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Density of states and dynamical crossover in a dense fluid revealed by exponential mode
analysis of the velocity autocorrelation function
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Extending a preceding study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones
fluid [Phys. Rev. E 92, 042166 (2015)] to cover higher-density and lower-temperature states, we show that the
recently demonstrated multiexponential expansion method allows for a full account and understanding of the
basic dynamical processes encompassed by a fundamental quantity as the VAF. In particular, besides obtaining
evidence of a persisting long-time tail, we assign specific and unambiguous physical meanings to groups of
exponential modes related to the longitudinal and transverse collective dynamics, respectively. We have made
this possible by consistently introducing the interpretation of the VAF frequency spectrum as a global density
of states in fluids, generalizing a solid-state concept, and by giving to specific spectral components, obtained
through the VAF exponential expansion, the corresponding meaning of partial densities of states relative to
specific dynamical processes. The clear identification of a high-frequency oscillation of the VAF with the
near-top excitation frequency in the dispersion curve of acoustic waves is a neat example of the power of the
method. As for the transverse mode contribution, its analysis turns out to be particularly important, because the
multiexponential expansion reveals a transition marking the onset of propagating excitations when the density
is increased beyond a threshold value. While this finding agrees with the recent literature debating the issue of
dynamical crossover boundaries, such as the one identified with the Frenkel line, we can add detailed information
on the modes involved in this specific process in the domains of both time and frequency. This will help obtain
a still missing full account of transverse dynamics, in both its nonpropagating and propagating aspects which
are linked through dynamical transitions depending on both the thermodynamic states and the excitation wave
vectors.

DOI: 10.1103/PhysRevE.95.012108

I. INTRODUCTION

The velocity autocorrelation function (VAF) is a key quan-
tity in the translational dynamics of a fluid at the microscopic
scale [1–3]. Phenomena such as thermal and mass diffusion,
sound propagation, transverse-wave excitation, having either
a single-particle or a collective nature, are all reflected,
through the motions of individual particles, in a fundamental
quantity, which, in the usual statistical-mechanical treatment
of a many-body system, is expressed in terms of the time
autocorrelation function of an atomic variable, namely the
particle velocity [4,5].

On its own, the VAF is not a directly measurable quan-
tity. In fact its frequency spectrum can be obtained from
inelastic incoherent neutron scattering experiments provided
a, somewhat problematic, extrapolation of the self-dynamic
structure factor to the wave vector Q → 0 limit is performed.
To our knowledge, only two papers have reported attempts to
experimentally determine the VAF spectrum [6,7]. Thus, the
investigation of the VAF has almost exclusively been confined
to theoretical and simulation studies [2,3,8]. It is well known
that a major reason for studying the VAF was the detection, in
a molecular dynamics (MD) simulation of a hard-sphere (HS)
fluid at intermediate density, of a long-time tail (LTT) well
accounted for by a power law At−3/2 [9,10].
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A number of simulation studies were later devoted to fluids
with more realistic interaction potentials, in order to establish
the presence and the time behavior of the LTT depending on the
thermodynamic conditions of the fluid [11–17]. It was found
that the LTT was most easily detected at intermediate densities
in the gaseous state, while in dense liquids other dynamical
effects on shorter time scales, such as backscattering due to
the bouncing of atoms off near neighbors, effectively hide the
LTT [12].

On the theoretical side, both hydrodynamics-based argu-
ments [18–20] and kinetic theory for HS fluids [21] led to
the time dependence At−3/2 and provided the same expression
for the amplitude coefficient A [see Eq. (2) below]. However,
as recently recalled [22], the two treatments lead to different
results for the asymptotic VAF time dependence. Moreover,
the theoretical predictions have not been confirmed by a
two-dimensional simulation of a very large system of hard
disks [23].

Although so much attention was paid to the LTT issue, it
is clear, however, that the VAF contains relevant information
about the atomic dynamics at all time scales, starting from
the very-short-time binary collision processes. Therefore, a
complete approach to the VAF analysis should cover in a
consistent way the full time range from zero up to the LTT
regime in any thermodynamic state of the fluid.

In a recent paper [22], this goal has been attained, for a
Lennard-Jones (LJ) fluid at a supercritical temperature and
intermediate densities, by exploiting a general property of
correlation functions of dynamical variables in a many-particle
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Hamiltonian system, whose time dependence has been recently
shown to be represented as infinite series of (complex and/or
real) exponentials [24–26]. In summary, it was found [22]
that, for all the considered thermodynamical states considered
and in the whole time range accessed by MD, the VAF is
described perfectly by fitting the sum of a small number of
exponential terms. Four of them are real exponentials having
decay times ranging from the order of one collision time (“fast
modes”) up to the order of several tens of collision times
(“slow modes”). The slowest-decay exponential, and to a lesser
extent the second-slowest one, together build up a long-time
behavior which reproduces the LTT at least as accurately as the
power-law dependence. In addition to the real ones, other terms
present in the fit function are two pairs of complex conjugate
exponentials representing damped oscillations. Each of them is
characterized by a decay time, also of the order of, or less than,
one collision time, and a frequency close to the collision fre-
quency. These modes represent fast oscillatory components of
the VAF and correspond to vibratory motions of the particles.

All the parameters describing the various modes repre-
sented by exponential terms display a completely smooth
density dependence, signaling a continuous evolution of all
aspects of the atomic dynamics. Nevertheless, one observes
that the intensity of the complex modes grows with density
at the expense of the fast real modes. This was then natu-
rally interpreted as the evolution towards the formation of
better structured nearest-neighbor cages favoring oscillatory
motions, though strongly damped. It has to be noted, however,
that this picture still refers to the case where the VAF displays
a behavior typical of a medium-density gas rather than that of a
liquid, and shows, for example, a monotonic decrease without
reaching negative values.

The effectiveness of this analysis in allowing for a simple
and consistent description of the entire time dependence of
the VAF has naturally suggested to extend this approach to
thermodynamic states closer to a liquidlike, and even true-
liquid, behavior, for a number of reasons. One is the fact that
it is still unclear whether the LTT persists in denser and/or
colder fluids, given that the overall decay to zero reduces the
VAF intensity to very small values in the time range where the
LTT should be its dominant feature.

However, a more important point is the above mentioned
change of the VAF shape and sign. So far, no theory has
produced a model able to describe, at the same time and
in an accurate way, both the negative portion of the VAF
and its subsequent growth to positive values, followed by the
final decay to zero from above. This is the time range where
oscillatory components of the total VAF develop when the
dynamical behavior tends to the one typical of a liquid.

The interpretation of the frequency spectrum of the VAF as
a density distribution of states, which is straightforward for a
crystalline solid, when extended to the fluid phase provides,
in principle [4,5], a route to the investigation of the dynamics
also for what concerns the collective motions. However, no
clear way of carrying out this task has been developed so far.

It is, thus, a main goal of this work to explore the
possibility of exploiting the mode decomposition provided by
the exponential expansion in order to relate the various VAF
components to specific collective and single-particle motions
typical of a fluid.

We have, therefore, performed more MD simulations in
order to extend the analysis carried out in Ref. [22] both to
the high density supercritical fluid and to some liquid states
at subcritical temperatures. The results of this analysis will
show that the evolution of the fitted exponential terms in
number, nature, intensity, and time scale gives indeed valuable
insight on the identification of some of the fitted modes
with specific dynamical properties. In particular, besides the
already recognized role of slowly decaying exponentials in
accounting for the LTT [22], which is confirmed by the new
simulations, we also demonstrate the correspondence between
the highest-frequency complex mode and the dispersion curve
of longitudinal acoustic wave propagation. Moreover, we will
show that the remaining exponential modes represent the
transverse collective dynamics and that their density evolution
provides clear evidence of a crossover.

