
the error in the quantity [〈q4〉]/[〈q2〉]2 is obtained by randomly
choosing with replacement Ns samples, e.g., 1000 times and
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compute the resulting [〈q4〉]/[〈q2〉]2 for each such choice (i.e.,
a bootstrap sample). The standard deviation of these values
then gives the error estimate σ̂ of [〈q4〉]/[〈q2〉]2.

Note that 〈|q|〉 and 〈q2〉 for each sample are themselves
mean values also having variances and standard errors. This
point, which is, of course, not specific to dimension 5 but
occurs in all analogous ISG studies, is discussed in the
Appendix.

IV. FINITE-SIZE SCALING

The usual approach to critical parameter measurements
through simulations is to study the size dependence of
dimensionless observables Q(β,L) [generally the Binder cu-
mulant g(β,L) = (3 − [〈q4〉]/[〈q2〉]2)/2 and the normalized
correlation length ξ (β,L)/L] in the regime very near the
critical point. g(β,L) must saturate at g(β,L) = 1 for β � βc,
which is not the case for ξ (β,L)/L. It can be noted that we
find critical g(βc) values much lower in 5D ISGs than in 3D
or even in 4D ISGs, so the 5D g(β,L) data have space to
“fan out” beyond βc making this parameter more efficient for
critical regime analyses in 5D than in the other dimensions.
The typical FSS expression, valid in the near critical region
if there is a single dominant scaling correction term, is
(see [6])

Q(β,L) = Qc + AL−ω + B(β − βc)L1/ν, (4)

where ν is the correlation length critical exponent and ω is
the exponent of the leading finite-size correction term. For any
dimensionless parameter Q the Qc critical values are identical
for all systems within a universality class and the correction
exponent ω is universal for all observables. However, when
higher-order correction terms are strong the “effective” leading
correction exponent obtained from data fits can vary from
observable to observable. From the HTSE and ThL data, which
we will discuss later, the 5D correction exponent is typically
ω ≈ 1.0 in the different models.

We will use the finite-size scaling measurements as one
method to estimate the critical inverse temperatures βc,
together with the dimensionless parameter values Qc at
criticality extrapolated to the infinite-size limit. The critical
exponent ν can be estimated from the derivatives at criticality
through [6]

∂Q(β,L)

∂β

∣∣∣∣
βc

= AQL1/ν(1 + aQL−ω + · · · ). (5)

The critical exponent η can be estimated through [6]

χ (βc,L)

L2
= AχL−η(1 + aχL−ω + · · · ). (6)

For the present analysis we have recorded the FSS behavior
of various dimensionless parameters in addition to the Binder
cumulant g(β,L) and the correlation length ratio ξ (β,L)/L.
The dimensionless parameter W (β,L) for Ising ferromagnets
was introduced in Ref. [23]. In the ISG context the parameter
Wq(β,L) is defined by

Wq(β,L) = 1

π − 2

(
π [〈|q|〉]2

[〈q2〉] − 2

)
. (7)

In the same spirit we will also make use of other dimen-
sionless parameters,

h(β,L) = 1√
π − √

8

(√
π

[〈|q3|〉]
[〈q2〉]3/2

−
√

8

)
, (8)

PW =
[ 〈|q|〉2

〈q2〉
]
, (9)

and the skewness

Pskew =
[ 〈|q|3〉
〈q2〉3/2

]
, (10)

which also have analogous scaling properties.

V. THERMODYNAMIC DERIVATIVE PEAK ANALYSIS

The thermodynamic derivative peak analysis can also be
an efficient method for analyzing data in a ferromagnet or an
ISG. Near criticality in a ferromagnet, for a number of standard
observables Q the heights of the peaks of the thermodynamic
derivatives ∂Q(β,L)/∂β scale for large L as [21,24]

Dmax(L) = ∂Q(β,L)

∂β

∣∣∣∣
max

∝ L1/ν(1 + aL−ω/ν). (11)

The observables used for Q(β,L) can be, for instance, the
Binder cumulant g(β,L) or the logarithm of the finite-size
susceptibility ln[χ (β,L)] [21]. Without needing a value of
βc as input, the large L peak height Dmax(L) against L plot
provides 1/ν directly, to within scaling corrections.

In addition, the temperature location of the derivative peak
βmax(L) scales as

βc − βmax(L) ∝ L−1/ν(1 + bL−ω/ν). (12)

We note that the inverse of the derivative peak height
1/Dmax(L) and the peak location temperature difference βc −
βmax(L) are both proportional to L−1/ν(1 + aL−ω/ν + · · · )
(with the leading correction terms having different prefactors).
Then βmax(L) plotted against 1/Dmax(L) must tend linearly
towards the intercept βc as 1/Dmax(L) tends to zero for large
L. All plots of the same type for different observables Q

should extrapolate consistently to the true βc. The leading
correction is eliminated to first order and, together with the
higher-order corrections, only appears as a modification to the
straight line for small L. Provided that the peaks for the chosen
observable fall reasonably close to βc, these data can be much
simpler to analyze than those from the crossing technique. For
ferromagnets, Ferrenberg and Landau [21] found this form of
analysis significantly more accurate than the standard Binder
cumulant crossing approach.

In the ISG context exactly the same methodology can be
used as in the ferromagnet [8,9]. Because the exponent ν is
relatively small in 5D ISGs this technique is an efficient inde-
pendent method for estimating βc. As far as we are aware this
analysis has not been used previously by other authors in ISGs.

