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1Department of Physics, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

2Wigner Research Centre, Institute for Solid State Physics and Optics, H-1525 Budapest, P.O. Box 49, Hungary
3Institute of Theoretical Physics, Szeged University, H-6720 Szeged, Hungary

(Received 18 August 2016; revised manuscript received 22 November 2016; published 4 January 2017)

The entanglement entropy S is an indicator of quantum correlations in the ground state of a many-body
quantum system. At a second-order quantum phase-transition point in one dimension S generally has a
logarithmic singularity. Here we consider quantum spin chains with a first-order quantum phase transition,
the prototype being the Q-state quantum Potts chain for Q > 4 and calculate S across the transition point.
According to numerical, density matrix renormalization group results at the first-order quantum phase transition
point S shows a jump, which is expected to vanish for Q → 4+. This jump is calculated in leading order as
�S = ln Q[1 − 4/Q − 2/(Q ln Q) + O(1/Q2)].
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I. INTRODUCTION

Entanglement is a peculiar feature of quantum mechanics,
which is related to the presence of nonlocal quantum corre-
lations. If a quantum many-body system is in a pure state,
|ψ〉, having a density matrix ρ = |ψ〉〈ψ | the entanglement
between a spatially confined region A and its complement B
is quantified by the entropy [1], for reviews see Refs. [2–5].
This entanglement entropy is just the von Neumann entropy
of either subsystem given by

SA = −Tr(ρA ln ρA) = −Tr(ρB ln ρB) = SB. (1)

Here the reduced density matrix is ρA = TrBρ, and analo-
gously ρB = TrAρ. The von Neumann entropy is a limiting
value of the Rényi entropies [6], which are defined by:

S (n)
A = 1

1 − n
ln Tr(ρA)n = 1

1 − n
ln Tr(ρB)n = S (n)

B (2)

and SA = limn→1 S (n)
A . For a mixed state, where the entangle-

ment entropies are not good measures of the entanglement,
one can use the so-called logarithmic negativity, which is
defined in the following way [7–9]. Let us consider the density
matrix, ρ on a Hilbert space, H, which has the bipartition,
H = H1 ⊗ H2. In each part let us introduce |φ(1)

i 〉 and |φ(2)
j 〉

as arbitrary basis sets and define, ρT2 the partial transpose of
ρ as: 〈

φ
(1)
i φ

(2)
j

∣∣ρT2
∣∣φ(1)

k φ
(2)
l

〉 = 〈
φ

(1)
i φ

(2)
l

∣∣ρ∣∣φ(1)
k φ

(2)
j

〉
. (3)

Then the logarithmic negativity is given by:

E = ln Tr|ρT2 |. (4)

In the following we concentrate on pure states, for which
the entanglement entropy is a sensitive indicator of quantum
correlations in the ground state, therefore it is used to monitor
the different phases and to locate the position of quantum phase
transitions. Most of the studies in this respect are performed
in one-dimensional and quasi-one-dimensional objects, such
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as in quantum spin chains and ladders. If the total length of
the chain is L and the linear size of the subsystem is �, then in
gapped phases the entanglement entropy has a finite limiting
value, as L → ∞ and (then) � → ∞. This observation is a
special form of the so-called area law, which states that SA
is proportional to the area of the interface separating A from
the environment [2–4]. At a quantum critical point, however,
at least in one dimension the area law is violated. As the
quantum control parameter h approaches its critical value,
hc, the characteristic length-scale of quantum fluctuations is
divergent: ξ ∼ |h − hc|−ν , and the entanglement entropy is
divergent too. According to conformal field theory [10,11] at
the critical point SA(�) grows logarithmically with �:

SA(�) � c

6
b ln �, (5)

where c is the central charge of the conformal algebra and b is
the number of contact points between A and B: it is b = 2(1)
for periodic (free) boundary conditions. In the vicinity of the
quantum critical point, when � 	 ξ in Eq. (5) � is replaced
by ξ [12]. This relation has been predicted and/or verified
analytically and numerically for a set of models [13–17].
Remarkably, the logarithmic scaling law of entanglement
entropy in the thermodynamic limit is valid even for critical
quantum chains that are not conformally invariant. In those
cases the central charge determining the prefactor of the
logarithmic scaling law is replaced by an effective one. Here
we mention quantum spin chains with random [18–24] or
aperiodic interactions [25]. We note that recently a set of
quantum spin chains are introduced, which are not conformally
invariant, but the entanglement entropy grows much faster than
logarithmically [26]. Concerning higher-dimensional systems
at their quantum critical points the logarithmic singularity of
the entanglement entropy is generally lost.