In this context it is worth to mention recent studies [27–30]
that have discussed the existence of a transition between a
low-density gaslike and a high-density liquidlike dynamical
regime of a supercritical fluid. This crossover was identified
by Brazhkin and co-workers [31] with the crossing of the
so-called Frenkel line, which has been eventually connected
directly to the onset of a nonmonotonic time dependence of
the VAF [32].

In Sec. II we present the results of the new simulations. After
a brief summary of the exponential mode analysis (Sec. III), its
results are reported and discussed in Sec. IV. The conclusions
are summarized in Sec. V.

II. SIMULATIONS

MD simulations of the VAF for the LJ (12-6) fluid along
the slightly supercritical T ∗ = 1.35 isotherm were already
reported for particle number densities up to ρ∗ = 0.60 [22].
Here we consider higher density states (with ρ∗ varying from
0.65 to 0.95 in steps of 0.05) at the same temperature, reaching
a density very close to that where isothermal solidification
begins. Moreover, we simulated a few colder liquid states along
the ρ∗ = 0.80 isochore and below the critical isotherm, with
T ∗ = 1.20,1.10,1.00,0.90. The point at T ∗ = 1.35, ρ∗ = 0.80
thus belongs to both the isotherm and the isochore here
considered. Throughout this paper, asterisks denote standard
reduced variables, like T ∗ = kBT/ε and ρ∗ = ρσ 3, where kB

is the Boltzmann constant and ε and σ are the energy and
length scale parameters of the LJ potential. The particle mass
will be denoted by m. Figure 1 shows the state points in the
(ρ,T ) plane, including for completeness and reference also the
lower density states of Ref. [22].

All simulations were performed, and the respective VAF’s
computed, exactly in the same way as in the previous
work [22], to which we refer the reader for any detail, here
recalling only that the same number of particles N = 10 976
was used in a cubical box for all states, and that simulations
of 107 time steps, with �t∗ = 0.001, were carried out in the
isokinetic ensemble and repeated ten times in order to estimate
statistical uncertainties. The result is a set of normalized
velocity autocorrelation functions

Z(t) = 〈v(0) · v(t)〉
〈v(0)2〉 , (1)
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FIG. 1. Simulated LJ states in the (ρ∗,T ∗) plane. Black open
circles indicate the points investigated in Ref. [22]. The other points
refer to this work: blue dots are higher density states on the same
T ∗ = 1.35 isotherm, while pink squares are at lower temperatures
along the ρ∗ = 0.80 isochore. Also shown are the liquid-vapor
coexistence line (red, full line) [35], and the two boundaries of the
solid-fluid coexistence region (green, dot-dashes) [56].

where v(t) is the velocity of a particle at time t and 〈· · · 〉
includes an average over all particles.

For all thermodynamic states considered here, we show
in Fig. 2 the low-intensity part of Z(t) at small values
of the reduced time t∗ = t/

√
mσ 2/ε. This is where the

mentioned changes in shape take place. In detail, starting
from a monotonous decay of Z(t), the increase of density at

FIG. 2. Simulated VAF for t∗ � 1. Only the part of Z(t) close
to the time axis is shown, and the steep decrease from the initial
value is omitted for clarity. (a) States along the T ∗ = 1.35 isotherm
at the indicated densities. Density increases from top to bottom. (b)
States along the ρ∗ = 0.80 isochore at the indicated temperatures.
Temperature decreases from top to bottom. The middle line in (a) and
the top line in (b) are the same curve.

FIG. 3. Log-log plots of the VAF from simulation (black solid
lines) at t∗ � 0.1 for the states along the T ∗ = 1.35 isotherm. The
At−3/2 behavior (red straight lines) is calculated with the theoretical
values of the coefficient A from Eq. (2). Curves are plotted in order
of increasing density from top (ρ∗ = 0.65) to bottom (ρ∗ = 0.95),
and for clarity each curve is shifted downwards by a factor of 10 with
respect to the preceding one. The higher density curves are interrupted
in the time intervals where Z(t) takes negative values. The vertical
green bars mark the values of t∗

R. See text for details.

constant T [Fig. 2(a)] leads to the presence of a plateau which
soon changes into a relative minimum. This already happens
when Z(t) still remains everywhere positive, but with a further
density increase this minimum deepens and shifts to smaller
times, the curve crosses the zero axis to become negative, and
another shallow minimum appears at a later time. The changes
of shape on cooling the system at constant density, shown in
Fig. 2(b), are less marked and are characterized essentially by
a strengthening of the negative portion of Z(t).

The behavior of Z(t) at long times is best appreciated in
Figs. 3 and 4 where the log-log scale is used for an easy
comparison with a power-law time dependence. As already
recalled [22], the calculated VAF beyond a certain time is
affected by spurious effects due to the use of periodic boundary

FIG. 4. Same as in Fig. 3 for the thermodynamic states along
the ρ∗ = 0.80 isochore. Curves are plotted in order of decreasing
temperature from top (T ∗ = 1.35) to bottom (T ∗ = 0.90), with each
curve shifted downwards by a factor of 10 with respect to the
preceding one. The top curve is also displayed in Fig. 3.
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conditions [1,33,34]. This occurs for time lags greater than
the so-called recurrence time tR = (N/ρ)1/3/cs required by
a density fluctuation to propagate over the box length at the
adiabatic sound speed cs. Values of tR, calculated using sound
speed data [35], are reported in Tables I and II. We also
display tR in Figs. 3 and 4, where the recurrence problem
shows up as a spurious overall reduction of the VAF intensity,
which also displays some oscillatory and rapidly increasing
noisy behavior, for t > tR. It can be noted that, at constant
temperature, tR markedly decreases with increasing density
due to the simultaneous reduction of the box size and increase
of cs, while, at constant density, tR increases weakly with
decreasing temperature due to the reduction of cs brought about
by the lowering of the particle thermal speed. Further analysis
of the VAF, described in later sections, will be performed,
at each state, using data in the respective 0 � t � tR ranges
only.

The above mentioned theories [19–21] of the LTT power-
law behavior give for the coefficient A the formula [2]

A = 1

12ρ[π (D + ν)]3/2
, (2)

where D is the self-diffusion coefficient, and ν = η/(mρ) and
η are the kinematic and shear viscosities, respectively. Using
the literature values of D and η [36] reported in Tables I
and II, we applied Eq. (2) to calculate A and to draw the
power-law dependence in Figs. 3 and 4. It appears that at
all thermodynamic states the VAF tail approaches the At−3/2

line, but such a time dependence could possibly be determined
quantitatively by a fit only for ρ∗ � 0.75 at T ∗ = 1.35, while at
higher densities and for all states at lower temperatures there is
no time range where Z(t) overlaps the power-law behavior. As
pointed out also by McDonough et al. [12], this fact excludes
the possibility of a direct detection of the LTT behavior at
high density, although in other works different claims have
been made as, for example, by Meier et al. [15] who found
a power-law dependence in LJ also at high density but with
a different exponent, or by Williams et al. [16] who did find
a t−3/2 behavior in an HS liquid. We will show in Sec. IV A
that the presence of an LTT can be established through the
exponential mode analysis.

Following the procedure of Ref. [22] for consistency with
the analysis there performed, we measure the characteristic
times of the various dynamical processes in units of the Enskog
mean free time τE of a corresponding HS fluid at the same
density. Enskog kinetic theory predicts a mean time between

TABLE II. Same as in Table I for the thermodynamic states along
the ρ∗ = 0.80 isochore. The first state at T ∗ = 1.35 also appears in
Table I.