VI. THERMODYNAMIC LIMIT SCALING

The high-temperature series expansion for the spin-glass
susceptibility of an ISG with a symmetrical interaction
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distribution can be written [12]

χ (β) = 1 + a1β
2 + a2β

4 + · · · . (13)

Only even terms in powers of β exist because of the symmetry
between positive and negative interactions, so β2, rather than
β, is the natural thermal scaling variable [11,12,25,26]. In
principle, an infinite set of exact HTSE factors an exists. In
practice, terms in different ISG models have been calculated,
at best, up to n = 15 (see Refs. [11,12,25]). Then, according
to Darboux’s first theorem [27], the asymptotic form of the
sum of the entire series (all terms to infinite n) is eventually
dominated by the closest singularity to the origin, which in the
simplest case is the physical singularity [7,12], so near β2

c ,

χ (β) = Cχ [1 − (β/βc)2]−γ , (14)

with β2
c being the inverse critical temperature squared and γ

the standard critical exponent.
It is thus natural to adopt τ = 1 − (β/βc)2 as the scaling

variable in analyses of ThL ISG simulation data, as in
the HTSE analyses [12,26]. (An equivalent natural scaling
variable which has been generally used for HTSE analyses
on ISGs with symmetric bimodal interaction distributions
is [11,25] w = 1 − tanh(β)2/ tanh(βc)2. The discussion above
holds throughout, with w replacing τ . The exponents, of
course, remain the same, though the factors C,a, etc., are
modified.) Then the Wegner scaling expression [28] for the
ThL ISG susceptibility extended over the whole paramagnetic
range is

χ (τ ) = Cχτ−γ (1 + aχτ θ + bχτ θ ′ + · · · ), (15)

where θ = νω is the leading thermal correction exponent
and the second term is generally analytic. (The relation
between θ and ω follows from a dimensional argument.) In
practice, with a finite set of correction terms the expression
becomes approximate. The standard RG scaling variable
t = (T − Tc)/Tc is often used for ISG simulation analyses
close to criticality, but this scaling variable is not convenient at
higher temperatures as t diverges at infinite temperature, while
τ tends to 1. Also with this scaling variable the temperature
appears as T , not T 2, so t is only appropriate for ISGs as an
approximation near βc.

The HTSE second moment of the ISG spin-spin correlations
μ2 = ∑

r2〈S0.Sr〉 (where r is the distance between the spins
situated at positions 0 and r) is of the form (see Ref. [7,29] for
the ferromagnetic case)

μ2(β) = β2(z + b1β
2 + b2β

4 + · · · ), (16)

where z is the number of nearest neighbors. The ThL μ2

diverges at βc as τ−(γ+2ν). Then, invoking again Darboux’s
theorem to link the series within the brackets to the critical
divergence, the appropriate scaling form can be written as

μ2(β) = Cμzβ2τ−(γ+2ν)(1 + aμτ θ + · · · ). (17)

As the ThL second moment correlation length is defined
through μ2 = zχ (β)ξ (β)2, the Wegner form for the normal-
ized ISG ThL correlation length can be written [26]

ξ (β)/β = Cξτ
−ν(1 + aξ τ

θ + bξ τ + · · · ). (18)

It is important to note the factor β, which normalizes ξ (β) in
this equation.

The form of susceptibility scaling outlined here for ISGs
was used from the earliest HTSE studies of critical behavior
in ferromagnets and then in ISGs [7,11,12,30]. The analogous
normalized correlation length form was introduced explicitly
in Ref. [26].

The full HTSE sum is by construction in the (infinite L)
ThL, but extrapolations from high temperature must be made in
order to estimate behavior at criticality, because the complete
series is not available [12]. Simulation data are necessarily
taken at finite L, but can be considered as also being in
the ThL as long as L � ξ (β), where ξ (β) is the ThL
correlation length. The ThL envelope curves can generally
be recognized by inspection of the data plots. As a rule of
thumb, the condition L > 6ξ (β) can generally be taken as
sufficient, with observables independent of L and equal to
the ThL values as long as this condition is satisfied. The
simulation data supplement and extend the HTSE data. As
ξ (β) ∼ β[1 − (β/βc)2]−ν in ISGs, the ThL condition can be
written approximately in terms of a figure of merit; if τmin is
the lowest reduced temperature to which the ThL condition
holds for size L,

τmin ≈ (L/6βc)−1/ν . (19)

In dimension 5 with βc ≈ 0.4 and ν ≈ 0.7 the condition
implies τmin ≈ 0.15 if the largest size used is L = 10. This
τmin corresponds to a temperature within 8% of the critical
temperature. It can be underlined that in dimension 3 with
the appropriate parameters for ISGs, βc ≈ 1, ν ≈ 2.5, to reach
τmin ≈ 0.15 would require sample sizes to L ≈ 300, far beyond
the maximum sizes which have been studied numerically up
to now in 3D ISGs. The ISG ThL regime can be studied
numerically reasonably close to criticality in dimension 5
(and dimension 4) but the situation is much more delicate
in dimension 3.

Temperature- and size-dependent susceptibility and cor-
relation length effective exponents, valid over the entire
paramagnetic regime, can be defined by

γ (τ,L) = −∂ ln χ (τ,L)/∂ ln τ, (20)

ν(τ,L) = −∂ ln[ξ (τ,L)/β]/∂ ln τ. (21)

The critical limits are γ (0,∞) = γ and ν(0,∞) = ν; extrap-
olations must be made to estimate the critical exponents from
HTSE or simulation data. In simple hypercubic lattices of
dimension d, where z = 2d, the exact ISG high-temperature
limits for all L are γ (1,L) = 2dβ2

c and ν(1,L) = (d −
K/3)β2

c , where K is the kurtosis of the interaction distribution
(K = 1 for the bimodal distribution, K = 3 for the Gaussian
distribution, K = 9/5 for the uniform distribution, and K = 6
for the Laplacian distribution).

The value of βc enters implicitly into the definitions of
γ (τ,L) and ν(τ,L) in Eq. (21) through the definition of τ , so
it is important to have well-established estimates for βc for the
γ and ν effective exponent analyses.