In other class of quantum spin chains the quantum phase
transition is first order, such that the derivative of the
ground-state energy density, ∂e0(h)/∂h is discontinuous at the
transition point. In this way we define (a quantity analogous
to) the latent heat:

�e = lim
h→h+

c

∂e0(h)

∂h
− lim

h→h−
c

∂e0(h)

∂h
, (6)
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and �e > 0. Similarly, the order parameter (magnetization) is
discontinuous too: it is m(h) = 0 for h < hc and

�m = lim
h→h+

c

m(h) > 0. (7)

At the same time the correlation length stays finite at a
first-order (quantum) phase-transition point. It is a basic
question to ask how the entanglement entropy behaves at a
first-order quantum phase-transition point. It is expected that in
the thermodynamic limit SA(h) shows some kind of singularity
as h passes hc.

In this paper we consider a prototype model of first-order
quantum phase transitions: the Q-state quantum Potts chain
[27]. According to exact results [28–30] this model has a first-
order transition for Q > 4. Here we calculate the entanglement
entropy numerically by different methods. For not too large
Q values (Q = 4,6 and Q = 8) we use the density matrix
renormalization group (DMRG) method [31], while in the
large-Q limit a 1/Q expansion is performed in leading order.

The structure of the rest of the paper is as follows. The
quantum Potts model is presented in Sec. II. The DMRG
method and the calculated ground-state energy, as well as the
latent heat is shown in Sec. III. Results about the entanglement
entropy obtained by the DMRG method and by the 1/Q

expansion are in Sec. IV and discussed in Sec. V. Some details
of the calculations on finite chains are given in the Appendix.

II. QUANTUM POTTS MODEL

The quantum Potts chain is defined by the Hamiltonian
[32–34]:

H = −J

L∑
i=1

δ(si,si+1) − h

L∑
i=1

q−1∑
k=1

Mk
i , (8)

with si = 1,2, . . . ,Q being a Q-state spin variable and Mi is
a spin-flip operator: Mk

i |si〉 = |si + k,modQ〉. Here we use
either periodic chains, when sL+1 ≡ s1, or open chains, when
the first sum in Eq. (8) runs up to L − 1. Often it is more
convenient to use another representation of the model in which
the transverse field is diagonal:

H′ = − J

Q

L∑
i=1

Q−1∑
k=1

Mk
i M

Q−k
i+1 − h

L∑
i=1

Ri . (9)

(In this representation the states are denoted by |s ′
i〉.) Here the

diagonal elements of the Ri operator are 〈s ′
i |Ri |s ′

i〉 = −1 +
Qδ(s ′

i ,1). We note that the definitions of the Hamiltonians in
Eqs. (8) and (9) can be easily generalized to higher dimensions.

The one-dimensional model is self-dual, its self-duality
point is located at hc = J/Q. According to exact results in
the thermodynamic limit (L → ∞) at hc there is a quantum
phase transition of the system, which is second order for Q � 4
and first order for Q > 4. The system is in the ferromagnetic
(paramagnetic) phase for h < hc (h > hc). In the second-order
regime the critical exponents are known through Coulomb-gas
mapping [35] and through conformal invariance [36–38].

In the first-order regime the latent heat is given by [39]:

�e = 2 sinh 2μ

∞∏
n=1

tanh2 nμ, (10)

in terms of μ = arcosh(Q1/2/2). Close to Q = 4 the latent
heat has an essential singularity: �e ∼ 4πQ1/2 exp[−π2/

2(Q − 4)−1/2]. Similarly, the correlation length (inverse mass
gap) is expressed as [39]:

ξ =
[
1 + 2

∑∞
n=1 Qn2]

2 sinh 2μ

∞∏
n=1

tanh−4 nμ, (11)

which behaves close to Q = 4 as ξ ∼ 1/(8πQ1/2)
exp[π2(Q − 4)−1/2].

III. DMRG METHOD AND RESULTS
AT THE TRANSITION POINT

The quantum phase-transition in the quantum Potts chain
at zero temperature is isomorphic with the temperature-driven
phase transition in the classical two-dimensional model. Using
a variant of the DMRG method the properties of the phase
transition in the classical model has been studied both in the
second-order [40] and in the first-order regime [41]. Here the
original version of the infinite-size DMRG scheme was utilized
for open chains [31,42]. The accuracy of the ground-state
energy calculations was in the range of 10−8–10−10 and this
was in full agreement with the truncation error, the largest
basis size being m = 200–300 for the different systems. Our
aim here is to demonstrate the accuracy of the numerical
method, which will be then used in Sec. IV B to study the
entanglement entropy of the same model. We concentrate
on the Q = 4 and Q = 6 models. The first model, being at
the border of the second-order transition regime has strong
logarithmic corrections [43] and therefore one needs large
systems to recover the predicted asymptotic behavior.