ρ∗ 0.80 0.80 0.80 0.80 0.80
T ∗ 1.35 1.20 1.10 1.00 0.90
t∗
R 3.8 4.0 4.2 4.3 4.6
τ ∗

E 0.038 0.040 0.042 0.044 0.046
t∗
R/τ ∗

E 101 100 101 98 100
D∗ (from Ref. [36]) 0.097 0.085 0.077 0.068 0.060
η∗ (from Ref. [36]) 1.97 1.97 2.02 2.05 2.09
102A∗ [from Eq. (2)] 0.46 0.46 0.45 0.44 0.43

collisions given by [3]

τE = 1

4ρσ 2g(σ )

√
m

πkBT
, (3)

where σ is the sphere diameter and the pair distribution
function at contact g(σ ) can be obtained from the Carnahan-
Starling HS equation of state as [1]

g(σ ) = 1 − πρσ 3/12

(1 − πρσ 3/6)3
. (4)

The values of τE, obtained with the densities of the LJ states
under study, are given in Tables I and II, where it also appears
that the upper bound tR on the useful time range corresponds
to about one hundred collisions at all thermodynamic points.

III. EXPONENTIAL MODE ANALYSIS

In this section we briefly recall the main concepts of
the exponential mode analysis already applied to lower-
density states [22] and used in the present work as well.
The starting point is the recently presented [24–26] result
that the generalized Langevin equation for a normalized
autocorrelation function C(t) of a classical many-body system
has an exact solution written as an infinite sum of exponential
functions, i.e.,

C(t) =
∞∑

j=1

Ij exp(zj t). (5)

Here, each term of the series can be considered as a character-
istic decay mode of C(t) having Ij and zj as its amplitude and
frequency, respectively. If Ij and zj are complex quantities, the
corresponding term and its complex conjugate are both present

TABLE I. Recurrence time for the simulations and properties of the LJ system on the T ∗ = 1.35 isotherm. The Enskog mean time between
collisions for hard spheres at the same density is given, together with the diffusion coefficient and the viscosity [36]. The coefficient of the
At−3/2 power law is obtained through Eq. (2). All quantities are expressed in reduced units.

ρ∗ 0.65 0.70 0.75 0.80 0.85 0.90 0.95
T ∗ 1.35 1.35 1.35 1.35 1.35 1.35 1.35
t∗
R 6.2 5.2 4.5 3.8 3.3 2.9 2.6
τ ∗

E 0.065 0.054 0.045 0.038 0.031 0.026 0.022
t∗
R/τ ∗

E 96 96 100 101 105 111 120
D∗ (from Ref. [36]) 0.183 0.150 0.122 0.097 0.076 0.058 0.042
η∗ (from Ref. [36]) 0.99 1.21 1.52 1.97 2.59 3.37 4.81
102A∗ [from Eq. (2)] 1.03 0.83 0.64 0.46 0.32 0.22 0.14
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in the series and add up to an exponentially damped oscillation.
Otherwise, real Ij and zj define a purely exponential decay. In
all cases, Re zj is negative ensuring the decay to zero of C(t)
in the t → ∞ limit. Since C(t) is an even function, one should
take in the exponent of each term the absolute value |t |, but
this can be avoided by considering positive t only. Together
with C(t), we shall also consider its frequency spectrum Ĉ(ω)
obtained by Fourier transformation (FT):

Ĉ(ω) = 1

2π

∫ ∞

−∞
dte−iωt C(t). (6)

While the rigorous expression of C(t) is given by an infinite
number of terms, any practical use requires us to carry out a
suitable approximation by truncating the series (5) after a few
terms. In Ref. [24] we have shown that the approximation
introduced by the truncation consists of the neglect of higher-
order derivatives of the dynamical variable, say a(t), in
the description of the time evolution of its autocorrelation
C(t) = 〈a(0)a(t)〉/〈a2〉.

The zero-time values of C(t) and of its derivatives are
related to the spectral moments 〈ωk〉 = ∫ ∞

−∞ dω ωk Ĉ(ω) by
the relationship (

dkC(t)

dtk

)
t=0

= ik〈ωk〉. (7)

Since in a system of classical particles interacting via a
continuous potential C(t) has derivatives of any order at t = 0,
Eq. (7) implies that 〈ωk〉 is zero for all odd k and has finite
values for all even k and, in combination with Eq. (5), leads to
an infinite set of so-called sum rules of the form

∞∑
j=1

Ij z
k
j = ik〈ωk〉 (8)

for k � 0. When the series (5) is truncated, the number of
applicable sum rules is also limited, as k cannot exceed (though
it can be less than) the number of terms in the exponential
series.

Specific models for a given dynamical variable autocorre-
lation function C(t) are then obtained by looking for a set of
exponential terms that is best fitted to the data, depending on
the total number of terms, the number of real and complex
ones, and the set of sum rules that are chosen to be obeyed.
As already discussed in Ref. [22], there is no arbitrariness
in the composition of the fit model, if the set of exponential
terms retained in the truncated series is the smallest one which
yields an accurate fitting, depending on the extension and
accuracy of available data, without introducing an unjustified
overparametrization of the fit function. As regards sum rules,
besides the normalization condition∑

j

Ij = 1

[obtained from Eq. (5) for t = 0, or from Eq. (8) with
k = 0], the fit parameters can also be constrained to satisfy
conditions ∑

j

Ij z
k
j = 0

for a number of odd k values, each of them corresponding to
the requirement that 〈ωk+1〉 be finite [37].

As recalled in Sec. I, the LJ lower-density VAF data of
Ref. [22] were perfectly described in the whole time range up
to tR by the sum of two pairs of complex conjugate exponentials
and four real exponentials. We will show in the next section that
a dynamical crossover emerging at the higher-density states
of the present work will require the modification of the fit
model according to precise trends, while maintaining in all
cases the same number of sum rules constraints, specified
by k = 0,1,3,5. As noted in Ref. [22], these constraints both
reduce the number of free fit parameters and allow for a very
accurate description of the VAF short-time dependence by
ensuring finiteness of its time derivatives at t = 0 up to the
sixth order. Computational details of the fitting analysis are
also reported in Ref. [22].

IV. RESULTS

For all thermodynamic states considered in this work,
excellent fits to the VAF data in the range 0 � t � tR were
obtained with the models described below and summarized in
Table III. The left frames of Fig. 5 show examples of the fitted
curves, highlighting the excellent agreement between data and
models. An enlarged view of the VAF part close to the zero
axis is shown in Fig. 6.

At the lowest density (ρ∗ = 0.65), the fit model employed
in Ref. [22] works very well, in continuity with the low-density
states. Keeping the same labeling of the modes, we have two
pairs of complex modes (C1 and C2) and four real modes
(R1–R4, numbered in order of increasing decay time). We
remind that C1 amounts to a very fast, very strongly damped
oscillation, required for a good fit of the very-short-time
data points, but of negligible importance at later times due
to its extremely low intensity. This feature is present at all
investigated states and will not be discussed further.

Moving along the T ∗ = 1.35 isotherm towards higher den-
sities, Table III evidences two modifications of the optimum

TABLE III. Composition of the fit models. Labels C1–C3 denote
pairs of complex conjugate modes. The modes labeled R0 to R4
correspond to real exponentials. Each mode is indicated as present
(×) or absent (–) in the fit model for a given thermodynamic state.
The upper part of the table refers to the T ∗ = 1.35 isotherm, the lower
part to the ρ∗ = 0.80 isochore.