Turning to the exponent η, the temperature-dependent
effective η(β,L) can be estimated through

2 − η(β,L) = ∂ ln χ (β,L)

∂ ln[ξ (β,L)/β]
= γ (β,L)

ν(β,L)
. (22)
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Alternatively, one can make a log-log plot of y(β,L) =
χ (β,L)/[ξ (β,L)/β]2 against x(β,L) = ξ (β,L)/β. At high
temperatures and for all L, x(β,L) and y(β,L) both tend to 1 as
β tends to 0. For large L and temperatures near criticality, the
slope of the ThL envelope curve ∂ ln y(β,L)/∂ ln x(β,L) tends
to the critical exponent −η in the limit β → βc, where both
y(β,L) and x(β,L) diverge. With an appropriate fit function,
extrapolation of the ThL envelope curve to the large L limit
leads to an estimate for η purely from ThL data, without
invoking the FSS estimate for βc.

VII. PRIVMAN-FISHER SCALING

The Privman-Fisher scaling ansatz [31] for an observable
Q(β,L) can be written in the simple general form

Q(β,L)/Q(β,∞) = F [L/ξ (β,∞)], (23)

where Wegner thermal correction terms are implicitly included
in Q(β,∞) and ξ (β,∞). A leading finite-size correction term
can be introduced [32]:

Q(β,L)

Q(β,∞)
= F ′[L/ξ (β,∞)]

{
1 + GQ[L/ξ (β,∞)]

Lω

}
. (24)

For given values of the critical inverse temperature and
exponents βc, ν, and η, assuming the leading ThL ISG
extended scaling expressions χ (β,∞) ∝ [1 − (β/βc)2]−γ and
ξ (β,∞) ∝ β[1 − (β/βc)2]−ν are valid and ignoring Wegner
correction terms, the basic Privman-Fisher ansatz for the
susceptibility can be readily transformed into

χ (β,L)

(L/β)2−η
= F{|[1 − (β/βc)2]|(L/β)1/ν}, (25)

as applied in [26,33]. This extended scaling form is less
sensitive to the precise values of the critical parameters than
is the ThL scaling and does not contain the correction terms.
However, it allows one to scale all the data, not only those from
the ThL regime, but also from the crossover regime between
the ThL and FSS regimes, from the critical regime, and even

FIG. 1. Gaussian 5D ISG model. Even L Binder cumulants
g(β,L) against inverse temperature β, L = 4, 6, 8, and 10 (top to
bottom on the left).

FIG. 2. Gaussian 5D ISG model. Even L data for the observable
h(β,L) against β, L = 4, 6, 8, and 10 (top to bottom on the left).

from the region to temperatures rather below the critical
temperature. Below it will be seen that very acceptable scaling
is observed for the data from each of the four models studied,
when the appropriate scaling parameters are used. This shows
that the data for all L and for all temperatures from infinity
down to below Tc can be encapsulated in the scaling expres-
sion (25), adjusting only the three critical parameters βc, ν,
and η. If Wegner correction terms have been estimated from
ThL scaling, these can be introduced to improve the scaling but
their influence will only be felt well outside the critical region.

VIII. THE 5D GAUSSIAN DISTRIBUTION ISG MODEL

For the Gaussian distribution model, the FSS Binder
parameter g(β,L) data and the parameter h(β,L) both happen
to show no visible correction to scaling at criticality (Figs. 1
and 2). This provides us with consistent and accurate estimates
βc = 0.4190(3), gc = 0.300(2), and hc = 0.225(1). The data
for the other dimensionless parameters in the form of fixed

FIG. 3. Gaussian 5D ISG. Pskew(β,L) against 1/L for fixed
β, β = 0.424, 0.422, 0.420, 0.419, 0.418, 0.416, and 0.414 (top to
bottom). Dashed line, estimated criticality.
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FIG. 4. Gaussian 5D ISG. Peak location y = βmax against in-
verse peak height x = 1/Dmax for the derivatives ∂PW/∂β, ∂h/∂β,
and ∂g/∂β (top to bottom). Sizes L = 3, 4, 5, 6, 7, 8, 9, and 10
(increasing to the left). For each observable the points extrapolate to
y(x) = βc at the intercept; see text.

temperature plots show only weak corrections to scaling. They
are all consistent with βc = 0.419 and ω ≈ 1. As the finite-size
corrections are weak the analyses are rather insensitive to
the assumed value for ω; see, for instance, Fig. 3. The
critical value estimates for the dimensionless parameters are
listed in the Conclusion, (Table I). Data for the locations of
thermodynamic derivative peaks are shown in Fig. 4. They are
also all consistent with βc = 0.419.

The effective exponents γ (τ,L) = ∂ ln χ (τ,L)/∂ ln τ and
ν(τ,L) = ∂ ln[ξ (τ,L)/β]/∂ ln τ , with βc fixed at 0.419, are
shown in Figs. 5 and 6. For Fig. 5 a HTSE curve (calculated
with an values obtained explicitly from summing the tabulation

FIG. 5. Gaussian 5D ISG. Effective exponent γ (τ,L) as a
function of τ with βc = 0.419. Points, simulation data for L =
10, 9, 8, 7, 6, 5, and 4 (left to right); dashed curve, fit; continuous
(green) curve on the right, calculated by summing the HTSE
tabulation of [12].

FIG. 6. Gaussian 5D ISG. Effective exponent ν(τ,L) as func-
tion of τ with βc = 0.419. Points, simulation data for L =
10, 9, 8, 7, 6, 5, and 4 (left to right); continuous (green) curve, fit.

in [12]) is also included with the simulation data. This curve,
calculated with the known 13 leading HTSE terms only,
is essentially exact in the high- to moderate-τ region. The
numerical data are in excellent agreement with the HTSE
curve. The fits to the ThL envelope data correspond to

χ (τ ) = 0.94τ−1.59(1 + 0.0625τ 2.4), (26)

ξ (τ ) = 0.98βτ−0.72(1 + 0.017τ 2.4). (27)

Thus, the exponent estimates are γ = 1.59(2) and ν = 0.72(1),
so η = 2 − γ /ν = −0.20(2). In Sec. XII a detailed discussion
is given of the Gaussian HTSE estimates of Ref. [12]. For both
γ and ν the corrections to scaling in the whole paramagnetic
temperature region are weak. For χ (τ ) the “effective” correc-
tion appears to be a sum of high-order correction terms. Any

FIG. 7. Gaussian 5D ISG. The ratio χ (β,L)/[ξ (β,L)/β]2 against
ξ (β,L)/β for L = 10, 9, 8, 7, 6, 5, and 4 (right to left). Continuous
green curve, fit. No value is assumed for βc.
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FIG. 8. Gaussian 5D ISG. Privman-Fisher-like scaling of the
χ (β,L) data following the form used in [26], with assumed parameters
βc = 0.419, ν = 0.72, η = −0.19, and no adjustments. L = 10, pink
squares; L = 8, black circles; L = 6, red triangles; L = 4, blue
inverted triangles. Upper branch, β > βc; lower branch, β < βc.

correction with θ ≈ 1, which might be expected from either
the conformal correction or from a leading analytic correction,
seems to be negligible.

