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Driven tracers in narrow channels
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Steady-state properties of a driven tracer moving in a narrow two-dimensional (2D) channel of quiescent
medium are studied. The tracer drives the system out of equilibrium, perturbs the density and pressure fields,
and gives the bath particles a nonzero average velocity, creating a current in the channel. Three models in which
the confining effect of the channel is probed are analyzed and compared in this study: the first is the simple
symmetric exclusion process (SSEP), for which the stationary density profile and the pressure on the walls in the
frame of the tracer are computed. We show that the tracer acts like a dipolar source in an average velocity field.
The spatial structure of this 2D strip is then simplified to a one-dimensional (1D) SSEP, in which exchanges of
position between the tracer and the bath particles are allowed. Using a combination of mean-field theory and
exact solution in the limit where no exchange is allowed gives good predictions of the velocity of the tracer and
the density field. Finally, we show that results obtained for the 1D SSEP with exchanges also apply to a gas of
overdamped hard disks in a narrow channel. The correspondence between the parameters of the SSEP and of the
gas of hard disks is systematic and follows from simple intuitive arguments. Our analytical results are checked

numerically.
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I. INTRODUCTION

The influence of a driven particle (tracer) on the steady-state
properties of the medium within which it is moving has been a
subject of considerable experimental and theoretical interest in
recent years. Driven tracers have been studied experimentally
in a wide range of setups such as colloids dragged in DNA
solution [1], spheres dragged in a polymer coil solution [2]
or granular systems [3,4], probe particles inside a colloidal
crystal that locally melt the crystal [5,6], or falling spheres in
a fluid medium [7-9]. Questions of interest are, for example,
the steady-state tracer velocity, the force-velocity relation, the
local density distribution of the medium, the current induced
by the tracer, and fluctuations of the tracer.

On the theoretical side, various approaches have been
applied for studying driven tracers. They range from de-
terministic continuum hydrodynamic equations to models
with stochastic dynamics such as field-theoretic path-integral
approaches for the study of tracer diffusion [10], random
average processes, which provide analytical results for the
density profile [11,12], and a variety of discrete lattice gas
models [13-26]. The latter have proved rather useful for
analyzing features such as density profiles, force-velocity
relations, effect of geometrical constraints and fluctuations and
correlations of the driven tracer. Extensive studies of a tracer
subjected to a constant force have been carried out within
the framework of the simple symmetric exclusion process
(SSEP). In these models the bath particles hop symmetrically
on a lattice while the tracer is biased to preferentially hop
in a particular direction. In addition, the bath particles may
also undergo nonconserving adsorption-desorption processes.
Infinite 1D [13-16], 2D [17,18], 3D spaces [19], and even
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comb-like geometries [20] have been analyzed. In a similar
setup a tracer moving with a constant velocity has been
studied in 2D using an Ising-like model [27]. The case of an
infinite one-dimensional line without absorption-desorption
processes is a special case, where the particles stay ordered,
so that the velocity of the tracer vanishes in the stationary
state, asymptotically behaving like ~'/2. In other cases, in
particular in higher dimensions, the stationary velocity of
the tracer is finite [17-19] and has been found, without
much surprise, to be linear with the force for small driving
force.

Beyond the force-velocity relation, the SSEP framework
allows one to probe the full position distribution of the
tracer [21-24]. In Ref. [24] it is shown that the position
distribution converges to a Gaussian distribution. Its variance
may, however, exhibit anomalous growth depending on the
geometry [24-28]. In particular, for a quasi-1D narrow
channel it has been shown that at large densities the position
distribution of a tracer in a symmetric lattice gas converges
to a Gaussian with variance ~¢3/2, a strongly superdiffusive
behavior. It has also been shown that in narrow channels at
high densities, negative differential mobility is observed [28].
In Ref. [24] this behavior has been linked to the covering
properties of the random walk in this same geometry. The
confinement indeed creates strong time correlations in the bath
particles’ density field.

In the present work we study the steady state properties of a
tracer moving in a narrow channel. The confined environment
is expected to have a strong effect on the properties of the
gas, as has already been shown in equilibrium [29,30] and
out of equilibrium in problems involving one [31-33] or two
particles [34]. Our study is carried out using three different
models: The first model is SSEP, where the simplicity of the
dynamics allows one to calculate the steady state density and
pressure profiles along the channel. The profiles show a peak
ahead of the tracer with a dip behind it, and the velocity of
the tracer is found to depend on L,. We also use a method
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FIG. 1. Scheme of the system studied for large L., L, =5, and
Y7y = 2. The small black disks are bath particles that may hop toward
neighboring sites with rate 1 if they are empty. The large red disk
is the tracer particle that hops with rate p to the right and ¢ to the
left. In order to measure the pressure, we introduce an extra site at
the boundaries toward which bath particles are allowed to hop with
rate A < 1 (blue dashed-dotted site, also see Sec. II C 2). The extra
site always moves with the tracer, so that their distance is constant.
In this picture the extra site is in a position to measure the pressure at
a distance (2,3) from the tracer.

for measuring the pressure in lattice gas models [35] for
calculating the local pressure at the boundary to obtain the
pressure profile in the framework of the moving tracer. The
model is then further simplified by introducing a corresponding
one-dimensional (1D) SSEP-type model where, to reproduce
the effect of the rows parallel to the one of the tracer, overtakes
between bath particles and the tracer are allowed. This model is
simpler to analyze and its steady state density profile is exactly
calculable in some limit. The results obtained for the 1D model
are readily compared with the ones of the 2D channel. In the
third approach we consider a molecular dynamics model of
overdamped hard disks (HD) in a narrow 2D channel. We
show that the density profile and the velocity of the tracer in
the hard disks model can be predicted to some extent using the
results of the previous section for the 1D SSEP with overtakes.

The paper is organized as follows. In Sec. II we study
the 2D SSEP model. We present analytical predictions from
the discrete equations as well as from a simpler continuous
equation and compare them to numerical results for the
density field and the pressure. We then turn to the 1D
SSEP with overtakes in Sec. III. For this model approximate
expressions for the current and the density profile are obtained.
In Sec. IV the HD model is considered, and we show that a
correspondence can be made between this more complicated
model and the 1D SSEP. Section V summarizes and concludes
the paper.

II. SSEP WITH A DRIVEN TRACER IN
A TWO-DIMENSIONAL NARROW CHANNEL

A. Model

We start with studying the system drawn in Fig. 1. We
consider a two-dimensional square lattice of length L, in the
X direction and L, in the Y direction. We impose periodic
boundary conditions in the X direction and reflecting ones
in the Y direction. In the lattice frame sites are denoted by
R=(X,Y)with X=1,...,Lyand Y =1,...,L,, and the
basis vectors are denoted by e, and e,. We consider the case
of large L, while keeping L, small (of order 1), which means
that the particle will move in a narrow channel.
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On this lattice we place one special particle, the tracer,
and N identical bath particles. The global density of the bath
particles is p = LXLL‘_I The hard core exclusion constraint is
enforced, i.e., the maximum number of particles on each site is
1. The model evolves by random sequential dynamics, so that
time is continuous. Bath particles attempt to hop in each of the
four directions with rate 1. Their move is accepted if and only
if their target site is empty. The bath particles are simply SSEP
particles and would reach an equilibrium state with uniform
distribution if there were no tracer.

In the most general case, the tracer would be allowed
to move towards the four directions of space with different
probabilities that depend on the force applied. In the present
study we simplify the dynamics and allow the tracer to hop
only in the X direction keeping its Y coordinate fixed. We
therefore allow the tracer to attempt to hop only in the +X
direction with rate p and in the —X direction with rate g. The
position of the tracer in the lattice frame is denoted by Ry =
(X7,Y7). By symmetry, we consider only the case p > ¢g. In
the following we analyze the steady-state properties of the
model.