ρ∗ T ∗ C1 C2 C3 R0 R1 R2 R3 R4

0.65 1.35 × × – – × × × ×
0.70 1.35 × × × – – × × ×
0.75 1.35 × × × – – – × ×
0.80 1.35 × × × – – – × ×
0.85 1.35 × × × – – – × ×
0.90 1.35 × × × × – – – ×
0.95 1.35 × × × × – – – ×
0.80 1.35 × × × – – – × ×
0.80 1.20 × × × – – – × ×
0.80 1.10 × × × – – – × ×
0.80 1.00 × × × – – – – ×
0.80 0.90 × × × – – – – ×
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FIG. 5. Z(t) and Ẑ(ω) at four thermodynamic states. In the left
frames, MD data for the VAF (symbols) and the multiexponential fit
(red solid line through the points) are displayed at short times. The
various components of the fit function, grouped together as indicated
by the top right labels, are also displayed separately. In the right
panels, the corresponding FT’s are shown. For graphical clarity, not
all available data points have been displayed.

fit model: (a) a third pair of complex modes (C3) appears
for ρ∗ � 0.70, and (b) the faster-decaying real exponentials
disappear (R1 first for ρ∗ � 0.70, then also R2 for ρ∗ � 0.75).
Finally, at the two highest densities, R3 also vanishes, while
another real mode labeled R0 is required. (The reasons to
keep R0 distinct from other real modes will be discussed in
Sec. IV C.) Moving along the ρ∗ = 0.80 isochore, the fit model
stays unchanged while temperature is reduced, apart from a
similar disappearance of R3 at the two coldest states.

In the following subsections we will show in detail how
different dynamical processes can be associated to a sensible
regrouping of the various modes. These are grouped in the
way indicated by the legend in Fig. 5(b), for reasons explained
below.

The multiexponential analysis of Z(t) facilitates consider-
ably the interpretation of the spectrum of the VAF in terms
of the contributions of different dynamical processes, because
Eq. (5) immediately translates, upon FT, into a corresponding
series expression for Ẑ(ω) where each real exponential
Ij exp(zj t) transforms into a Lorentzian line centered at ω = 0

FIG. 6. Detail of Z(t) close to the time axis at three thermody-
namic states indicated by the labels. Symbols, lines, and colors are as
in Fig. 5.

and having a half width at half maximum −zj , while a pair
of complex exponentials gives rise to a pair of distorted
Lorentzians centered at the positions ω = ±|Im zj | with half
width at half maximum −Re zj [37]. Depending on the amount
of damping, such a pair may appear as either a doublet of lines
or one unshifted bell-shaped curve. Once the various modes
are determined by fitting the appropriate model to Z(t) data,
one automatically obtains the decomposition of Ẑ(ω) in terms
of the corresponding centered or shifted spectral lines. This
fact is exploited in the right frames of Fig. 5 where the spectral
contribution of each group of modes is displayed together with
Ẑ(ω) and the FT of the total fit curve.

A. LTT

At low density we showed [22] that the R3 and, predomi-
nantly, R4 terms describe the LTT, with the latter characterized
by a time constant much longer than that of the other modes
and of the order of about 50–80 if measured in units of τE.
This fact, revealing its multicollisional, many-particle nature
in agreement with the onset of a hydrodynamiclike regime,
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FIG. 7. Contribution of the sum of the R3 and R4 terms to the
VAF time dependence. Solid curves refer to thermodynamic states
at T ∗ = 1.35 and are plotted in order of increasing density from
top (ρ∗ = 0.65) to bottom (ρ∗ = 0.95). Dotted curves refer to states
at ρ∗ = 0.80, plotted in order of decreasing temperature from top
(T ∗ = 1.20) to bottom (T ∗ = 0.90) and have been divided by a factor
of 20 for graphical clarity. All curves are plotted for 0.5 � t∗ � t∗

R.
The dashed line is the (t∗)−3/2 function, arbitrarily scaled.

has now been found to hold true when going towards the high-
density gas or cold liquid conditions investigated here. Figure 7
displays the sum of these slowly decaying exponentials (or R4
alone when R3 is missing) and shows that an LTT is also found
at the thermodynamic states studied in this work but its time
dependence is compatible with an effective t−3/2 behavior only
at the lowest densities, as mentioned in Sec. II.

A simple inspection of Figs. 3 and 4, compared with the
analogous Fig. 1 of Ref. [22], shows that the time range where
an LTT can emerge as a salient feature of the VAF shrinks on
the short-time side due to the growth of the VAF negative part,
and on the long-time side because of the much smaller values
of tR, beyond which the data become unreliable. This explains
why at the densest or coldest states the fitting cannot determine
more than just one exponential (R4). As remarked in Sec. II,
in so narrow a range it would be virtually impossible to fit any
specific time behavior assumed to represent directly the LTT
alone. The multiexponential analysis, however, exploiting the
knowledge of the VAF in the whole time range 0 � t � tR,
has a far better sensitivity to, and allows for the determination
of, its slowly decaying long-time part. It also follows from
the above observation that a more accurate determination of
the long-time VAF dependence in a dense fluid may only be
obtained through a substantial increase of tR, i.e., by using
larger simulation boxes with a number N of atoms at least one
order of magnitude larger than the present one. In such a case,
the exponential expansion theory straightforwardly predicts
that additional modes having even slower decay times should
eventually be added to the model, although these modes would
account for contributions to the VAF of negligible intensity.

The fact that the slowly decaying exponentials are indeed
able to describe the LTT is even more evident if one looks at
the spectra reported in the right part of Fig. 5, which show the
presence of a tiny but clearly visible tip at ω = 0. This is the
spectral signature of the LTT which, assuming a t−3/2 power-
law dependence, would appear as a ∼ −√

ω cusp [38]. The
multiexponential fit shows that such a pathological frequency

behavior is not justified and can be avoided, since a simple
continuous function like the sum of the centered Lorentzian
lines corresponding to the R3 and R4 modes accounts very well
for the spectral representation of the LTT, which is displayed
as the by far weakest component, confined to extremely low
frequencies, of the spectra of Fig. 5. Accordingly, the modeling
of the LTT in the form of an algebraic time dependence is also
not necessary. It can be observed that, at the time of the two
previously mentioned neutron scattering determinations of the
VAF spectrum [6,7], the focus was on the experimental detec-
tion of the −√

ω cusp as a verification of the t−3/2 behavior, that
was the only current theoretical result for the VAF long-time
dependence. However, the data of Refs. [6,7] would show the
same level of agreement with the spectral shape that could be
obtained from the exponential mode expansion.

B. Sound modes

The two complex modes forming the pair C2 define an
exponentially damped oscillation that in the previous work
(see Fig. 4 of Ref. [22]) was found to be characterized by a
frequency |Im z| close the Enskog collision frequency and a
decay time τ = −1/Re z slightly smaller than τE. As the den-
sity was increased isothermally from ρ∗ = 0.30 to ρ∗ = 0.60,
a steady increase of τ/τE by nearly a factor of 4, while ωτE

remained practically constant, showed that this oscillatory
motion becomes better defined, though still strongly damped.
Also, we noted that the fractional contribution of C2 to the
VAF time integral clearly increases with density (see Table II
of Ref. [22]) while the C1 pair contributes negligibly.

In Ref. [22] we did not associate the C2 oscillation with any
specific dynamical process, apart from noting that its growing
intensity points to an increasing relevance of vibratory motions
likely related to the bouncing of atoms off their neighbors.
However, the above mentioned characteristics of this com-
ponent of the VAF are all compatible with the suggestion
that what is accounted for by the C2 pair is the dynamics of
collective motions due to propagating longitudinal acoustic
waves. In fact, sound propagation occurs at any density, but
when approaching dense fluid conditions the sound speed
increases and the visibility of sound modes is enhanced.

The connection between VAF and collective dynamics
of fluids is realized through the interpretation of the VAF
frequency spectrum as a generalized overall “density of states.”
This concept is of standard use in the phonon theory of
harmonic crystals and has also been applied to the anharmonic
case [39], to vibrations in amorphous solids [40] and glasses,
and to internal degrees of freedom of polyatomic molecules. In
the case of liquids, a connection between the frequency density
distribution of vibrational states and its relation to the spectrum
of the VAF has been proposed in the framework of the so-called
normal mode analysis in various formulations [41,42]. It has
to be noted that the relationship between collective dynamics
and density of states is a general property, not restricted to
the longitudinal wave case only. For example, in a recent
work [43], the density of states of the crystal phase has been
used to interpret dynamic structure factor data of a liquid metal,
where an excitation was observed at frequencies close to those
of the transverse phonon density of states and was therefore
assigned a transverselike character.
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As already stated in Sec. I, the VAF and its spectrum
contain all kinds of dynamical information relative to both
diffusive and vibrational motions. This was evidenced by the
treatment of Gaskell and Miller [4] where, under reasonable
assumptions, Z(t) could be written in terms of both self-
and collective functions. Here we show, in particular, that the
C2 pair has a clear and direct quantitative connection to the
dispersion curve of the longitudinal acoustic modes.