A log-log plot of y(β,L) = χ (β,L)/[ξ (β,L)/β]2 against
x(β,L) = ξ (β,L)/β is shown in Fig. 7. The estimated asymp-
totic slope of the ThL envelope curve ∂ ln y(β,L)/∂ ln x(β,L)
gives an estimate for the critical exponent η = −0.19(2)
without invoking any value for βc. This η estimate is consistent
with the value from the ratio γ /ν.

The basic Privman-Fisher extended scaling (25) for χ (β,L)
with these parameter values is shown in Fig. 8. The scaling
is excellent (including the range of temperatures below Tc,
the upper branch) apart from weak deviations visible for the

FIG. 9. Bimodal 5D ISG. ξ (β,L)/L against 1/L for fixed β, β =
0.395, 0.392, 0.390, 0.389, 0.388, 0.387, 0.385, and 0.382 (top to
bottom). L = 10, 9, 8, 7, 6, 5, 4, and 3 (right to left). Dashed line,
estimated criticality, β = 0.3885.

FIG. 10. Bimodal 5D ISG. PW (β,L) against 1/L for fixed
β, β = 0.385, 0.387, 0.388, 0.389, 0.390, and 0.392 (top to bottom).
L = 10, 9, 8, 7, 6, 5, 4, and 3 (left to right). Dashed line, estimated
criticality, β = 0.3885.

smallest size L = 4, which could be accounted for by a finite-
size correction term.

IX. THE 5D BIMODAL DISTRIBUTION ISG MODEL

For this model the dimensionless observable sets all show
corrections to finite-size scaling. Data for four standard
observables are shown in Figs. 9, 10, 11, and 12. For βc the best
overall estimate is βc = 0.3885(5). Thermodynamic derivative
peak location data are shown in Fig. 13. The extrapolations are
consistent with the same value, βc = 0.3885(5).

The effective exponents γ (τ,L) and ν(τ,L) defined above
are shown in Fig. 14 and 15. The high-temperature curve
included in Fig. 14 is evaluated from the HTSE series
tabulation in Ref. [12]. The critical exponents estimated by

FIG. 11. Bimodal 5D ISG. g(β,L) against 1/L for fixed β, β =
0.392, 0.390, 0.389, 0.388, 0.387, 0.385 (top to bottom). L =
10, 9, 8, 7, 6, 5, 4, 3 (left to right). Dashed line, estimated criticality,
β = 0.3885.
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FIG. 12. Bimodal 5D ISG. h(β,L) against 1/L for fixed β, β =
0.392, 0.390, 0.389, 0.388, 0.387, 0.385 (top to bottom). L =
10, 9, 8, 7, 6, 5, 4, 3 (left to right). Dashed line, estimated criticality,
β = 0.3885.

extrapolation are γ = 1.73(3) and ν = 0.76(1), and the fit
curves correspond to the ThL expressions

χ (τ ) = 0.73τ−1.73(1 + 0.37τ 0.95 − 0.005τ 8), (28)

ξ (τ ) = 0.94βτ−0.76(1 + 0.068τ ). (29)

The simulation βc, γ , and ν values are in excellent agreement
with the quite independent HTSE bimodal critical value
estimates βc = 0.389(1), γ = 1.73(3), and ν ≈ 0.73 of Klein
et al [11] discussed in detail in Sec. XII.

FIG. 13. Bimodal 5D ISG. Peak location y = βmax against in-
verse peak height x = 1/Dmax for the derivative sets ∂h(β,L)/∂β,
∂PW (β,L)/∂β, ∂Pskew(β,L)/∂β, and ∂g(β,L)/∂β (top to bottom).
Sizes L = 3, 4, 5, 6, 7, 8, 9, and 10 (increasing to the left). For each
observable the points extrapolate to y(x) = βc at the intercept; see
text.

FIG. 14. Bimodal 5D ISG. Effective exponent γ (τ,L) as a
function of τ with βc = 0.3885. Points, simulation data for L =
10, 9, 8, 7, 6, 5 (left to right); continuous (blue) curve on the right,
calculated by summing the HTSE tabulation of [12]; dashed line,
fit.

A log-log plot of y(β,L) = χ (β,L)/[ξ (β,L)/β]2 against
x(β,L) = ξ (β,L)/β is shown in Fig. 16. The estimated limit-
ing slope of the ThL envelope curve ∂ ln y(β,L)/∂ ln x(β,L)
gives an estimate for the critical exponent −η = 0.28(1),
without invoking any estimate for βc. The Privman-Fisher
extended scaling plot for χ (β,L) with these critical parameters
is shown in Fig. 17.

X. THE 5D UNIFORM DISTRIBUTION ISG MODEL

The numerical data for the uniform distribution model and
the Laplacian distribution model are less complete than for
the bimodal and Gaussian models because of computing time
limitations. Nevertheless, reliable critical parameter estimates
have been obtained for both models.