B. Analytical results
1. Equation for the density

We begin by writing an equation for the density field in the
frame of the tracer. A closed equation is obtained by factorizing
the two-point correlations. The equation obtained here is a
particular case of Egs. (13) and (14) in Ref. [18] on the full 2D
plane. Here we however propose a different, somewhat shorter
derivation, and we apply it to the narrow channel geometry.

We denote positions in the frame of the tracer by r = (x,y),
with

X:X—XT, y:Y—YT. (1)
In this frame the tracer is fixed at position r = 0. Let us now
define the occupation variables T = {t,}, which are 0 for an
empty site and 1 for a site occupied by a bath particle, and
write an equation for their evolution in time.

Examination shows that, for r # 0, +e,, +e, we have

Te(t +dt) — T (t) = T'(2), 2
with
Trte, w.p. (1 —1.)dt, e, ==+e,, Le,
ro— —Tr w.p. (I — Tpye,)dt, e, = te,, Le,
" tere, — e Wop. p(1 — T, )dt ’
Tr—e, — T W.p. q(1 — 1_¢ )dt

3

where we have abbreviated “with probability” by “w.p.” The
first two lines are the usual SSEP terms and do not involve
a motion of the tracer. The two last lines correspond to hops
of the tracer. For example, the third line corresponds to the
tracer hopping to the right between ¢ and ¢ 4 dr [probability
p(1 — 1 )dt], thus shifting site r + e, into site r.
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The density is the ensemble average of the occupations,
pr(t) = (t(2)). The ensemble average of Eq. (3) gives

pe(t + dt) — pe(1) N
dt B

Y [pere ) = pe()]

e,==te,,te,
+ Plorte,(2) — pr(1) — (Trre, Te, ) (@)
+ (Trfe)(t)] + Q[;Or—ex(t) — pe(t)
—(Tr—e, T-e )() + (LT, ) (D] (4)
Closed equations can be obtained for the density if one
assumes that the pair correlations factorize, which is expected
to be increasingly accurate at large |r|. Repeating the same
procedure for sites +-e,, -, and factorizing the correlations,
once again we get special equations for these sites. Defining
A+ =1 +p(1 _pex)v
A_=144q(—p_e), (5

the equation for the density field at position r # 0 can be
written as

dpr
dt

= A+(pr+e) — pr) + A—(Ior—ex — Pr)

+ pr-&-e}. + ;Or—e_v - 2/0r
+ Ore, (A e, — A_po) + ¢ —e,(A_p_e, — As0)
+8r.e,(Pe, — 00) + Or.—e,(P—e, — P0)- (6)

The boundary conditions are periodic in the x direction, x =
x + L., and reflecting in the y direction,

Px,—Yr+1) = Px,—Yr)»
P Ly=Yr) = Px,Ly—Yr+1)- @)

For L, = 2Yr — 1 the tracer is in the middle of the channel
and Eqs. (7) become equivalent by symmetry. In this case,
reflecting boundary conditions in the y direction become
equivalent to periodic boundary conditions. In order to make
the equations of the sites adjacent to the tracer have the same
form as the bulk equations we introduce an arbitrary variable
po, Which represents a density at the tracer’s position. In fact,
po drops out of Egs. (6) for any r # 0 and it does not affect
the final result. It can be checked from Eq. (6) that mass is
conserved, % > 20 Pr = 0.

As already stated, the bulk Eq. (6) is a special case of
Egs. (13) and (14) in Ref. [18] when absorption, desorption,
and hopping of the tracer in the y direction all vanish, and
after rescaling of the time, and with py = 0. The boundary
conditions are, however, different from Ref. [18], where the
whole plane is studied.

Since py is arbitrary, one may choose its equation of motion
tobe % = 0. Equations (6) may then be generalized to include
the equation for py, yielding

doe

dt = A (Orve, — Pr) + A—(Pr—e, — Or) + Orre,

+ Pr—e, — 2pr + (ar.ex - ‘Sr,O)(A-HOeX — A_pp)
+ (ar,—ex - 51’,0)(A—;O—ex - A+,00) + ((Sr,e}. - 61‘,0)
X (pe, — po) + (Sr,—e). - ar,O)(p—e), = Po)- 3)

PHYSICAL REVIEW E 95, 012110 (2017)

We note that mass on all sites of the channel including 0 is
conserved, ;—t > .o =0.

For simplicity, let us consider a tracer in the middle of
the channel and solve for the stationary state. In order to
demonstrate qualitatively the behavior of the system under
study, we simplify Eq. (8) by considering an analogous
continuous version of it. Choosing pp = 0, we obtain

Ap+ A
(A — AD)dep+ ———dp+02p

= (A4 Pe, — A_p—e,)0x8(r), €))

. . ‘v L,
which is valid in a narrow channel —0o < x <00, -3 <y <

L

-~ with the reflecting boundary conditions in the y direction,

dyp |y: th = 0. The discrete density field p, has been replaced
by a coarse-grained version p(r) that is allowed to take any
real value. Besides the diffusion terms %8?,0 + 8}2,,0, in
Eq. (9) we kept the advection term (A, — A_)d, p resulting
from the fact that we are in a moving frame, and the dipolar
source term (A4 pe, — A_p—_e, )0 8(T).

The effect of a driven bond (rather than a tracer) on an
infinite square lattice was studied in Refs. [36,37]. Comparing
the evolution Eq. (8) with Eq. (9) of Ref. [36], one notices that
the evolution of the density is the same as in a system of SSEP
particles moving on a lattice with four driven bonds, which
drive the particles between 0 to the four neighboring sites.
In Ref. [36] it has been shown that a driven bond produces
a density perturbation similar to the potential produced by a
dipole at large distances.

The dipolar source term appearing on the right-hand side of
Eq. (9) results from the combination of the +e, and —e, source
terms in the second line of Eq. (8). In the case of a tracer driven
in the x direction in the middle of the channel, the +e, and —e,
source terms have the same magnitude and opposite directions.
Their dipolar contributions therefore compensate on large
scales and the sum of the +e, and —e, terms contributes to
a higher, quadrupolar order. Similarly to a driven bond and a
dipole, a driven tracer creates an accumulation of bath particles
at its front and a depletion at its back.

Contrary to the driven bond problem, the nonzero velocity
of the tracer gives rise to an advection term in Eq. (9). The
presence of this term screens the long-range character of the
dipolar field, as shown in Ref. [36].