We start to calculate E0(L), the ground-state energy in a
finite system of length L at the phase-transition point with
open boundary conditions. At a second-order phase-transition
point according to finite-size scaling and conformal invariance
the ground-state energy asymptotically behaves as:

E0(L) = e0L + e1 + e2(L) + · · · , (12)

where e0 and e1 are the bulk energy density and the surface
energy, respectively. The finite-size correction term is universal
[44,45]: e2(L) = −(πcv)/(24L), where v denotes the sound
velocity and c is the central charge of the Virasoro algebra,
which for the Q = 4 model are given by v = π and c = 1
[36,37].

In order to get rid of the surface energy contribution we
have calculated the bulk energy density from the difference:
ẽ0(L) = [E0(L + 1) − E0(L − 1)]/2, which has a finite-size
correction term: +(πcv)/(24L2). Indeed, as shown in Fig. 1
the DMRG estimates for ẽ0(L) approach the exact value [39]:
e0 = 4 ln 4 − 2 within eight-digit accuracy, furthermore the
finite-size corrections are quadratic in 1/L. From the prefactor
of the correction term we estimate an effective, size-dependent
central charge in the range 0.88–0.94, for increasing L, see
the inset of Fig. 1. The variation of c(L) with the size is
extremely slow, which is due to strong logarithmic corrections
[43]. Our data are consistent with the asymptotic form:
c − c(L) ∼ ln−2(L), (see also in Ref. [40]) and we estimate
c = 1.02(6) in agreement with the known value c = 1.
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FIG. 1. Ground-state energy per site of the Q = 4-state model at
hc calculated by DMRG in finite chains, ẽ0(L) (see text), as a function
of L−2. The arrow indicates the exact value. In the inset the effective
central charge is shown versus ln−2(L). Top points: calculated with
the use of the exact asymptotic value e0 = 4 ln 4−2; bottom points:
calculated from two-point fits. The dashed and full lines are guide to
the eye.

For the Q = 6 model, for which the phase transition is of
first order, the ground-state energy density, ẽ0(L) at the phase-
transition point is shown in Fig. 2. In this case the finite-size
corrections are in the form ∼1/L2 up to L < ξ , which turns
to an exponential:

[ẽ0(L) − e0] ∼ exp(−L/ξ ) (13)

for L > ξ . Here ξ is the correlation length at the transition
point, which is estimated through Eq. (13) and plotted in the
inset of Fig. 2.
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FIG. 2. Ground-state energy per site of the Q = 6-state model
at hc calculated by DMRG in finite chains, ẽ0(L) (see text), as a
function of L−2. The arrow indicates the exact value. In the inset the
effective correlation length calculated through Eq. (13) is shown as
a function of 1/L. (Bottom points: calculated by two-point fits with
the use of the exact asymptotic value of e0; top points: calculated
from three-point fits not using the exact asymptotic value of e0.) The
analytical result in Eq. (11) is indicated by an arrow, the dashed lines
are guide to the eye.
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FIG. 3. Estimates for the effective latent heat as defined in
Eq. (14). (a) Q = 4. In the inset the latent heat vs (1 − h) is shown
in log-log plot. The slope of the dashed line is 0.3. (b) Q = 6. The
arrow indicates the analytical result in Eq. (10). The dashed and full
lines are guide to the eye.

We have also calculated estimates for the latent heat defined
by:

�e(h) = ẽ0(h) − 2ẽ0(hc) + ẽ0(2hc − h)

h − hc

(14)

by the DMRG method at a large value of L. Indeed in the
limit L → ∞ and h → hc �e(h) corresponds to the latent
heat in Eq. (10). Estimates for �e(h) are shown in Fig. 3 for
Q = 4 [Fig. 3(a)] and for Q = 6 [Fig. 3(b)]. In the first case
the effective latent heats tend to zero as h → hc. As a matter
of fact the effective latent heat at a second-order transition
has a power-law dependence: �e(h) ∼ (h − hc)1−α , where α

is the critical exponent of the specific heat, being α = 2/3 for
the Q = 4 Potts model. This type of scaling form applies for
the numerical data, as seen in the inset Fig. 3(a). Here in a
log-log plot �e(h) vs. h − 1 is approximately linear and the
slope is compatible with 1 − α ≈ 0.3. (The relatively slow
convergence is due to logarithmic corrections [43].) On the
contrary, for the Q = 6 model the effective latent heats in
Fig. 3(b) tend to a finite limiting value, and limh→1 �e(h) is
compatible with the known analytical result in Eq. (10).