For the uniform distribution model the FSS scaling data
for the dimensionless observables g(β,L) (Fig. 18), h(β,L)

FIG. 15. Bimodal 5D ISG. Effective exponent ν(τ,L) as func-
tion of τ with βc = 0.3885. Points, simulation data for for L =
10, 9, 8, 7, 6, and 5 (left to right); red arrow, exact limit; dashed
line, fit.
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FIG. 16. Bimodal 5D ISG. The ratio χ (β,L)/[ξ (β,L)/β]2 against
ξ (β,L)/β for L = 10, 9, 8, 7, 6, 5, and 4 (right to left). Continuous
(green) curve, fit. No value is assumed for βc.

(Fig. 19), PW (β,L), and Wq(β,L) all happen to show negligible
corrections to scaling and all consistently indicate βc =
0.400(1). The data for the other dimensionless observables
show only weak corrections to scaling and are consistent with
this βc. The thermodynamic derivative peak data also confirm
the critical temperature value (Fig. 20). The ThL effective
exponent fits correspond to

χ (τ ) = 0.93τ−1.625(1 + 0.104τ − 0.025τ 3), (30)

ξ (τ ) = 0.99τ−0.72(1 + 0.01τ 2.0), (31)

so estimates γ = 1.625(20), ν = 0.72(1), and η = −0.26(3)
(Figs. 21 and 22). The corrections to scaling are weak. The
βc and γ values can be compared to the HTSE estimates [12]
βc = 0.4016(37) and γ = 1.70(15). (Here the critical tem-

FIG. 17. Bimodal 5D ISG. Privman-Fisher-like scaling of the
χ (β,L) data following the form used in [26], with assumed parameters
βc = 0.3885, ν = 0.77, η = −0.25 and no adjustments. L = 10,
pink squares; L = 8, black circles; L = 6, red triangles; L = 4, blue
inverted triangles. Upper branch, β > βc; lower branch, β < βc.

FIG. 18. Uniform 5D ISG. The Binder cumulant g(β,L) against
1/L for fixed β, β = 0.405, 0.4025, 0.400, 0.3975, and 0.395 (top
to bottom). L = 9, 8, 7, 6, 5, 4, and 3 (left to right). Dashed line,
estimated criticality, β = 0.400.

perature quoted is in terms of the present normalization,
not to that used in Ref. [12].) The simulation and HTSE
results are consistent, with the wide error bar in the HTSE
γ being mainly due to the associated uncertainty in the
HTSE β2

c . A log-log plot of y(β,L) = χ (β,L)/[ξ (β,L)/β]2

against x(β,L) = ξ (β,L)/β is shown in Fig. 23. The limiting
slope gives the estimate −η = 0.26(3). The Privman-Fisher
extended scaling plot for χ (β,L) is shown in Fig. 24. The
scaling is excellent until temperatures well below Tc.

XI. THE LAPLACIAN DISTRIBUTION MODEL

For the Laplacian distribution model, the FSS g(β,L),
h(β,L), and PW (β,L) data; see Figs. 25, 26, and 27, respec-
tively. The latter happen to show a negligible correction to

FIG. 19. Uniform 5D ISG. The observable h(β,L) against 1/L

for fixed β, β = 0.405, 0.4025, 0.4000, 0.3975, 0.3950 (top to
bottom). L = 9, 8, 7, 6, 5, 4, 3 (left to right). Dashed line, estimated
criticality, β = 0.400.
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FIG. 20. Uniform 5D ISG. Peak location y = βmax against inverse
peak height x = 1/Dmax for the derivative sets ∂h(β,L)/∂β (top) and
∂g(β,L)/∂β (bottom). Sizes, L = 3, 4, 5, 6, 7, 8, and 9 (increasing
to the left). For both observables the points extrapolate to y(x) = βc

at the intercept; see text.

scaling, providing an accurate estimate βc = 0.455(1), see
Fig. 28. The data for the other dimensionless observables show
weak corrections to scaling. Fixed temperature plots of the
data (Figs. 25 and 26) are consistent with the same βc and
the critical values of the dimensionless observables given in
Table I. The ThL data fits correspond to

χ (τ ) = 1.33τ−1.5(1 − 0.25τ 1.65), (32)

ξ (τ ) = 0.973βτ−0.69(1 + 0.028τ 2.5), (33)

leading to the critical parameter estimates γ = 1.50(5), ν =
0.69(2), and η = −0.17(3), see Figs. 29 and 30. The effective
correction exponents are relatively high, indicating a low
prefactor for a leading term with θ ≈ 1.0.

FIG. 21. Uniform 5D ISG. Effective exponent γ (τ,L) as function
of τ with βc = 0.400. Points, simulation data for L = 9, 8, 7, 6, 5,
and 4 (left to right). Red arrow, exact limit; continuous (green) curve,
fit; continuous (red) curve on the right, almost hidden under the fit
curve, calculated by summing the HTSE tabulation of [12].

FIG. 22. Uniform 5D ISG. Effective exponent ν(τ,L) as function
of τ with βc = 0.400. Points, simulation data for for L = 9, 8, 7, 6,
and 5 (left to right). Red arrow, exact limit; continuous (green) curve,
fit.

A log-log plot of y(β,L) = χ (β,L)/[ξ (β,L)/β]2 against
x(β,L) = ξ (β,L)/β is shownin Fig. 31. The estimated limiting
slope of the ThL envelope curve ∂ ln y(β,L)/∂ ln x(β,L) gives
an estimate for the critical exponent η = −0.19(3) without
invoking any estimate for βc. The Privman-Fisher extended
scaling for χ (β,L) is shown in Fig. 32. There are no published
HTSE data on this model.

XII. HIGH-TEMPERATURE SERIES EXPANSIONS

Having the numerical analyses in hand, we will now discuss
in detail the HTSE data [11,12] published some years ago. The
HTSE technique is efficient for ISGs in dimension 5 because
of the proximity to the ISG upper critical dimension d = 6.
High-temperature series expansion calculations have been
made on the bimodal ISG [11] in general dimension, using w =
tanh(β)2 as the scaling variable, and on ISGs with bimodal,

FIG. 23. Uniform 5D ISG. The ratio χ (β,L)/[ξ (β,L)/β]2 against
ξ (β,L)/β for L = 9, 8, 7, 6, 5, 4, and 3 (right to left). Continuous
(green) curve, fit. No value is assumed for βc.
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FIG. 24. Uniform 5D ISG. Privman-Fisher-like scaling of the
χ (β,L) data following the form used in [26], with assumed parameters
βc = 0.3885, ν = 0.77, η = −0.25, and no adjustments. L = 9, pink
squares; L = 8, black circles; L = 6, red triangles; L = 4, blue
inverted triangles. Upper branch, β > βc; lower branch, β < βc.