In the narrow-channel case the solution is obtained by
taking a Fourier transform in the x direction and expanding in
cosines in the y direction,

p(r) =7+ [ / b ao(k)ez”””dk]
k=—o00

- h 2mikx ZmT[
+2 Z - A, (k)e¥™* dk | cos 7
m=1 =

y

y>, (10)

which satisfies Eq. (9) for

. Aype, — A_p_e,

.
2mik (11
X .
AtA 422 4 ‘”;# — (A4 — A_27ik

012110-3



J. CIVIDINL, D. MUKAMEL, AND H. A. POSCH

After performing the k integrals we get

— 2AAype, —A_p_e,) |: -z
r)=p+ = — | O(x)e ¢
pr)=p L,(As + A) (x)
[o¢]
1\ _ tdrmsens x 2mim
I 2 z
+m2_2 (sgnx + rm)e cos( L, y)],
(12)
where we  defined &= 23‘:;7/1‘_) and r, =

\/1 + 2(A+4:4A )2) 4r? 472,

function. As is shown in Fig. 2, the solution Eq. (12) is
continuous everywhere except at r = 0, where it diverges.
When x > 0, for each value of m the corresponding factor in
EqE (12) decays exponentially in x with a characteristic length
7, - Atlarge distances, the first term due to m = 0 dominates
and the decay length, &, stays finite in the L, — oo limit. This
decay can be attributed to the effective streamlng in the frame
of the tracer. When x < 0, the m = 0 term vanishes. The other
terms decay exponentially with x with a characteristic distance

—2_ which diverges like % when L, is large and m

ﬁmte In the limit L, — oo, the decay is again exponential
everywhere except for y = 0. In this latter case, the cosines
in the sum are all 1, the decay length at finite L, is given by
—=, and in the L, — oo limit the decay length diverges to

and O(x) is the Heaviside step

give the |x|~3/? behavior observed on the plane. The solution
decays exponentially in all directions except in the full plane
L, — oo at the back of the dipole created by the tracer (for
x <0 and y = 0), as expected from the results presented in
Refs. [18,36] and the discussion following Eq. (9).

For later comparison, we also study the density of particles
projected on the x axis. Integrating over y, only the first two
terms of Eq. (12) remain, and we obtain

Ly

7z _ . 2(A4pe, —A_p—e,)
x d — i + X X
fy_L) p(x,y)dy = Lyp A, A

= 77

O(x)et.

13)

There is an accumulation of particles in front of the tracer in
a region thin in the y direction, while the projected density at
the back of the tracer is unperturbed.

The scale of this density perturbation is given by the
strength of the dipole. For weak driving the dipolar mo-
ment goes like 2(pe, A4 — p_e,A_) = 2(p — q)p(1 — p). In-
tuitively, the perturbation should indeed vanish at an empty or
fully occupied channel and is quite reasonably proportional to
the drive. In the narrow channel case, it is expected that the
density in the vicinity in front of the tracer increases when the
channel becomes narrower, as the excess particles in front have
less room to make way for the tracer. The continuous solution
Eq. (12) is physically and mathematically easy to understand
but now needs to be compared to the solution of the discrete
problem.

2. Solution of the discrete system for a finite channel width

It is of interest to go beyond the continuum approximation
Eq. (9) and to study the steady state of the discrete system
explicitly. To this end we solve Eq. (6) in the stationary state,
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FIG. 2. Density profile along the x direction on each row for a
thin channel with L, =5 for fixed y =0(a), y =1 (b),and y =2
(c). On each graph the results of Monte Carlo (MC) simulations
are plotted with red circles, the theoretical expression Egs. (14)-(23)
using the approximation Eqgs. (25) and (26) with black squares (theory
1), the theoretical expression using the numerically measured values
of pe,, €, = e, e, Eqs. (14)-(23) with blue diamonds (theory
2), and the continuous expression Eq. (12) with a green line. The
other parameters are L, = 81, N = 150, p = 1.5, ¢ = 0.5, and the
tracer is in the middle of the channel, Y7 = 3. For these parameters
the measured values are p,, = 0.48, p_, = 0.32, pe, = p_, = 0.40,
and Ay = 1.77, A_ = 1.33, whereas Eqs. (25) and (26) give p,, =
Pey = Pe, = Pe, = groe =037, A, =1.94,and A_ = 1.31.

again with py = 0. We proceed as if the amplitudes of the
source terms, which actually depend on pi. and pi. , were
known. In that case, Eq. (6) becomes linear and can therefore
be solved separately for each source term. More precisely, we
can write

or=p+ A+pex(Gr|eX - GrlO) + A—p—ex(Grl—eX - Gr|0)
+ pey(Grley = Gypo) + p—e,(Grl—ey = Gyo)s (14)
where the Green’s function Gy is the solution of
A+(Gr+ex|r’ - Grlr’) + A—(Gr—exlr’ - Grlr’)
+ Gr+e),|r’ + Gr—ey\r’ - 2Gr\r’ = _Sr,r’« (15)
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It implicitly depends on Y7 through the boundary conditions,
Go,—vr+ir = G,—ypirs
GuLy-vpiw = G Ly—vp+1)r- (16)

To solve Eq. (15), we take Fourier transforms in both
directions,

Ly
A _ 2migyx
G(fl.nY)\I" = E Gr\r’e Lx
x=1
L, Ly=Yr
¢ § : Z _ 2migex  Zmidyy
Gq‘r/ = Grlr’e Lx Ly
x=1 y=—Yr+1
Ly—Yr . iy
= Y. Guoywre (17)
y=—Yr+l
where q = (¢y,q,). The inverse transformations are given by
L,—1
A vaq\x
G(‘va}')lr/ = L E th-/e Ly N (18)
L -1
2igxx
l'|1" - L E G(q V)lr’e Lx
Lo—1Ly~1 »
1 27nqu 2miqyy
(L LV) E g G ‘r/e Lx Ly .
q.:=0 g,=0
Defining

2migx

Ag=Age ™ =)+ A_(e B —1)
2miqy 27iqy

tel +e b =2, (19)

we get from Eq. (15)

_ 2migx .1 27“11\\/

e Iy ¥ 7Ly )
Aqu‘rf +e Y

2migy 2rigy

= GgL,-vir — Ggrmvranrle ™ e — ).
(20)

The first term on the right-hand side comes from the § source,
the second term from the boundaries. In particular, if the tracer
isin the middle of the channel, i.e., Ly, = 2Yr — 1, these terms
vanish by symmetry. Equation (20) can be solved for Gq|r/
except for ¢ = 0. The q = 0 term, however, only leads to
a constant in the final expression of G, which has already
been accounted for in Eq. (14). We therefore use the convention
G()lr/ = Ointhe following. After solving for Gq‘r/ we transform
back in the y direction only and get

Gy = —Ageyir + (G, L,—voie — G, —vr+0ir) By,
(21)
where we define
Lot ety
. o :
Agoyr =L, A ’
— q
4,=0
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Ly=1 20 (Yrgy)  —T0
. _ e e » —1)
By=L," > - 7))
q).z() q

The value of G(qMLy_yT)‘r/ — G(qu_yﬁ])‘r/ can be determined
self-consistently, and we finally obtain

Gr\r’ == _-Ar\r’

-A —Yr+Dr — .A Ly—Y; A 2Tigyx
+L —1 Z (qx»s T+DIr (qx )|r’ ByeLii’
1+ By 41— BL}.—YT

4:=0
(23)
where
Lo—1 v
Ane = L™ )7 Agywe™ (24)
4:=0

is the bulk term and the most important in magnitude. From
Egs. (14) and (23) it can be shown that the density perturbation
decays algebraically at the back of the tracer only for L, and
L, both infinite, and exponentially everywhere else. This is
consistent with the continuous case Eq. (12), where a true
|x|3/? decay is obtained in the [ — oo limit only.

Equations (14) and (23) do not constitute a full solution
of Eq. (8), as the densities pe,, p—e, , Oe,, P—e, should now be
determined self-consistently. This is, however, a very hard task,
and in the following we choose to measure these quantities
numerically and to take them as inputs. The numerical
results will also be compared with the theoretical expression
Egs. (14)—(23), where the densities close to the tracer are
approximated by their zeroth-order values,

Pe, = P—e, = Pe, = P—e, = 0 (25)
which also gives
Ar=1+p—-p), A-x=I+4q(1-p). (20)

Similar to Eq. (13), one can compute the number of particles
at a given x coordinate starting from the discrete solution
Egs. (14)—(23). We get

Ay A_ A_\"
—L,p>~0® e.— |l — ), 27
Px y:o (x)(pe) e — P—e, A+)(A+) (27)

when the channel is long in the x direction. The density,
integrated over y, again shows an exponentially decaying
perturbation for x > 0, and remains unchanged for x < 0.