IV. ENTANGLEMENT ENTROPY OF THE POTTS CHAIN

In the calculation of the entanglement entropy we separate
the complete (open) system into two halves, such that A is
represented by sites i = 1,2, . . . ,L/2 and its complementer
B consists of i = L/2 + 1,L/2 + 2, . . . ,L. Using the def-
inition in Eq. (1) the entanglement entropy is expressed
with the eigenvalues of the reduced density matrix, λj as:
SA = −∑

j λj ln λj .
In the two limiting cases, h = 0 and h → ∞ the entan-

glement entropy follows from a simple calculation. In the
first case, h = 0, the ground state of the system is fully
ferromagnetic and given in the representation of Eq. (8) as:

|�0〉 = 1√
Q

(|11 . . . 1〉 + |22 . . . 2〉 + · · · + |QQ. . . Q〉).
(15)

012105-3
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The reduced density matrix is diagonal and the nonvanishing
eigenvalues are: λ1 = λ2 = · · · λQ = 1/Q, thus the entangle-
ment entropy is: SA(h = 0) = ln Q.

In the limit h → ∞ (or J = 0) the system is fully
paramagnetic and it is better to use the transformed basis in
(9) in which the ground state is given by:

|�0〉 = |1′1′ . . . 1′〉, (16)

thus the entropy is: SA(h = ∞) = 0.
For general values of h the entanglement entropy is

calculated by different methods. For small finite chains, L = 2
and 4 we make analytical calculations, in which Q is a free
parameter. For large systems, but for not too large Q values,
Q = 4, 6, and 8 we make numerical DMRG calculations.
Finally, in the large-Q limit we perform an 1/Q expansion
in leading order.

A. Solution on finite chains for general values of Q

In these calculations we calculate first the ground state of the
system, for which we use the transformed basis in Eq. (9). As
explained in the Appendix the eigenstates of H′ are separated
into Q disjoint sectors and the ground-state sector is separated
further by symmetry. As a matter of fact the actual ground state
is located in the subspace, which has the maximal symmetry.
This subspace has a finite dimension irrespective of the value
of Q and in the solution then Q appears as a (not necessary
integer) parameter [32–34]. Details of the calculation are
explained in the Appendix, where, for simplicity, we choose
J/Q = 1 and with this parametrization the self-duality point
is located at hc = 1. For L = 2 and L = 4 we perform the
complete calculation, for larger sizes we consider the large-Q
limit, so that our results are correct up to O(1/Q).

1. L = 2

The ground state of the system is given by:

|�0〉 = a1|φ1〉 +
√

1 − a2
1 |φ2〉, (17)

where |φ1〉 and |φ2〉 are defined in Eq. (A2) and

1

a2
1

= 1 + [(h − 1)Q/2 + 1 −
√

Q2(h − 1)2 + 4Qh/2]2

Q − 1
.

(18)

The reduced density matrix is diagonal having the eigen-
values: λ1 = a2

1 , λ2 = (1 − a2
1)/(Q − 1), λ3 = (1 − a2

1)/
(Q − 1), . . . , λQ = (1 − a2

1)/(Q − 1). Thus, the entanglement
entropy is given by:

SL=2 = −a2
1 ln a2

1 − (
1 − a2

1

)
ln

(
1 − a2

1

)
+(

1 − a2
1

)
ln(Q − 1). (19)

At the critical point, h = 1, we have a2
1 = (1 + Q−1/2)/2

and the entanglement entropy for large Q is given by:
SL=2(h = 1) ≈ ln Q/2, which is half of the value measured
at h = 0.

The derivative of the entanglement entropy at the transition
point is divergent for large Q: ∂SL=2

∂h
|
h=1

∼ −Q1/2, and the
crossover regime between the large- and small-entropy regions
has a size: δhL=2 ∼ Q−1/2.

0 1 2 3 4
h

0

0.5

1

S
/l

nQ

Q=4
Q=8
Q=16
Q=32
Q=64
Q=128
Q=∞

FIG. 4. Entanglement entropy of the Potts chain with L = 4
sites for different values of Q. The curves for h > 1(h < 1) satisfy:
S(Q1)/ ln Q1 > S(Q2)/ ln Q2 for Q1 < Q2(Q1 > Q2).