In order to do so, we also carried out MD simulations
of the intermediate scattering function F (Q,t) and, through
Fourier transform, of the dynamic structure factor S(Q,ω) at
a number of wave vectors Q for each density. In this case
we used 2048 particles with a simulation length of 1.2 × 106

time steps of duration �t∗ = 0.001, and the Q values were
multiples of the minimum Q value allowed, at each density,
by the respective box size. With the same simulations we also
computed the transverse current correlation spectra that will
be discussed later in Sec. IV C. A smaller number of particles
than in the simulations of the VAF was possible because in
this case the correlation functions to be computed decay faster,
without long-time tails, and a shorter tR is sufficient, allowing
for smaller simulation boxes.

We analyzed the S(Q,ω) spectra by fitting to them the
viscoelastic (VE) model line shape, which has proven to ensure
a very accurate description of the dynamics of density fluctua-
tions in a very large variety of fluids [44]. The main properties
and the expression of the VE model are briefly summarized in
the Appendix. Examples of S(Q,ω) simulated spectra with the
corresponding fitted ones are shown in Fig. 8. The fits are of
very good quality at all Q and density values, and allowed us
to extract the parameters relevant to the description of sound
modes, namely the frequency ωs and the damping zs, which
are plotted in Fig. 9(a), displaying the typical shape of the
sound dispersion curves of a fluid, and Fig. 9(b), respectively.

In much the same way as the density of phonon states
in crystals peaks at frequencies where the dispersion branches
have a horizontal tangent [45], the contribution of sound modes

FIG. 8. Simulated S(Q,ω) (dots) at two densities and two Q

values indicated by the labels. Also shown are the VE fits (solid
lines through the data points) and the partial contributions to the fit
of the sum of the two central modes and of the two sound modes.

FIG. 9. (a) The curves joining symbols with error bars are the
dispersion curves ω∗

s (Q∗) of the longitudinal acoustic mode along
the T ∗ = 1.35 isotherm, in order of increasing density from bottom
(ρ∗ = 0.65) to top (ρ∗ = 0.95). Dashed lines, in the same order,
mark the corresponding values of the C2 oscillation frequency. The
hydrodynamic dispersion straight lines c∗

s Q
∗ are also shown (dash-

dots) for the highest and the lowest density. (b) Damping z∗
s (Q∗

m) of
the longitudinal acoustic mode (dots with error bar) at Q∗ = Q∗

m, i.e.,
where the respective dispersion curve reaches its maximum value in
(a), and damping −Re (zC2)∗ of the complex pair C2 (crosses). The
color code is the same in the two frames.

to the total VAF spectrum of a liquid is also expected to be
centered around the top value of the sound dispersion curve.
Figure 9(a) shows that the frequency of the fitted C2 pair is very
close to the maximum sound frequency, with an increasingly
better agreement for increasing density. In Fig. 5, contrary
to the crystal case, Ẑ(ω) does not display a clear shoulder
at the acoustic frequencies ±|Im zC2|, because its overall
shape is also determined by other contributions of different
dynamical origin. Here one can well appreciate the advantage
brought about by the possibility of extracting specific partial
contributions to the total Ẑ(ω). The spectral partial component
formed by the C1 and C2 mode group does, in fact, show clear
shoulders at nonzero frequencies, as seen in Fig. 5.

Besides the frequency, also the broadening of the acoustic
line in S(Q,ω) is directly reflected by a corresponding
broadening of the density of states. Accordingly, Fig. 9(b)
shows that the damping −Re zC2 of the C2 exponentials
matches very closely the damping parameter zs(Qm) of the
acoustic spectral lines if Q is taken to be the position Qm of
the maximum in the dispersion curve. This is in agreement with
the already stated fact that the density of states is dominated
by the sound modes of maximal frequency.

It is worth noting from Fig. 9 that the top sound frequency
varies with density between reduced values of about 16 and
30, while the corresponding dampings stay constant around
13, indicating that the acoustic excitation becomes less sharply
defined in less dense fluids. A consequence of this is that also
sound modes of frequency not much lower than the maximum
one can contribute partially to the density of states of a fluid, the
more so the lower the density. This fact explains why |Im zC2|
becomes smaller than the maximum of ωs(Q) when density is
decreased. Analogously, the contribution of lower-frequency
sound modes with their respective broadenings makes the
damping of the C2 modes a bit larger than the damping zs
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FIG. 10. Oscillation frequency of the C2 exponential (full
squares) as a function of density at T ∗ = 1.35 including the low-
density states of Ref. [22]. The dashed line depicts the 3.5c∗

s behavior
explained in the text.

of the acoustic excitation at the top of the dispersion curve, as
shown in Fig. 9(b).

The strict relation between the oscillation frequency of the
C2 modes and the collective longitudinal dynamics can also
be visualized in another way. In Fig. 10, |Im z∗

C2| is plotted
as a function of density, including for completeness the lower
density states of Ref. [22]. The line is the plot of 3.5c∗

s , which
describes very well the density behavior of the data points.
Here 3.5 is only an empirically adjusted number, to which
no specific meaning is attached. However, there are reasons
to justify this kind of relationship and a numerical factor
close to and slightly larger than π . Figure 9(a) shows that, for
increasing Q∗, the dispersion curves bend upwards (positive
dispersion) before reaching their top values, and it is also
found that they intersect the hydrodynamic linear dispersion
c∗

s Q
∗ somewhere near the position Q∗

m of the maximum.
Beyond this point, dispersion curves in fluids drop typically
a bit faster than they rise to the left of it, up to the value
of Q∗ = Q∗

p where the static structure factor S(Q∗) has its
main peak. Thus, Q∗

m is usually close to, but slightly greater
than, Q∗

p/2 and, analogously, the maximum frequency is a
bit higher than c∗

s Q
∗
p/2. On the other hand, in a fluid Q∗

p
is close to 2π , therefore the top frequency of the acoustic
mode is well approximated by the hydrodynamic disper-
sion evaluated at Q∗ � π , which gives the result displayed
in Fig. 10.

As pointed out above in the discussion of Fig. 9, with
decreasing density |Im z∗

C2| becomes lower than the top value
of the dispersion curve, but also Q∗

p slightly decreases below
the value 2π due to a less closely packed structure of the fluid.
These two weak variations appear to effectively compensate
each other so that the relation |Im z∗

C2| ≈ 3.5c∗
s continues to

hold at low densities as well.
While the above is just a semiquantitative argument, the

agreement displayed in Fig. 10 remains remarkable, high-
lighting a simple but accurate proportionality relation between
two properties of the system under study: one, |Im zC2|,
derived from the theoretically well-founded exponential mode
expansion, the other, cs, being a fundamental thermophysical
quantity of a fluid. The link between these two properties is

meaningful independently of possible minor changes of the
actual proportionality factor.

In this subsection, we have thus definitely established in a
quantitative way that the exponential expansion of the VAF
allows us to extract the part of the density of states that is
strictly and directly connected to the dynamics of longitudinal
sound wave propagation. We remark that, in doing so, we
relate the dispersion curves and the VAF spectrum of the same
fluid state, without using any information on the vibrational
density of states of the corresponding crystalline solid. In this
respect, our findings conform to the results of the Gaskell and
Miller [4] approach that explicitly links Z(t) to the self- and
collective correlation functions of one and the same system.
However, our method deepens considerably the analysis by
providing a means to separate different dynamical processes,
opening up the way for studying their evolutions as functions
of any relevant state parameters.