C. Comparison with Monte Carlo simulations
1. Density profile

We now compare the analytical and the numerical results
for a driven tracer. We start by noting that in the symmetric
equilibrium case, p = ¢, detailed balance is restored, and the
equilibrium distribution is uniform over all the allowed config-
urations. Therefore, the pressure and density are constant even
in the frame of the tracer. This can be checked numerically and
is in accordance with the theoretical expression Egs. (14)—(23),
where the four sources add up to a constant. We now focus on
the asymmetric case p # q.

We start by placing the tracer particle in the center of the
channel, L, = 2Y7 — 1. Measurements of the density profile
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FIG. 3. Tracer velocity V2PSSEP as a function of the bias p — ¢
for different system sizes. Monte Carlo measurements (pluses, the
curves move up as the width L, increases) are compared to theory
(3), Egs. (14)—(23) (solid lines). The length of the channel L, = 41
and the global density is held approximately constant, p >~ 0.81.

are averaged over a sufficiently long time, typically 10° time
units. They are shown in Fig. 2 on the row of the tracer
in Fig. 2(a), and on the two first neighboring rows y = 1
in Fig. 2(b) and y =2 in Fig. 2(c). There we show two
theoretical expressions, one where the pe , €, = +e,, = e,
are determined numerically, and another one where Egs. (25)
and (26) are used. When the measured values of pe, , €, =
+e,, e, are used, the agreement is quantitatively very
good, and it stays qualitatively correct if the zeroth-order
approximation Eqgs. (25) and (26) is applied. Figure 2 shows
that there is a discontinuity of the density profile along
the row y = 0 at the position of the tracer, x = 0. In the
neighboring rows the excess density for x > 0 gets transported
with the effective flow created by the motion of the tracer and
progressively fills the region x < 0 as |x| increases. The only
zone that persistently stays depleted is the one at the back of
the tracer, which is not filled ballistically but diffusively by the
particles of adjacent rows.

In terms of the density, the velocity of the tracer is given by

VIOSSEP — (1 — o) — q(1 — p_.). (28)

It increases less than linearly with the bias p — ¢, in accor-
dance with the fact that the tracer has to struggle against a
higher density gradient when the bias is larger. The velocity
shows a small decrease as the channel becomes narrower, since
the front of the tracer becomes more crowded; see Fig. 3.

The profiles show that the presence of a boundary results
in an increased density of particles ahead of the tracer. The
theoretical expression of Eqs. (14)—(23) reproduces this effect
rather well. The fact that the tracer is not centered does not
have a significant effect.

2. Pressure profile

In this section we describe a numerical method for evaluat-
ing the local pressure on the walls of the channel. To this end,
we apply a procedure proposed in Ref. [35] in order to measure
numerically the pressure of lattice gases at equilibrium in the
homogeneous case. To describe the method, we first consider
the homogeneous case with no tracer present, so that we are
simply studying an SSEP in a channel of size L, x L,. The
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FIG. 4. Measured py (1) for a system of size L, =81, L, =9,
with the tracer in the channel center, with Y7 = 5. The pressure
is obtained at a distance (x,4) from the tracer, where the curves
are shown for x = —5, —3, —1, and 1, from bottom to top. The
hopping parameters of the tracer are p = 1.9 and ¢ = 0.1, and there
are N = 365 particles in the system.

stationary state of this system is an equilibrium state described
by a partition function Z(N,L,,L,) in the lattice frame.

To measure the pressure on the Y = L, boundary, one
should carry out the following steps:

(1) Choose a rate A € [0; 1] and define the system where
hops from ¥ = L, —1to Y = L, occur with a rate A, while
all other rates remain unchanged equal to 1.

(2) In this modified system, measure pw(A), the average
equilibrium occupation of the sites in the row L.

(3) Do this for all A € [0; 1].

To factors negligible in the thermodynamic limit, the
rescaled pressure is given by [35]

P =L, "[logZ(N,Ly,Ly) —log Z(N,Ly,Ly — 1)]
owd)

1
_/x:() A

Note that we have canceled out some factors that appear
in the usual definition of the pressure. In order to make a
correspondence between the lattice gas model and a system at
temperature 7 the rescaled pressure P should be compared to
,’:BL;, where P™C is the true pressure in the system.

In our case we need to adapt the method, since the pressure
is not homogeneous at the wall, the stationary state is not
an equilibrium state, and the measurements are performed in
a moving frame, the frame of the tracer. Suppose the tracer
is on row Y7r. The pressure at position (x,L, — Y7) in the
tracer frame is obtained by adding a site (x,L, — Y7 +1)
towards which the hops occur with rate A; see Fig. 1. The
stationary density on this site is determined and the integral in
Eq. (29) is computed. We expect that the pressure reaches a
nontrivial steady state only in the frame of the tracer, therefore
the extra site has to move with the tracer and stay at position
(x,L, — Y7 + 1) in the tracer frame. In the lattice frame, if the
tracer hops from Ry to Ry =+ e,, then the extra site also moves
from (X7 +x,Ly + 1) to (X7 +x + 1,L, + 1). If there is a
particle on the extra site, we choose that the particle moves
with the site.

We have measured the pressure using this method and the
density pw (1) is given in Fig. 4. The occupation of the extra
site pw(A) was averaged over a sufficiently long time for all

dh. (29)
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FIG. 5. Monte-Carlo (red circles) and theoretical (black squares)
values of the pressure for the same system as in Fig. 4. The value of the

background pressure is —log(1 —p) >~ —log (1 — 9X38615_1) >~ 0.696.

values of A from O to 1 in multiples of 0.05. The curve pw (1)
was then fitted by a seventh-order polynomial without constant
coefficient, and the integral Eq. (29) was computed directly
from the coefficients of the polynomial. The pressure curve is
given in Fig. 5.

The assumption of local equilibrium yields an alternative
way for estimating the pressure. For SSEP the equilibrium
equation of state is known, and the pressure simply becomes
P = —log(l —p), where P is the (homogeneous) pressure
and p the global average density. In our case we assume local
equilibrium, such that the pressure becomes

Pr = —log(1 — pr), (30)

where P, and p, are the respective local pressure and density.
The pressure is then given by Eq. (30) combined with the
theoretical expression for the density in Eqs. (14)—(23). It
compares well with the results from the other method; see
Fig. 5. Again the agreement is good. There is a systematic
error of order (L,L,)~", which may be explained by two
effects. First, when we move the extra site we may move a
particle with it, which slightly changes the density profile.
Second, we gradually add a site to the system, so that there is
also a systematic error that comes from the determination of
the exact value of the density.

Figure 5 shows that the presence of the tracer creates a
significant pressure perturbation for a typical density p =
% 2~ 0.5. In particular, it shows that on the sides the
pressure is larger than in the equilibrium case. This comes
from the fact that there is an accumulation of bath particles in
front of the tracer that have to go around it to enable the tracer
to move forward.