Gaussian, uniform, and double triangle distributions using β2

as the scaling variable [12], again in general dimension. The
number of series terms an evaluated was limited by practical
considerations to n = 15 for bimodal interactions in both cases
and to n = 13 for the other distributions [12].

In Ref. [12] the spin-glass susceptibility terms were
evaluated, and the series were analyzed through Dlog Padé,
M1 and M2 techniques combined with Euler-transformations
(see Ref. [12] for details concerning these techniques). The
precision on the extrapolations to criticality was limited by the
restricted number of terms and by a parasitic antiferromagnetic
contribution which oscillates in sign and grows in strength with
increasing n. (The Euler transformation is designed to reduce
the influence of this parasitic term). The critical β2

c , the critical

FIG. 25. Laplacian 5D ISG. The parameter g(β,L) against 1/L

for fixed β, β = 0.4600, 0.4575, 0.4550, 0.4525, 0.4500 (top to
bottom). L = 8, 7, 6, 5, 4, 3 (left to right). Dashed line, estimated
criticality, β = 0.455.

FIG. 26. Laplacian 5D ISG. The parameter h(β,L) against 1/L

for fixed β, β = 0.4600, 0.4575, 0.4550, 0.4525, 0.4500 (top to
bottom). L = 8, 7, 6, 5, 4, 3 (left to right). Dashed line, estimated
criticality, β = 0.455.

exponent γ , and the leading correction term exponent θ were
evaluated globally using the different analysis techniques. The
final estimates for both β2

c and γ were cited with rather large
error bars. We will concentrate on the Dlog Padé analysis.
Including Euler transformations, a large number of individual
Dlog Padé solutions were generated for each model. Each
individual solution provided precise linked estimates of the
critical parameters [β2

c ,γ ]. For the 5D Gaussian model explicit
point-by-point data were presented in Fig. 7 of Ref. [12], which
shows the γ against β2

c estimates for each individual solution.
The values of the two parameters are highly correlated, with
the estimates being fairly dispersed, but with the γ values
essentially a smooth function of the β2

c values (see inset to
Fig. 7 of Ref. [12]). The authors quote as their final Dlog
Padé estimates β2

c ≈ 0.174 with the associated global estimate
γ = 1.67(8), and β2

c = 0.177(3) and 1.75(15) from the other

FIG. 27. Laplacian 5D ISG. The parameter PW (β,L) against 1/L

for fixed β, β = 0.450, 0.4525, 0.455, 0.4575, and 0.460 (top to
bottom). L = 8, 7, 6, 5, 4, and 3 (left to right). Dashed line, estimated
criticality, β = 0.455.
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FIG. 28. Laplacian 5D ISG. Peak location y = βmax against
inverse peak height x = 1/Dmax for the derivative sets ∂Wq (β,L)/∂β,
∂h(β,L)/∂β, and ∂g(β,L)/∂β (top to bottom). Sizes L = 3, 4,
5, 6, 7, and 8 (increasing to the left). For each observable, the points
extrapolate to y(x) = βc at the intercept; see text.

analyses, together with θ ≈ 1.0 from all techniques. Imposing
the present accurate simulation estimate β2

c = 0.1755(5) from
FSS and thermodynamic derivative peak analyses onto the
Gaussian Dlog-Padé results in the inset to Fig. 7 of [12],
one can read off a corresponding “threshold biased” estimate
γ = 1.59(2). This is in full agreement with the Gaussian
model simulation estimate above, γ = 1.60(1). Unfortunately
no point-by-point Dlog Padé figures equivalent to that for the
Gaussian model were presented for the bimodal model or for
the uniform model.

For the bimodal model in dimension 5, the HTSE estimates
in [12] are β2

c = 0.154(3), γ = 1.91(10) or 1.95(15), again
with rather wide error bars. However, the earlier HTSE study
by the same group on the bimodal ISG model in general

FIG. 29. Laplacian 5D ISG. Effective exponent γ (τ,L) as a
function of τ with βc = 0.455. Points, simulation data for L =
8, 7, 6, 5, and 4 (left to right); red arrow, exact limit; continuous
(green) curve, fit.

FIG. 30. Laplacian 5D ISG. Effective exponent ν(τ,L) as func-
tion of τ with βc = 0.455. Points, simulation data for for L =
8, 7, 6, 5, and 4 (left to right); red arrow, exact limit; continuous
(green) curve, fit.

dimension [11] using w = tanh(β)2 as scaling parameter was
more complete than that of [12], because, in addition to the
series for the spin-glass susceptibility (referred to as �2 in
Ref. [11]), series for the two higher-order susceptibilities
�3 and �4 (defined in [11]) were also evaluated. The RG
critical exponents for these higher-order susceptibilities are
γ3 = (3γ + dν)/2 and γ4 = 2γ + dν. We have evaluated
explicitly the terms an for the different series from the
tabulations given in Ref. [11]. It turns out that in dimension 5
the parasitic oscillating terms in the an series are much weaker
for these higher-order susceptibilities than for the standard
ISG susceptibility. Because of the supplementary information
from the higher-order susceptibilities, the estimates for the
critical temperature and the critical exponents in the dimension
5 bimodal ISG model are much more precise in Ref. [11]