C. Low-frequency dynamics

So far we have identified the VAF expansion modes related
to the LTT (i.e., R3 and R4) and the longitudinal collective
dynamics (the C2 pair, remembering that the contribution
of the C1 pair is by far negligible). We now turn to the
remaining modes. As shown in Table III, these include the
real exponentials R1 and R2 which can be qualified as fast
decaying terms, since their decay times are of the order of τE.
(We find τR1/τE = 0.86 for ρ∗ = 0.65 and τR2/τE = 3.30 and
3.48 for ρ∗ = 0.65 and 0.70, respectively, where the decay
time for a real mode j is defined as τj = −1/zj .)

However, we noted that optimization of the fit model leads
to the elimination of both terms while introducing a new
complex pair C3 already at density ρ∗ = 0.70. This suggests
that we are witnessing a transition from nonpropagating to
propagating modes, with the transformation of purely decaying
term(s) into another oscillatory component of the VAF time
dependence. We also noted that at the highest densities a good
fit requires an extra real mode (labeled R0) which turns out
to have a negative amplitude. The interplay between these
components of the VAF can be complicated to follow in
extreme detail. However, what we are interested in here is to
see how a contribution to the VAF that starts at low density as
a sum of diffusive relaxation channels [22] evolves towards an
oscillatory behavior, and what kind of dynamics it corresponds
to. Thus, we define another group by summing together the
exponentials R1, R2, C3, and R0, whenever present. The time
function so obtained, which in general is not normalized to
unity at t = 0, and its FT are denoted as ZT(t) and ẐT(ω),
respectively.

Both these quantities are displayed in Fig. 5, from which a
few facts can be immediately noticed. First, ZT(t) constitutes
the largest component of the total VAF at low densities, while
providing an intensity comparable to the high-frequency group
(C1 + C2) at high density. (See also the discussion of Table IV
in Sec. V.) Second, ẐT(ω) shows clearly the presence of a
peak at a nonzero frequency for ρ∗ � 0.80. On the other hand,
Table III indicates that the C3 complex exponential pair is
still missing at ρ∗ = 0.65 but is present at ρ∗ = 0.70. Thus a
vibrational dynamics seems to set on in the crossover range
0.65 < ρ∗ < 0.75. In Fig. 5(b) (i.e., at ρ∗ = 0.70) one would
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TABLE IV. Percent contribution to the integral of the VAF of the
fitted modes grouped as indicated. (Missing modes in a given fit model
do not contribute.) The numbers in each row add up to 100 percent
to within rounding of the last digit. The upper part of the table refers
to the T ∗ = 1.35 isotherm, the lower part to the ρ∗ = 0.80 isochore.

ρ∗ T ∗ C1 + C2 C3 + R0 + R1 + R2 R3 + R4

0.65 1.35 26.3 52.5 21.3
0.70 1.35 26.9 51.8 21.3
0.75 1.35 24.7 54.5 20.7
0.80 1.35 35.8 47.3 16.9
0.85 1.35 43.4 44.1 12.4
0.90 1.35 37.7 54.4 7.8
0.95 1.35 49.8 42.4 7.9

0.80 1.35 35.8 47.3 16.9
0.80 1.20 38.1 46.8 15.0
0.80 1.10 39.5 47.6 13.0
0.80 1.00 41.2 48.9 9.8
0.80 0.90 42.6 48.9 8.6

at first sight conclude that no such vibration frequency is
present. However, we already noted that the spectral signature
of a strongly damped oscillation may appear as a single line.
Moreover, at ρ∗ = 0.70 the C3 pair of lines is still added to
a central Lorentzian line due the real exponential R2 which
can mask partially the spectrum of the oscillating terms. At all
densities, however, the frequency of the C3 modes is clearly
smaller than that of the high-frequency group, and for this
reason we shall refer to these modes as the low-frequency
group, in accordance with the title of this subsection.

In order to tentatively assign this group of modes to a
specific dynamical property of the fluid, we first note that
in the Gaskell and Miller approach both longitudinal and
transverse dynamics appear, on equal footing, in the integral
representation of the VAF [4], but that we have not yet related
any fit components of either the VAF or its FT to the dynamics
of transverse modes. Moreover, it is known that if excitations
in the transverse current autocorrelation function take the form
of propagating waves, they do it with lower frequencies than in

the longitudinal case [5,46]. Also, it is a common belief that a
low-density fluid does not sustain propagation of shear waves
while nonideal dense liquids do [2,32,47]. All these facts point
then to a likely connection of the whole low-frequency group
of modes to transverse dynamics, and it appears reasonable to
check if more quantitative arguments can be put forward to
make this relation stand on firm grounds.

Here we go into details of this analysis for the T ∗ = 1.35
states only, but analogous observations can be made for those
along the ρ∗ = 0.80 isochore. The results are summarized
in Fig. 11, where for comparison we have also included the
ρ∗ = 0.60 case. The time dependence of ZT(t) is shown in
Fig. 11(a). This quantity begins to feature a negative part for
ρ∗ = 0.75 that progressively deepens and shifts its minimum
to lower times. Such a behavior describes the emergence of an
oscillation of growing strength and increasing frequency.

It is instructive to compare the plot of ZT(t) with that of the
total VAF shown in Fig. 2(a), in two respects. First, the onset of
a negative part of Z(t) is also located just above ρ∗ = 0.75. The
near coincidence of this threshold density in Z(t) and ZT(t)
is remarkable, since the former contains other terms which
are absent in the latter. This suggests that the VAF develops its
negative part mainly because of the overall oscillating behavior
of the low-frequency group (which in turn is mostly due to the
C3 complex pair). Second, the next oscillation clearly visible
in Fig. 2(a) around t∗ = 0.35 at the higher densities is missing
in ZT(t) and is therefore due to the high-frequency sound
mode. This is evident from Fig. 6 where the contribution of
the C1 + C2 group displays a relative maximum exactly at the
same position as the total VAF.

Going to the frequency domain, ẐT(ω) is plotted in
Fig. 11(b) after normalization to its zero frequency value.
This graphical representation highlights the change in shape
brought about by the density increase: the curve is bell-shaped
up to ρ∗ ≈ 0.70 and shows a distinct double peak for ρ∗ �
0.80. At ρ∗ = 0.75 no peaks are visible but the curve features a
flat top that suggests the presence of two strongly overlapping
lines, so that this density can again be considered to be a
threshold value, in agreement with what has already been
discussed.