III. ONE-DIMENSIONAL SSEP WITH EXCHANGES

In this section we further simplify the 2D model analyzed
in the previous section and model the narrow channel by
a 1D discrete exclusion process with a tracer in an SSEP
background. The 2D nature of the narrow channel is taken into
account by allowing the tracer to overtake the bath particles
with some rate. The simplicity of this approach, for which exact
steady-state density profiles can be computed in some limits,
allows for a quantitative comparison with the steady state
obtained by molecular dynamics simulations of overdamped
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FIG. 6. Left panel: Two possible configurations of the system and
some allowed transitions. The black disks are the bath SSEP particles,
and the large red disk is the tracer. Bath particles hop symmetrically
toward the right and left with rate 1 on each side if their target site is
empty. The tracer hops to the right with rate p and to the left with rate
q if its target site is empty, as is shown by the top scheme. A tracer
and a neighboring particle exchange their positions with rate ep or
€q, if the tracer moves to the right or to the left, respectively. This
may occur in the configuration at the bottom of the left panel. Right
panel: Configuration of the zero-range process (ZRP) equivalent to
the top left SSEP for the case € = 0. The tracer is mapped to a special
link (red tick), where the transfer rates are ¢ when the ZRP particle
hops to the right, and p when the particle hops to the left as indicated
by the purple and blue arrows.

hard disks moving in a narrow channel, a model which will be
analyzed in Sec. IV.

A. Model

We consider a periodic 1D lattice of L, sites occupied
by N SSEP particles with hard-core interactions hopping
symmetrically to the right or left with rate 1. To this system
we add a driven tracer, that hops to the right with rate p
and to the left with rate ¢g. The tracer is also allowed to
exchange position with neighboring SSEP particles, with rate
€p to the right and eq to the left (see Fig. 6). When € is not
too small we expect the 1D SSEP introduced here to mimic
the behavior of the 2D system from Sec. II on a qualitative
level.

We would like to compute the density profile in the frame of
the tracer. We therefore use again the coordinate system where
the tracer is on site 0. The other particles may now occupy
sites 1 to L, — 1, and occupations are denoted by 7, = 0,1
forx =1,...,L, — 1. The average density now reads p =
ﬁ Zf;]l Px = % Other quantities of interest are the
bath particle current in the lattice frame 7, the velocity of the
tracer VPSSEP "and the total (bath and tracer) particle current
J. The velocity of the tracer can be defined in terms of the
density in the frame of the tracer,

VIPSSEP — b(1 — p1) + epp1 — q(1 — pr, 1) — €qpr, 1.

€1y

In the steady state both currents Jg and J are space
independent. The current of bath particles, Jg, can also be
computed at any position X of the lattice frame in terms of the
density profile in the tracer frame,

I = (1 —8x.x; — Sx41,x,)(Tx — Tx41))
+e(pTxdx+1.x, — 9Tx+18x.x;)

(I —ep)or — (A —€q)pr,—1
L, '

(32)
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The currents J3 and J and the tracer velocity VIPSSEP

linked through

VIDSSEP

J=Ts+

are

_p+ pil—p)—qg—pr,1(1 —q)
L, L, ’

(33)

which simply expresses the fact that the total current is the
sum of the currents of the bath particles and of the tracer.

We restrict the analysis to the case p > ¢ and € < 1 due
to symmetries. The case € > 1 can be obtained by exchanging
particles and holes, 7, — 1 — 7y, and replacing p, ¢, and € by
€p,eq,and e~!. Systems with p < g are obtained by reflection
symmetry with respect to the direction X.

We start with some particular values of e that give exactly
known steady states. After that we approximately compute the
density profile for general € and large systems.

B. Limiting cases
1 e=0

For € = 0 no exchanges of positions are allowed between
the SSEP particles and the tracer. In this case, the stationary
state of the system can be found exactly by mapping it to a
zero-range process (ZRP) [38]. The ZRP is a very general
process in which particles occupy sites of a graph and are
allowed to hop from a site to one of its neighbors with a
rate that depends only on the occupation of the starting site.
A particle therefore interacts only with particles occupying
the same site, hence the name “zero range.” In our case it
suffices to consider the ZRP on a 1D ring with A sites and v
particles. The number of particles on a given site / is denoted
byn; = 0,1, ...,00, and a configuration of the system is given
byn = (n,...,n).

The correspondence is as follows. Each vacancy of the
SSEP is mapped to a particle of the ZRP, each particle of
the SSEP is mapped to a link of the ZRP, while a site of the
ZRP corresponds to an interval between two particles of the
SSEP (see Fig. 6). For the present model this gives A = N and
v = Ly, — N. The occupation n; of site / of the ZRP is equal to
the number of vacancies between the particles corresponding
to links (/ — 1,/) and (/,l 4+ 1). In our case all the links of
the ZRP represent symmetric SSEP particles, except for one
special link that we choose to be (1,1), that represents the
tracer. Examination shows that the transition rates should be

Jrate (1 —6,,.0),
Jrate (1 —8,,,0), (34)

n— (...ny—Linyg +1,..

n— (G...n+Lnyg —1,..

forany / # X and

n— (n+1,...,n, — Drate g(1 — 8,, o),

n— (n—1,...,n+ Drate p(1 —6,,.0). (35)

An example of this mapping in a particular configuration is
shown in Fig. 6. Note that carrying out this mapping fore > 0
would result in a similar process, where the special link would
be able to hop under certain conditions, making it harder to
treat.

The benefit of this mapping is that the stationary state of
the ZRP is known exactly [38] and has only to be translated
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to the SSEP variables. It takes a factorized form except for a
global constraint,

P(n) = [1E LRS- (36)
)»,

where
A
Ziv=_[[a"ssmo (37)
n [=1

is the normalization constant, and the fugacities z; are solutions
of

qz. +z22 =1+ p)zy,

1tz =2z, 1=2,...,A—1
Z—1+ pz1 = 1 +q)zy, (38)
that is,
l A—p+1
a=-+L-PT (39)
A AMp —q)

Back to real space, let x be a site of the SSEP in the tracer
frame. Site x is occupied if and only if there exists site m of
the ZRP such that ) )", n; + m = x. We therefore have

00
Z ZA,U((SZ,VLI n,+m,x)

m=1

Zyvpx =

oo

= ZZSZI'” ”821 1 tm,x Hzl

m=1 n

e 17§ f dv
- l27n w2 J, pxoml

m=

A

1 1
XHl—uvzllH 1 —uz

=1 =m+1

~)\/°o ?gdu I
 Ju=o2mi J, u 2mi [,

where on the third line the Kronecker §’s have been represented
by complex integrals. The fourth line is valid in the large A
limit with the scaling v = rA, x = £A, and m = pX, where

e M M)

¢(M»U1M) = rlogu + (E - /,L)lOgU

i
+ / log[1 — uv(y + ¢)ldy
y=0

1
o
y=n
q

and ¢ = 4. r is linked to the density via r =7~' — 1. In
the large A limit one can find a saddle point in the (u,v,u)
complex planes, where v* =1, u* = l_u—‘i*c(l — e %), and
u* is defined implicitly by

log[1 — u(y + c)ldy, (40)

(41)

(1 + ru* + log [M} = 0.

1 —u*c
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It can be shown that Eq. (41) has a unique real root that lies

— N2 _4 T R
between ¢ (1; i;lc;‘”’c(lﬂ) and ﬁ For small bias p —
g we have
— 3
W= _pP -2 2 —p)3(p—q)
p+q 3p p+q

5
+0[<—p_q) ] (42)
p+q

We can evaluate Eq. (40) using a saddle point approx-
imation and perform a similar calculation to obtain Z; ,.
Since v* = 1, almost all the terms that appear cancel out
with the Z, , factor on the left-hand side, and we are left
with

pe=pe = (L —u)e™ = (1 —uw')e™ 7. (43)

In this case the profile is purely exponential, and the decay
length is of order N.