FIG. 31. Laplacian 5D ISG. The ratio χ (β,L)/[ξ (β,L)/β]2

against ξ (β,L)/β,L = 8, 7, 6, 5, and 4 (right to left). Continuous
(green) curve, fit. No value is assumed for βc.
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FIG. 32. Laplacian 5D ISG. Privman-Fisher-like scaling of the
χ (β,L) data following the form used in [26], with assumed parameters
βc = 0.455, ν = 0.69, η = −0.21, and no adjustments. L = 9, pink
squares; L = 8, black squares; L = 6, red circles; L = 5, green
triangles; L = 4, blue inverted triangles. Upper branch, β > βc; lower
branch, β < βc.

than in [12]. The final estimates presented in Ref. [11] are
wc = 0.1372(8), i.e., βc = 0.389(1) or β2

c = 0.1513(8), and
γ = 1.73(3), γ3 = 4.4(1), and γ4 = 7.3(2) together with θ ≈
1.0. These values can be compared with the independent values
from the simulation estimates given above: βc = 0.3885(5),
γ = 1.73(2), γ3 = (3γ + dν)/2 = 4.5(1), γ4 = 2γ + dν =
7.3(2), and θ ≈ 1.0. Remarkably, the present 5D bimodal
estimates, based on data obtained from the simulation ap-
proach, which is entirely independent technically from HTSE,
are in uncanny agreement with the HTSE estimates from
25 yr ago.

For the 5D uniform model the estimates in Ref. [12]
are β2

c = 0.162(3) (with the present normalization) and
γ = 1.70(15), compatible with but less accurate than the
the simulation estimates β2

c = 0.160(1) and γ = 1.66(2). A
threshold biased HTSE Dlog Padé estimate for γ would
certainly reduce the wide error bar if individual Dlog Padé
estimates were available. No HTSE studies have been made of
the 5D Laplacian model.

It is important that both Ref. [12] and Ref. [11] estimate
the correction exponent in dimension 5 to be θ ≈ 1.0 for
all models. By definition, there can be correction terms
with higher exponents but no correction term with a lower
exponent. The corresponding finite-size correction expo-
nent estimate is ω = θ/ν ≈ 1.2. These HTSE bimodal and
threshold biased Gaussian γ estimates [1.73(3) and 1.60(2),
respectively] confirm the nonuniversality of 5D ISG critical
exponents.

XIII. CONCLUSION

The critical temperatures, critical exponents, and critical
values for a number of dimensionless observables have been
estimated for the bimodal, Gaussian, uniform, and Laplacian
distribution ISG models in dimension 5 from numerical
simulations. The values are summarized in Table I.

The accurate ISG inverse ordering temperature βc values
in 5D increase regularly with the kurtosis K of the interaction
distribution, in agreement with earlier HTSE estimates and as
expected from basic physical arguments [34,35].

More remarkably, the critical exponents also evolve regu-
larly with K . As K increases, the critical exponents γ and ν

decrease regularly. Thus, the uniform, Gaussian and Laplacian
model γ estimates are approximately 4%, 8%, and 15%,
respectively, below the bimodal value. The critical values of the
dimensionless parameters also vary if not quite so regularly;
the critical dimensionless observable values for the extreme
models (bimodal and Laplacian) differ by up to about 30%
depending on the observable.

Comparisons are made between the present simulation
estimates for the exponent γ in the bimodal and Gaussian
models and those obtained independently from HTSE. The
most accurate published HTSE bimodal model βc and γ

values [11] and the present simulation estimates are in full
agreement, βc = 0.3885(5) and γ = 1.73(3). In the Gaussian
model, if the present precise simulation value for βc is used
to threshold bias the analysis of the HTSE data [12], the
HTSE γ value fully agrees with the simulation estimate.
Both techniques then give as the Gaussian model estimate
γ = 1.60(2), clearly lower than the bimodal model value.

These dimension d = 5 ISG data thus confirm the empirical
conclusion reached from dimension d = 4 and dimension d =
2 studies [8–10] that ISG models in a fixed dimension but
with different interaction distributions do not lie in the same
universality class.

Above the upper critical dimension d = 6 the evidence for
universality in Ref. [12] is inconclusive, but it appears plausible
that the standard universality rules should hold. The parameters
for the five-dimensional Ising model are K = 0 (there are no
outliers in the interaction distribution), with the (mean-field)
exponents γ = 1 and ν = 1/2, which clearly do not respect the
ISG trend. However, note that ISGs and ferromagnets are very
different. The Ising model has 〈Jij 〉 = 1, while the ISG models
have symmetric interaction distributions, so 〈Jij 〉 = 0. The 5D
ISG models are all below the ISG upper critical dimension of
6, while the 5D Ising model is above the Ising upper critical
dimension of 4.

One can possibly compare the present ISG data with
the exponents for the percolation model, where the upper
critical dimension is again 6 and where the critical exponents
have been measured accurately. In 5D percolation the major
exponents are γ = 1.185(5) and ν = 0.57(1) [36], perhaps
indicating values which might be reached for an “infinite
kurtosis” limit ISG model.

It is relevant that experimental measurements have already
shown clearly that critical exponents in d = 3 Heisenberg spin
glasses vary considerably from system to system, depending
on the strength of the Dzyaloshinsky-Moriya coupling term
[37].
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APPENDIX A: EXTRAPOLATION TO CRITICALITY

The Wegner expression [28] for the temperature variation of
the thermodynamic limit [L � ξ (τ )] spin glass susceptibility
is

χ (τ ) = Cχτ−γ (1 + aχτ θ + bχτ θ ′ + · · · ), (A1)

where θ = νω is the leading Wegner correction exponent
and the second term is generally supposed to be analytic. In
practice, we limit the series to two terms for the data fits,
and we have no a priori knowledge of the critical exponent
γ or of the correction exponents θ and θ

′
. There is, however,

a strict infinite temperature limit χ (1) = 1. The temperature-
dependent effective susceptibility exponent is then

γ (τ ) = −∂ ln χ (τ )

∂ ln τ
= γ − aχθτ θ + bχθ ′τ θ ′

1 + aχτ θ + bχτ θ ′ , (A2)

with a strict infinite temperature limit γ (1) = 2dβ2
c . As

equilibration has been carried out to below Tc and as the
ThL data extend down to T ≈ 1.1Tc for the largest L, full
equilibration can be confidently assumed for the ThL envelope
data. The statistical error bars on the numerical data are weak
(except for the largest L in the uniform model, where the
number of samples is much smaller than elsewhere) and
are nonexistant for the high-temperature HTSE data. The
agreement between data for different L sets for each model
(which are statistically independent) and between the HTSE
and simulation data can be noted.