FIG. 11. (a) Time dependence of ZT(t), i.e., sum of the fitted exponentials belonging to the low-frequency group. Curves are ordered for
increasing density from top (ρ∗ = 0.60) to bottom (ρ∗ = 0.95) in steps of 0.05. (b) Frequency spectra of the curves in (a), normalized to their
respective zero frequency value. Here lower densities correspond to lower curves (at small frequency). (c) Frequency spectra of the transverse
current autocorrelation function at a selected Q value (see text) and for the same densities as in (a) and (b). Curves are ordered for increasing
density from highest to lowest peak height. The color code is the same in all three frames.
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The connection to transverse dynamics is obtained when
Fig. 11(c) is considered, where we display the spectrum
CT(Q,ω) of the transverse current autocorrelation func-
tion also obtained from the MD simulations described in
Sec. IV B [48]. The curves refer to the various densities and
to wave vector Q∗ values ranging from 3.1 to 3.9. (Here Q∗
varies slightly with density because it was taken to be a fixed
multiple of the minimum value accessible in the simulation
box.) CT(Q,ω) and ẐT(ω) are conceptually different quantities
that it makes no sense to compare directly. Nevertheless,
they are linked by a common underlying set of dynamical
processes. Actually, and more precisely, for the same reasons
discussed in Sec. IV B we can say that the latter represents
the density of states related to the Q-dependent collective
dynamics described by the former. A meaningful comparison
between the spectra in Figs. 11(b) and 11(c) can be performed
at the level of their evolution with density. Doing so, one sees
that the overall shape of transverse current spectra and its
density dependence follows closely the very similar pattern of
ẐT(ω). Again, a flat top at ρ∗ = 0.75 points at the presence
of two peaks not separated because of their width, which
becomes apparent at ρ∗ = 0.80. The case ρ∗ = 0.70 cannot
be clearly assigned to either the presence or the absence of
propagating modes by simple visual inspection, and only the
fitting of appropriate models to CT(Q,ω) can solve the issue.
This task is outside the scope of the present paper, and here
we limit ourselves to compare in Fig. 12 the frequencies of
the main spectral features of ẐT(ω) and of CT(Q,ω) obtained
by estimating both from the positions ωmax,ZT and ωmax,CT of
their respective maxima. Though this is no rigorous procedure,
a clear similarity appears to the sound mode case presented
in Fig. 9(a). In Fig. 12, the absence of curves for densities
ρ∗ < 0.80 simply reflects the fact that at lower densities
we do not see any maximum of CT(Q,ω) located at a
nonzero frequency. Availability of CT(Q,ω) data with rather
smaller steps in Q and ρ would allow for a more detailed
characterization of the onset of propagation for transverse
waves.

We have, therefore, obtained clear evidence of the link
between the low-frequency mode group, extracted from the

FIG. 12. The lines joining symbols with error bars are the
transverse dispersion curves obtained as the positions of maxima
of CT(Q,ω). Data for the T ∗ = 1.35 states are shown in order
of increasing density from bottom (ρ∗ = 0.80) to top (ρ∗ = 0.95).
Dashed lines, in the same order, mark the corresponding position of
maxima of ẐT(ω).

exponential expansion of the total Z(t), and the dynamics of
transverse collective motions in the fluid, and the subscript T
used to denote this component of the total fit model for the
VAF does indeed rightly assume the meaning of “transverse.”

D. Dynamical crossover

In Sec. IV C we have noted how the low-frequency dynam-
ical processes that show up in the exponential mode expansion
of the VAF reveal the appearance of a dynamical transition,
essentially driven by the transformation of transverse waves
from nonpropagating to propagating ones.

A precise determination of the crossover point, besides
requiring a very time-consuming finer exploration of the
thermodynamic state space, is somewhat hindered by the
diversity of criteria that may be applied to define the relevant
property. For example, Table III shows that the existence of
a low-frequency oscillating component of the VAF is already
attained at ρ∗ = 0.70, which is also the density where the
total Z(t) has an inflection point [see Fig. 2(a)]. Then, the
appearance of the inflection point and of the negative part
of Z(t) do not occur at exactly the same density. On the
other hand, at ρ∗ = 0.70, besides the oscillatory part, the
transverse dynamics contains also a further real mode (R2), and
becomes purely oscillatory, though damped, only at ρ∗ = 0.75.
In agreement with that, looking at Fig. 11 we have suggested
a possible threshold density ρ∗ = 0.75, though only based on
visual inspection.

However, rather than trying to establish a rigid criterion for
an exact determination of the crossover density, what matters
here is the evidence of a dynamical transition which, for the
slightly supercritical states investigated here, can be found at
a density which is, broadly speaking, between those of the
critical and triple points but closer to the latter. This transition
separates lower density fluid states, where the dynamics has
a typical gaslike character, from higher density ones where it
takes up a more distinctly liquidlike nature.

To clarify this point, it is useful to note that, if ẐT(ω) is
characterized by a spectral feature of nonzero frequency, and
given its meaning of a partial density of states, this implies
the existence of a dispersion curve of propagating (i.e., having
nonzero excitation energies) transverse waves. Actually, we
can go further by expecting that ẐT(ω) is a spectral distribution
peaked around the frequency at which the transverse dispersion
curve shows a flat Q dependence or attains its maximum value.

On the other hand, it is well known that a dilute fluid does
not support the propagation of shear waves. In quantitative
terms, this means that no strictly positive frequency can
be introduced, and no dispersion curve can be defined.
Accordingly, the whole transverse dynamics reduces to the
superposition of diffusive motions and no oscillatory behavior
appears in autocorrelation functions (or parts thereof, as in the
case of the VAF) related to transversal motions.

Another important point is that propagation of acoustic
modes, either longitudinal or transverse, depends not only on
the thermodynamic properties of the fluid but also on the
wave-vector values, a fact critically relevant, in particular,
for the transverse excitations. Indeed, it is customarily stated
that a dense fluid can sustain transverse waves, but only
for wave-vectors above a certain value [1], in agreement
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with the fact that in the hydrodynamic limit Q → 0 the
transverse current autocorrelation spectrum has the Lorentzian
shape typical of diffusive processes [2] without any nonzero-
frequency excitations, and this theoretical result holds true
even for dense liquids. It follows that a transverse dispersion
curve can be defined only for Q larger than the minimum
required. Therefore, the crossover we are dealing with is the
transition between the situation where no transverse modes
propagate at any Q, and the one in which they propagate at
least in some Q range. Consideration of only one of the two
relevant variables (Q, ρ) will only allow for an incomplete
account of the transverse dynamics. An evidence of this fact
is provided by Fig. 12, where the transverse dispersion curve
for a lower density state begins at a larger Q value. Analogous
results have been very recently obtained in other studies of LJ
dynamics [49,50].

As recalled in Sec. I, the issue of a separation between
two different regions of the thermodynamic state space of
a supercritical fluid, marked by a crossover boundary, has
been a largely debated topic in the last years. Following
seminal insight and theoretical developments of Frenkel [51],
the crossover Frenkel line has been identified through the oc-
currence of specific properties [31], actually not all coinciding
as far as the line position in the pressure-temperature plane is
concerned. Among such properties are the onset of propagation
of transverse waves, the emergence of positive dispersion
in the propagation of longitudinal sound modes, and the
temperature dependence of the constant-volume specific heat
per atom crossing the value cV = 2kB. Another criterion for the
definition of the Frenkel line specifically involves a property
of the VAF, as it is formulated by assuming the crossover
to occur when the VAF shape begins to display a relative
minimum and a relative maximum instead of a monotonic
decay [32]. As seen in Sec. IV C, we obtain a very similar
localization of our crossover condition. However, it should be
remarked that the discussion about boundary lines in the fluid
phase diagram has been mostly concerned with the transition
induced by changing temperature and pressure in wide ranges,
including consideration of highly supercritical fluid states at
very large pressures. In contrast, we have obtained evidence of
a crossover driven by the density alone in isothermal conditions
at temperatures just above the critical point.

V. CONCLUSIONS

The extension of the exponential mode expansion of the
VAF to a wider density range than that already investigated [22]
has allowed us to follow in detail the transition between a dilute
and a very dense LJ fluid at a weakly supercritical temperature,
and to study the modifications brought about by a constant-
density cooling down to liquid temperatures not far from
the triple point. The multiexponential analysis thus confirms
its validity as a powerful method of analysis of correlation
functions of disordered systems. In addition, this study has
revealed the wealth of information contained in the VAF, due to
its underlying relationship to all kinds of dynamical processes
taking place in a system of particles undergoing various kinds
of both collective and independent motions.

A great step forward with respect to the previous work
consists in the identification of the nature of the various

modes obtained through the fit of the exponential model. In
fact, the modification of the fit model required at the various
thermodynamic states has allowed us to understand the evolu-
tion of the VAF properties, providing essential suggestions
for the definition of groups of modes to which clear and
specific physical meaning could be attached. In this way we
have identified the mode representation of three fundamental
dynamical processes typical of a simple monatomic fluid, i.e.,
the long-time tail, the propagation of longitudinal sound waves,
and the transverse dynamics with its clear transition to the
excitation of propagating waves.