The velocity of the tracer is obtained by computing the
average densities in Eq. (31),

*

VIPSSEP = (q(1 = b 0) — p(1 = 80 = 5. (44

Since no overtake is possible for € = 0, all the particles have
to move with the same velocity, i.e., the velocity of the tracer.
Since the tracer only contributes a fraction 1/N to the total
current, the total and the bath-particle currents are the same to
leading order in 1/N, and both become

_ u
T =T =pV > = —. (45)
Ly
In a similar manner, it can be shown by explicit calculation
that the correlations between occupations factorize in the
L, — oo limit.

2.e=1

Another particularly simple case is € = 1, since for € = 1
the tracer does not distinguish between particles and holes. We
denote the probability to have a certain occupation by P(7),
where T = (11, ...,71,-1). We also define 5%t where T,

and 7,4 have been exchanged, T = (77, _1,71,...,T,—2)
and t° =(12,...,7,—1,71). The master equation
reads
L2
dP(t) o x
o= ; [(1 = 7) T P — 1,(1 = 1) P(1)]
L.—1
+ ) 10 = )T P = (1 = 1 )P()]
x=2

+ p[P(z™) — P(0)] + ¢[Px™) — P(z)]. (40)

The terms of the first and second lines correspond to hops of
the bath particles, and the terms of the third line come from the

—1
motion of the tracer. It is clear that a constant P(t) = (L” N !

solves Eq. (46) in the stationary state. The density profile is
therefore flat, and all the correlations are the same as in an
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SSEP of length L, — 1 with N particles, e.g.,

N N-=2
(TaTy) =
L.—1L,—2
N(L, =N —1)
= PxPx" — (47)

(Ly = DXLy =2)

and the connected part vanishes as L, ! for large systems.

Using the flat uncorrelated density profile the currents are
quite easy to obtain. Since the tracer moves to the right with
rate p and to the left with rate g regardless of the occupations,
the velocity of the tracer is simply

VéDSSEP =p—gq. (48)

The only transitions that contribute to the bath particle current
are those where the tracer exchanges position with a bath
particle. The current is given by the intuitive result

_(p—qp

T = L

, (49)

which is the probability to have a tracer on a given site (L, ')
and a bath particle on its right (), multiplied by the rate (p) at
which they exchange positions, with an analogous opposite
contribution of the tracer exchanging position with a bath
particle on its left with a rate ¢. Finally, the total current can
be obtained by a similar argument, or by using the relation
Eq. (33),

_ (p—q)1 —ﬁ)‘

J L

(50)

It can again be interpreted as the probability L, ' to have a
tracer on a given site, multiplied by the probability 1 — p that
the site on its right is empty, and by the rate p at which they
exchange positions, with an analogous opposite contribution
for the case of an empty site on the left of the tracer.

C. General €

In this section we write approximate equations to compute
the density profile for any €. We start with the evolution
equations for the densities,

d

% = (1 +p( =) +epr)ma — (1 + g1 — 7, _1)
+eqrtr, 1)1 +€e(@Tr,—1 — pT1))

dpx

L= (14 p(l = 1)+ pT)(Tas — 7) + (L4

x(I =71, +eqtr,—1)(Tao1 — To))
x=2,...,L,—2

dpr, 1

2 = U pd—m)+epr)r, o+ +4q0

—Tr,-1)+€qTr, )T, 2 —€(qTL 1 — pT1)).
D
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Two-point correlations appear on the right-hand side of
Egs. (51). In order to close the equations we make
the simplifying assumption that the connected part of
the correlations vanishes in the L, — oo limit, giving

(Txrx’> = PxPx’-

We adapt the definitions of A, and A_ to this case,
Ar=1+pd—p)+eppr and A_=14q( —pr, 1)+
€qpr,—1. After averaging and in the stationary state, writing
hy = Ay pys1 — A_py, Egs. (51) become

hi +e(gpr,—1 — po1) =0, hyp1 —h, =0,
x=2,...,.L,—2,

PHYSICAL REVIEW E 95, 012110 (2017)

The bulk equation is solved by a constant 4, = C}, and the
boundary equations both give C; = €(pp; — gpr—1), such that

a partial solution is
_ PP apL A A
AL —A_ Ay '
(53)

0p = EP,OL —4PL,-1 n (,01

Ay —A_
After replacing p; and p;, _; by their values in Eq. (53), there
remain two quantities to be determined, A, and A_. The first
one is obtained by evaluating Eq. (53) for x = L, — 1 and
replacing pr —; by its value in terms of A_ on the left-hand

side. The second one is the normalization Zﬁ;}l px = N.

—hp,—» —€e(@pr,—1 — pp1) = 0. (52) These two equations give
|
l14+qg—A_ 14+p— A, A_\B?
AL A —e(p— AL —g A = [ A A —ep - A —qg +AD ) (=)
q p Ay
1+p—A — A, —qg+A_ A\
NAsy — A1 =€) = (L — De(p— Ay —q+A) = (A, — L8 _ep P20 74 - (4= ,
P A+ —A_ A+
(54)
[
where we can check that A, — A_ = O(L, ") fore = 0.For  and the total current is given by
e=1werecover A, =1+ p,A_=1+g.
In general, Egs. (54) have to be solved numerically. For — )1 =7) Bl —€)+ ¢
large L, and large enough € the system simplifies considerably, J = (P = 4X p) A )+ ep (60)

as both right-hand sides are subdominant. Equations (54) are
then easily solved to yield

pP—q
p+ell—p)
A_=14+q(1 —p)+eqp. (55)

Ay =14+q(1—p)+eqp+e

In particular, the second of the Eqs. (55) states that the
density at site L, — 1 is simply p, which strongly resembles
the behavior obtained in Eq. (27) for the density of the 2D
model projected on the x axis. From Eq. (54) the decay length
becomes

1 1
log (1 +€

— p—q
log Ay —log A G )
1 p(14+q—qp _
= —M—}—o(e '). (56)
€ p—q
It diverges at small € and at small p — ¢ for an infinite system.
The density in front of the tracer is given by

l+p—Ay  plp—q—p)1—e)]
p1 = = — — . (6D
pl—e) plo+e(l —p)]
Knowing the density profile, one can also compute the
currents. The velocity of the tracer becomes

PIDSSEP _ 4 4 _ (p—q)e . -
tr + ﬁ + 6(1 — ﬁ) ( )
For the current of bath particles we find
— o (1 =2)1 —¢)—
o= (P —q@pd—p)I—¢) p. (59)

L, plo+e(d —=p)]

Ly plo+e —=p)1

Equations (59), (60), and (58) are compared to numerical
results in Figs. 7 and 8. We notice that we get Egs. (48), (49),
and (50) back when taking € = 1 in Egs. (58), (59), and (60),
respectively.

However, the small € regime is not well described (see
Fig. 8) by the factorization approximation. In particular,
the expected velocity Eq. (58) vanishes for € =0, and the
predicted value of both currents is W, in contradiction
with the exact results Egs. (44) and (45). In this limit the
velocity of the tracer is better described by adding the € = 0
contribution Eq. (44) to the nonzero € prediction Eq. (58). For

0.001

FIG. 7. Bath particle and total currents 7 (blue line and symbols,
bottom) and 7 (red line and symbols, top) as a function of € for
p=13,g=0.7,N=99,and L, = 500. The theoretical curves are
given by Egs. (59) and (60).