Standard fitting procedures were carried out by first assum-
ing θ ≈ 1 and adjusting γ, θ ′, aχ , and bχ so as to optimize the
fits, with the infinite-temperature-limit conditions imposed. It
was essential in all cases to include a second correction term.
The correction prefactors vary considerably from model to
model, with the effective aχ sometimes being negligible. The
final error bars quoted on the extrapolated estimate for the
critical exponent γ include a residual uncertainty associated
with the fitting procedure and an uncertainty associated with
the value of the critical inverse temperature βc. [It can be noted
that the standard finite-size scaling procedures for determining
the exponent γ in ISGs are not direct but rely on independent
estimates for ν and η together with the relation γ = (2 − η)ν.]

The temperature-dependent effective correlation length
exponent is

ν(τ ) = −∂ ln[ξ (τ )/β]

∂ ln τ
= ν − aξ θτ θ + bξ θ

′τ θ ′

1 + aξ τ θ + bξ τ θ ′ , (A3)

with the infinite-temperature-limit conditions ξ (τ )/β → 1
and ν(τ ) → (D − K/3)β2

c , where K is the kurtosis of the
interaction distribution. A similar fitting procedure was applied
to the correlation length data as to the susceptibility data. It
can be seen in the figures that the effective correlation length
exponent data are intrinsically more noisy than the effective
susceptibility exponent data but that the correction terms are
very weak, so the main contribution to the uncertainty in
the extrapolated estimate for the critical exponent ν is purely
statistical.

The quality of the Privman-Fisher-like scaling provides an
overall validation for the fit parameters for both γ (τ ) and ν(τ )
as these plots englobe all the data, not only data from the ThL
limit but also data at temperatures close to (and even below)
the critical temperature for all L.

APPENDIX B: DATA QUALITY

The question of intrasample errors was already discussed
explicitly in the context of early exchange Monte Carlo
measurements in the 3D bimodal ISG model by Ballesteros
et al. [38], who concluded that with even a modest number of
measurement steps the intrasample variance rapidly becomes
unimportant as compared with the intersample term. Later
work on ISG simulations concentrated rather on the conditions
for equilibration [6,39,40]. In the present simulations we make
many more measurement steps than Ballesteros et al. We have
nevertheless made explicit tests concerning the intrasample
variance in the 5D bimodal model.

So, recall that, e.g., 〈|q|〉, 〈q2〉 for each sample are
themselves mean values also having standard errors, i.e.,
intrasample errors. We compute these quantities in the usual
manner, assuming independence of measurements. However,
for a 32-sample subset of the samples we stored each individual
measurement and estimated their moments of the observables
using the bootstrap method in case measurements cannot
be treated as independent. We find no significant difference
between these bootstrap estimates and the usual moment
means. It should be added here that for most temperatures the
exchange ratio is at least 30%, which means that the probability
of measuring on the same sample twice in a row (for a given
temperature) is less than (roughly) 50%, which, of course,
is beneficial to the independence between measurements. Re-
garding equilibration again, neither do moments of observables
from the first and second half of the measurements show any
significant difference. (This equilibration criterion was used,
for instance, in Ref. [41].)

Given a set of samples the standard error of a grand
mean (mean of the means) over these particular samples
for some observable U is ε̂ = εrms/

√
Ns , where εrms is the

root mean square of ε1, . . . ,εNs
, the standard errors of the

mean observables 〈U 〉1, . . . ,〈U 〉Ns
, Ns being the number of

samples. The parameter ε̂ indicates the reliability of our
estimated grand mean were we to repeat the measurements
for these particular samples. In contrast, the standard error σ̂

of the random sample grand mean is defined as the standard
deviation of the sample means 〈U 〉1, . . . ,〈U 〉Ns

divided by√
Ns .
The standard error ε̂ is very small compared to the grand

mean for our data. For observable q2 the ratio ε̂/[〈q2〉] is less
than 10−4 for all temperatures. A small ε̂ does not necessarily
give us a small σ̂ . Experimentation, not only on our 5D ISG
data, but also on various random parametrized distributions,
suggests instead that increasing the number of measurements
to obtain a small ε̂ just gives a small variation in σ̂ between
repeated experiments. Indeed, the dependence seems to be
linear but we make no claims regarding the slope coefficient.
At best then, a small ε̂ thus indicates stability between repeated
experiments, even for the standard error σ̂ .
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FIG. 33. Bimodal 5D ISG model. The sample specific grand
mean standard error ε̂ compared to the random sample grand mean
standard error σ̂ for observable q2, plotted versus inverse temperature
β, L = 4, 6, 8, 10 (left to right).

Our ε̂ is, in fact, small when compared to σ̂ , even though the
relative error in the observable’s grand mean is at its maximum.
Figure 33 shows the ratio between the two standard errors ε̂/σ̂

for observable q2, and Fig. 34 shows the more relevant standard
error σ̂ in comparison to the grand mean [〈q2〉].

0.25 0.30 0.35 0.40 0.45
β

0.001

0.002

0.003

0.004

0.005

0.006

0.007

σ q2

FIG. 34. Bimodal 5D ISG model. The grand mean standard error
σ̂ of observable q2 for a random sample set compared to its grand
mean [〈q2〉], plotted versus inverse temperature β, L = 4, 6, 8, 10
(left to right). Red line at βc = 0.3885.

To summarize, in agreement with analyses by other groups
of exchange Monte Carlo ISG data in dimensions 2, 3, and
4, under standard measurement conditions the influence of
intrasample variance can be considered negligible as compared
to the intersample variance.
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