Our work confirms recent results on the existence of a
crossover in the fluid state evidenced by the density evolution
of the VAF time dependence. The multiexponential analysis
allowed us to bring to the foreground the role played here by
the changing nature of transverse dynamics.

It is useful to assess the relative importance of the various
processes as represented by their partial contributions to the
total time-integrated VAF, reported in Table IV as percent
fractions, for all thermodynamic states. It is shown that the
LTT contribution is the smallest one, being confined to the
long-time range where the VAF intensity decreases to very
low values. The high frequency modes related to the sound
propagation show a clear trend, growing in importance with
both increasing density and decreasing temperature. Finally,
the low frequency modes related to the transverse dynamics
account for about half of the total VAF integral with no
significant variation with the thermodynamic coordinates. This
is interesting, because it evidences that the strength of the
modes involved in the crossover does not show any abrupt
change across the transition boundary.

Finally, we stress that in this work we demonstrated that
the frequency spectrum of the VAF can be interpreted as a
real density of states for the microscopic dynamics of a fluid.
This result stems from the multiexponential analysis of the
VAF. It thus appears that this method is a potentially useful
tool to study the dynamics of amorphous solids as well, and in
particular to tackle the problem of the Boson peak in glasses,
which is indeed introduced as an anomaly in the density of
states. In this respect, a recently proposed [52] connection
of the Boson peak to the transverse modes of the crystalline
solid might be worth investigating with an exponential mode
analysis.
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APPENDIX

We recall here from Ref. [37] the main features of the
VE model for the dynamic structure factor S(Q,ω), i.e., the
time Fourier transform of the so-called intermediate scattering
function F (Q,t) which, in turn, is given by

F (Q,t) = 1

N

N∑
α,β=1

〈
e−iQ·Rα (0)eiQ·Rβ (t)〉 (A1)
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and represents the time autocorrelation of the spatial Fourier
components with wave vector Q of density fluctuations [2].
Here Rα(t) is the position of the αth particle, and we exploit
the isotropic behavior of a fluid to drop the dependence of
F (Q,t) on the direction of Q.

The time evolution of F (Q,t) can be described through the
integrodifferential equation

F̈ (Q,t) +
∫ t

0
dt ′K2(Q,t − t ′)Ḟ (Q,t ′) + 〈

ω2
Q

〉
F (Q,t) = 0,

(A2)

where the dots denote time derivatives, 〈ω2
Q〉 = (kBT Q2)/

[mS(Q)] is the normalized second frequency moment of
S(Q,ω), S(Q) is the static structure factor, and K2(Q,t) is
the so-called second-order memory function in a hierarchy
of equations describing the time dependence of the density
autocorrelation [24]. Through the use of Laplace transforms
to the complex frequency s (here denoted by a tilde) and
with initial conditions F (Q,0) = S(Q) and Ḟ (Q,0) = 0,
Eq. (A2) is solved to give

F̃ (Q,s)

S(Q)
=

[
s +

〈
ω2

Q

〉
s + K̃2(Q,s)

]−1

. (A3)

The viscoelastic model consists of taking K2(Q,t) in the
form [2,37]

K2(Q,t) = �2
L(Q)exp[−t/τ (Q)]

+ (γ (Q) − 1)
〈
ω2

Q

〉
exp[−�T(Q)t], (A4)

where �2
L(Q) = ω2

L(Q) − γ (Q)〈ω2
Q〉, with ω2

L(Q) defined as
the ratio of fourth to second spectral moment [2]. The quan-
tities γ (Q), �T(Q), and τ (Q) are undetermined parameters to
be fitted, which, however, in the hydrodynamic limit can be
related to thermodynamic quantities, since for Q → 0 one has
γ (Q) → γ0, �T(Q)/Q2 → γ0DT and τ (Q) → τ0, where γ0 is
the ratio of the constant-pressure (cp) to the constant-volume
(cv) specific heat, DT is the thermal diffusivity, and τ0 is the
Q → 0 limit of νQ2/�2

L(Q) with ν the kinematic longitudinal
viscosity.

Substituting the Laplace transform of model (A4) into
Eq. (A3) and following the steps described in Ref. [37], it
can be shown that, at each Q,

S(Q,ω)

S(Q)
= 1

π
Re

F̃ (Q,s = i ω)

S(Q)
= 1

π
Re

4∑
j=1

Ij

i ω − zj

, (A5)

which is the spectrum of the normalized correlation function

F (Q,t)

F (Q,0)
=

4∑
j=1

Ij exp(zj t) (A6)

for t � 0. In both Eqs. (A5) and (A6) the index j labels four
terms described below. The latter equation shows that the VE
model complies with the general theory of Sec. III, although
of course the Ij ’s and zj ’s bear no relation to the analogous
quantities obtained in the mode expansion of the VAF, since
we are dealing here with the sum of exponentials relative to a
different autocorrelation function. For ease of notation, we are

omitting to indicate the explicit Q dependence of Ij and zj in
Eqs. (A5)–(A8).

Equation (A6) describes two different dynamical situations
depending on whether the sound modes are propagating or not.
In the first case, two of the four terms of the sum are real and
represent exponential decays but F (Q,t) also contains a pair of
complex conjugate terms providing a damped oscillatory part.
The second case occurs in a rather narrow Q range around
Qp where simple liquids show an arrest of sound propagation
(called “propagation gap”) which is reflected in the fact that
the oscillating part of F (Q,t) becomes overdamped, and all
four modes of Eq. (A6) are real.

Since we are here applying the VE model to the deter-
mination of the sound mode dispersion curve, the case of
interest is the first one. Then, writing zj = −zs ± i ωs and
Ij = Is(1 ∓ bs) for the widths and amplitudes of complex
conjugate mode pair, Eq. (A5) leads to [37]

S(Q,ω) = S(Q)

π

[
I1

|z1|
z2

1 + ω2
+ I2

|z2|
z2

2 + ω2

+ Is
zs + bs(ω + ωs)

z2
s + (ω + ωs)2

+ Is
zs − bs(ω − ωs)

z2
s + (ω − ωs)2

]
. (A7)

Here, subscripts 1 and 2 label the amplitudes and half-widths-
at-half-maximum of two central Lorentzian lines, which
represent the purely decaying modes and determine together
the shape of the central peak. The subscript “s,” meaning
sound, refers to a pair of side lines centered at the excitation
frequencies ±ωs and having the shape of asymmetrically
distorted Lorentzians which are the spectral representation of
the two complex modes.

The spectrum (A7) is the FT of the intermediate scattering
function

F (Q,t)

F (Q,0)
= I1e

−|z1|t + I2e
−|z2|t + 2Ise

−zst
cos(ωst − φ)

cosφ
(A8)

for t � 0, which shows explicitly the presence of two ex-
ponentially decaying terms plus an exponentially modulated
oscillation, where the phase angle φ is given by tanφ = bs.

The VE model (A4) complies with hydrodynamic results
for Q → 0, but exploits the presence of the relaxation
time τ which is a characteristic feature of the concept of
viscoelasticity. In the viscoelastic framework, the propagation
speed of acoustic excitations is expected to undergo a transition
from the low-Q adiabatic sound velocity cs to a higher
value appropriately called the infinite-frequency speed c∞.
The rationale behind such a prediction is the fact that when
the excitation frequency grows with Q up to values larger
than the inverse of the relaxation time τ (Q), the relaxation
mechanism quickly loses effectiveness giving the system a
more rigid, i.e., “elastic,” character. This phenomenon is one
of the causes of the bending upwards of the dispersion curve,
whose overall shape is however determined by a number
of facts [37]. In particular, the growth of the damping zs

with Q tends instead to reduce the excitation frequency
up to the point where the acoustic oscillations are brought
into the overdamping condition causing the above mentioned
propagation gap [54,55].
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