012110-10



DRIVEN TRACERS IN NARROW CHANNELS

o MC
— theory
0.4+ O v Tel -
5 — (58) s
> S50.02[— 6D 6&"66 -
0.2 | 60460 17
Ko
% 0005 00]
0 1 8
0 0.5 1
€

FIG. 8. Velocity of the tracer, VIPSSEP, as a function of € for
p=13,¢q=0.7 N =99, and L, = 500. The theoretical curve is
given by Eqgs. (58). Inset: Same for small values of €. Equation (58)
(in black solid line) is compared to Eq. (61) (blue dashed line).

small e = O(N7Y),

(p—q)e u*
_ + — 61
prei—p "~ O

where u* is still implicitly defined by Eq. (41). The two terms
in this equation correspond to the two ways the tracer can move
forward, either by exchanging positions with a particle on a
site next to it (¢ term) or pushing the whole system forward
(N~ term). For e = O(N~!) these two contributions become
of the same order, and Eq. (58) has to be corrected.

IDSSEP N
Vi le=ov-1) =

IV. HARD DISKS IN A TWO-DIMENSIONAL
NARROW CHANNEL

After having studied relatively simple lattice systems, we
now turn to a more realistic continuum setup, namely hard
disks (or “HD” for short) in a narrow channel, which obey
Langevin dynamics. We find a systematic way to make a
correspondence between both systems, which enables us to
use the results of Sec. III.

A. Model definition

We consider N + 1 hard disks of diameter o in a narrow
channel of length L, and periodic in the X direction, and of
width L, = L, 4+ o with thermal boundaries in the Y direc-
tion. The positions of their centers and their velocities are de-
noted by Ry (1) = (Xi(1),Y(r)) and Vi () = (Vi x (1), Vir,y (1)),
respectively, where k ranges from O to N. The particles are
assumed to obey the Langevin equation,

dRy
— =V,
dt ¢
dVy

where T is the temperature, y is the damping coefficient
common to all particles, and the &, are §-correlated white
noises. Only one force does not vanish, say Fy, and we take it
to be parallel to the X direction, Fy = & o Fe,. Particle k = 0,
therefore, is the tracer particle. It is clear that changing the
values of the diameter o and the temperature 7 are equivalent
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to rescaling time and space. In the following we therefore
consider only the case 0 = 1 and kgT = 1.

Numerically, the motion equations may be solved to first
order in the time step At according to [39,40]

Ri (1 4+ A1) = Ri(1) + Vi (1) At,
Vit + At) = Vi(t) + (Fy — y Vi) At + 2y An)'/ny,
(63)

forallk =0, ...,N,where n; is anormally distributed random
variable.

The particles are hard disks, which means that all configu-
rations where |R; — R;| < 1 for any pair k, [ of particles are
forbidden. Putting the origin into the center of the simulation
box, the periodic boundary in X direction requires that | X;| <
L, /2. The boundaries in the Y direction only allow particle
configurations for which | Y| < (L/y — 1)/2. These constraints
imply that no overtake is possible in channels with L} < 2.
Collisions between two particles are elastic, while the walls at
Y =—L//2and Y = L' /2 are van Beijeren thermostats [41]
at a temperature 7 = 1. Note that thermostatting these walls
is not really necessary, since the Langevin dynamics Eq. (62)
is capable to generate nice stationary states without additional
thermostatting at the boundary.

This system is studied by molecular dynamics (MD)
simulations. In the simulations we compute the local one-
dimensional density field p(x) of neutral particles in a frame
comoving with the tracer projected on the X direction. As in
the previous sections, x is the X separation from the tracer, also
called reaction coordinate in the context of hard disks [34].
We also compute the local pressure Py, (x) at the thermostatted
boundary at a distance x from the tracer. It corresponds to the
rate of y-momentum transfer per unit wall length due to the
neutral particles colliding with the wall at a distance x from
the tracer:

1 T x+(8x/2) ) N
Pyy(x) = — fo dt/x dx ;

~(8%/2) "

X D IViy = Vel — 15)8(x = xc,). (64)
Ci

Here, ), denotes the sum over all wall collisions of the
neutral particle k during the simulation time t, for k =
1,...,N. 8x is a small reaction-coordinate interval centered
at x required for the construction of the histogram, and #,, and
xc, are the time and the reaction coordinate of the respective
collision of particle k with the wall. Finally, V| y — Viy is the
difference between the y component of the velocity of particle
k before and after the collision. The factor 2 in the denominator
accounts for the upper and lower boundaries.

As an example we compare in Fig. 9 the local pressure and
the local density as a function of the distance x from the tracer.
The driving force varies between F' = 0.1 and F = 0.4. The
field F = 0.2 is small enough such that the ideal-gas equation
of state is well obeyed. Therefore, only the local density is
considered in the following examples, and the field is restricted
to 0.2.
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FIG. 9. Local pressure Py, (dots) and local density p (smooth
lines) as a function of the separation x from the tracer for various
external forces F = 0.1,0.2, and 0.4. The channel is of length L, =
1000 and of width L), = 2.05. 99 neutral particles and a single tracer
at a temperature k3T = 1 are considered.

The time-averaged velocity in x direction of the tracer is
defined by

Xo(7) — X0(0)

HD __
V, =
T

(65)

In order to compare the results of this model with those
of the discrete SSEP approach from the previous section, we
have to find a way to apply the results of Sec. III to the hard
disks system. More precisely, we would like to find a mapping
between the sets of SSEP parameters (N, L,, p, g, €) and HD
parameters (N, Ly, L, F, y).

B. Narrow channel without overtake: The SSEP
parameters p and ¢

We first note that in the SSEP we want all the particles
to have the same “temperature,” which requires to take
pHP + ¢MP = 2 where the HD superscript indicates that that
the values of p'® and ¢"P are those equivalent to the hard
disks system.

The computation of the parameters p"'° and ¢
pHP is straightforward, as they can be defined as the rate at
which the tracer hops to the right and to the left in the limit of
vanishing density. We, therefore, consider only a single tracer
without any neutral particle. The simulation box of length L,
is partitioned into L, boxes of unit length, and the continuous
trajectory is replaced by up-steps and down-steps to the box
centers, whenever a particle crosses to a neighboring box to
the right or the left, respectively. See Fig. 10. We denote the
sum of all up-steps (down-steps) of the tracer by nErr(ntf). For

HD:2_

F >0, nErr > n holds. The hopping rates for the tracer in
(pP) and against (¢"P) the field direction become

2ntr Znt,r
= . respective, ¢ = . (66)
n +nt s

where we have used that pHP + gHP =2,

When comparing dynamical quantities such as the tracer
velocity, one must make sure that the definitions of time are
consistent between both systems. In order to do so, we rescale
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FIG. 10. Coarse-grained motion of the tracer along X. The
continuous curve is the actual position of the center of the tracer, while
the step-like line is the coarse-grained picture of a tracer hopping
from site to site. For the counting of the up- and down-steps (see the
main text) the periodicity of the boundary in X direction needs to be
unfolded. No neutral particle is required.

the time in the HD system such that the tracer’s total rate of

hopping is pHP + g"P = 2. This implies that the original time

t and the rescaled time t7? are related by

i M (67)
2

As a consequence, the rescaled temperature becomes

kpTHP = 4kpT,

The results for the densities studied here are listed in Table I.
This procedure gives values of pHP — g"P close to what is
obtained by equating the average velocities of the free tracers
in both cases, pHP — ¢HP ~ 25.

To test this correspondence, we consider channels with a
width L’V < 2, which do not allow particles to overtake, and
for which the SSEP parameter ¢ vanishes. In this case the
local pressures, densities, and the tracer velocity V[Ir{D have
been checked to be almost independent of L’ . Similarly, the
dependence of the p and g values obtained from Eq. (66) is
very weak.

We now fix L', = 1.9 and vary the number of particles (and,
consequently, also the global density). Various simulations
with different particle numbers N and a single tracer are carried
out. The particle density profile in the comoving frame of the
tracer is shown in Fig. 11. The tracer velocity V" is shown in
Table I and shows good agreement with the expression from
the SSEP.

t

TABLE 1. Some parameters and results for F =0.2, y =2,
L’y =1.90, L, =1000, and varying N =49,79,99. The SSEP
velocity is obtained by using Eq. (44) with the values p"'® and ¢"® for
the hopping rates and the density p = % The associated density
profiles are plotted in Fig. 11.

N 49 79 99

VD % 10° 4.16 £ 0.08 2.590 £ 0.046 1.994 £+ 0.044
pHP 1.11255 1.11255 1.11255
gt 0.88745 0.88745 0.88745

VIDSSEP 13 4.032 2.484 1.960
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FIG. 11. Local density in the comoving frame of the tracer for
various N = 49,79, 99 (from bottom to top). Solid lines represent
the HD system and dotted lines are the SSEP results. The channel
widths L/y = 1.90. Particles cannot pass each other, and € = 0. The
driving field F = 0.2. The length of the periodic channel L, = 1000.
The associated data is found in Table I.

C. The parameter €' for channels with overtake

We now want to allow the hard disks to overtake, i.e.,
we introduce a nonvanishing parameter €"° analogous to the
SSEP parameter ¢, such that ¢"P pHP and e"P¢HP become the
overtake rates in and against the field direction, respectively.
This is done by widening the channel, where we expect the
€"® parameter of the SSEP to be closely related to L/, — 20

For the estimation of €fP in the limit of low density, a
simulation with only two particles (the tracer and a neutral
particle) suffices. In Fig. 12 the X coordinates of the two
particles are shown as a function of time. The simulation box
is periodic in X and of length L, = 50 (for demonstration
purposes only). We call an overtake event “regular” (r), if the
tracer approaches the neutral particle in the direction of the
field (from below in Fig. 12), and irregular (i) otherwise. As
expected, regular overtakes dominate. One observes in Fig. 12
that the tracer collides with the neutral particle quite often
from below and pushes it in the field direction, before a regular

neutral

FIG. 12. Evolution of a tracer particle and of a neutral particle
along the channel in X direction as a function of time ¢. The channel
width L = 2.1. Thus, overtake events occur at times indicated by
the vertical arrows. Here, the length of the periodic channel (L, is
50) ranges from X = —25to X = 25.
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TABLE II. Some parameters and results for F =0.2, y =
2, L,=1000, N =99, and various channel widths, L; =
2.02,2.05,2.10. The case L, = 1.9is contained in Table I. The SSEP

velocity is obtained by using Eq. (61) with the values p"°, g"P, and
€MD for the hopping rates and the density p = % taken from the

HD simulations. The associated density profiles are plotted in Fig. 13.

L, 2.02 2.05 2.10
VEP % 10° 286+£0.04  6.64+0.1  18.06+0.16
PP 1.114 1115 1114
g™ 0.886 0.885 0.886
et 0.00037 0.00219 0.0081
VAPSSEP 5 107 2.87 7.01 19.54

overtake occurs. The times of two consecutive regular overtake
events are indicated by the black vertical arrows.

In the following we consider all time intervals between
consecutive overtake events. The initiating and finishing
overtakes of each interval may be of regular (#) or irregular
(i) type. We characterize such an interval by the indices «, S,
where the firstindex « € {r,i} refers to the type of the initiating,
the second index 8 € {r,i} to that of the closing overtake of that
interval. The total number of intervals of type «, § is denoted
by 04, and the average number of hard-core collisions of the
tracer with the neutral disk during an interval of that type,
which will not result in overtake, is called nqg. The total
number of collisions in all &, B-type intervals is Nog = 0ggnqp.
For the long channels considered here, we find that n;, = n,;,
and n;; = 0. Thus, no successive irregular overtakes occur.
Since P pHP is the rate with which the tracer overtakes a
neutral particle on its right in the direction of the field, we are
only concerned with the intervals of type r,r and i,r, which
are terminated by regular overtakes. Similarly, the opposite
case of the rate of irregular tracer overtakes against the field,

efPgHP only involves intervals of type r,i with an irregular
ending. Therefore, there are two ways to estimate P,
pHPHD Orr +0ir and ¢"PeHP — Ori (68)
Nrr + Ni Nri
Since p'P + ¢! = 2, they may be combined to give
7 (HD _ Orr + Oir Oy . 69)
Nrr + Nir Nri

The results for €"P from Eq. (69) are listed in Table IL
For small L the SSEP velocity VIPSSEP computed with

the parameters p''°, gHP, and €MP (which are also given in
Table II) agrees very well with the time-averaged velocity VP
from the HD simulations. However, for larger channel widths
this agreement becomes gradually worse. The associated case
for vanishing P is included in Table 1.

A fit of the values for €MP listed in Table II gives a
quadratic dependence on the width, €"P ~ 0.814(L’, — 2)%.
This is compatible with simple geometric arguments. Density
profiles and tracer velocities in the HD system and in the SSEP
equivalent are compared in Fig. 13. It is, perhaps, surprising
that the agreement for the density profiles becomes worse for
very narrow channels, whereas the opposite is true for the mean
velocities. We do not yet know the reason for this behavior.
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FIG. 13. Local density in the comoving frame of the tracer for
the same HD systems as in Table II (solid lines), compared to their
SSEP equivalents given in the table (dotted lines). The widths are
L’ =2.02,2.05, and 2.10 from bottom to top in the x < 0 region.

V. SUMMARY

In this paper we analyzed the steady-state properties of a
driven tracer moving in a two-dimensional narrow channel, by
using a combination of lattice gas models and of a continuum
model of hard disks. The force-velocity relation has been
calculated as well as the density and pressure profiles in the
channel. Considerable nonhomogeneous density and pressure
profiles at the boundaries of narrow channels have been
observed.

Three models have been studied. The first model, the 2D
SSEP, is simple enough to give analytical information about
the bidimensional spatial structure of the density disturbance
created by the tracer. In the frame of the tracer a simple picture
emerges, with the tracer behaving like a dipolar source. Its
long-range effects are however screened by two mechanisms.
The first is the flow of the surrounding fluid which yields a
3/2 power-law decay of the density disturbance at the back of
the tracer and exponential decay in all other directions. The
algebraic decay is further screened by the width of the channel

PHYSICAL REVIEW E 95, 012110 (2017)

L,, thus leading to exponential density profile at distances
larger than L. The 2D SSEP however has the drawback that
the width of the channel is discrete and does not really allow
to understand the small width regime. We therefore turned to
analyze a second model, a 1D SSEP with overtakes allowed
(which simulate available paths around the tracer in a narrow
channel). In this model the density and pressure profiles, the
currents and the velocity of the tracer can be calculated with
good accuracy.

In order to check the validity of the lattice gas models,
we also performed molecular dynamics simulations for a
continuous system of overdamped hard disks in a narrow
channel. We found that the behavior of this system is very
similar to that of the lattice gases. Making a correspondence
between the parameters of the lattice gas models to those of
the hard disk gas, a good agreement for the density profiles,
pressure profiles, and tracer currents has been obtained.

This work suggests some extensions. In the 2D case,
a natural extension would be to introduce a second tracer
particle and to study interactions between the tracers. While the
discrete problem seems hard to tackle, simplified continuous
equations like Eq. (9) may reproduce the main features of a
two- or even many-tracer system. One may also generalize the
molecular dynamics to consider disks with significant inertia
and to study how they correspond to lattice gas models.
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