2. L = 4

The ground state of the system is given by the linear
combination:

|Ψ0〉 =
7∑

i=1

ai |φi〉, (20)

where the basis vectors, |φi〉, are defined in Eq. (A4) and
the parameters, ai are the components of the ground-state
eigenvector of the matrix in Eq. (A5). The reduced density
matrix, which is of Q2 × Q2 is split to Q orthogonal sectors,
among which (Q − 1) sectors are degenerate. The eigenvalues
of the first matrix, λi , i = 1,2, . . . ,Q are given by Eqs. (A10)
and (A12), while the eigenvalues of the second matrix, λi , are
in Eqs. (A17), (A19), and (A21). The entanglement entropy is
expressed in terms of εi ≡ λi ln λi and εi ≡ λi ln λi as:

SL=4 = − ε1 − ε2 − (Q − 2)ε3

− (Q − 1)[−ε1 − ε2 − εQ − (Q − 3)ε3]. (21)

The entanglement entropy of the system as a function of h

is shown in Fig. 4 for different values of Q. L being finite,
the entanglement entropy is analytical function of h, but its
slope at hc = 1 is increasing with Q, asymptotically being
∂SL=4

∂h
|
h=1

∼ −Q3/2. Then the crossover regime between the
large- and small-entropy regions has a size: δhL=4 ∼ Q−3/2.

3. Large- Q limit

In the large-Q limit the reduced density matrix is analyzed
in leading order of 1/Q in the Appendix. The correction terms
are found to be L independent for L � 4 and the same holds
for the entanglement entropy. This is given by:

S � 2{ln[Q2(2h − 1)2] + 1}
Q(2h − 1)2

, h > 1 + δh,Q 	 1 (22)

in the disordered phase and

S � ln Q[1 + O(1/Q2)], h < 1 − δh,Q 	 1 (23)

in the ordered phase. Here the crossover value of the transverse
field, δh is L dependent and given in Eq. (A26). In the
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FIG. 5. Eigenvalues of the reduced density matrix calculated in
chains of length L = 60 for h = 1.02 (paramagnetic phase), h = 0.98
(ferromagnetic phase) and at the transition point, h = 1. (a) Q = 4,
(b) Q = 6.

thermodynamic limit δh goes to zero, thus the entanglement
entropy is discontinuous in the large-Q limit. Its jump at the
transition point is given by:

�S = ln Q

[
1 − 4

Q
− 2

Q ln Q

]
+ O(1/Q2), (24)

which is decreasing with decreasing Q, and at Qc ≈ 5.2 this
difference is vanishing. This leading order result is not too far
from the exact criterion, Qc = 4.

B. DMRG calculations

For finite values of Q we have calculated the entanglement
entropy numerically by the DMRG method using the original
infinite-size scheme for open chains. In these calculations
we are focused to the neighborhood of the transition point,
which can not be treated successfully by (large- and small-h)
expansion methods.

First, we have analyzed the structure of the eigenvalues
of the reduced density matrix, which is presented in Fig. 5
for Q = 4 and Q = 6. In agreement with the discussion
above Eq. (21) these eigenvalues are either nondegenerate
or have a (Q− 1)-fold degeneracy. We have also studied
the size dependence of the Schmidt gap, which is given by

2 3 4 5 6 7
lnL

-0.8

-0.6

-0.4

-0.2

0

ln
(Δ

λ)

Q=8
Q=6
Q=4

FIG. 6. Size dependence of the Schmidt gap at the transition point
for Q = 4,6, and 8. For Q = 4 the slope of the dashed line is −0.118.

the difference between the two leading eigenvalues of the
reduced density matrix: �λ = λ1 − λ2. According to the data
in Fig. 5 �λ > 0 in the paramagnetic phase and �λ = 0 in
the ferromagnetic phase, at least in the thermodynamic limit.
In Fig. 6 we have studied in more detail the size dependence
of �λ at the transition point for Q = 4, Q = 6, and Q = 8.
In the first-order transition regime, for Q = 6 and Q = 8, the
Schmidt gap approaches a finite limiting value, which indicates
that �λ has a finite jump at the transition point. The size
of this jump is decreasing with decreasing value of Q and
approaches zero as Q→ 4+. At Q = 4 the critical Schmidt
gap goes to zero, the size dependence according to Fig. 6 can
be approximated by a power law: �λ ∼ L−ω, ω ≈ 0.118. This
is in agreement with the conformal results in Ref. [46].

Next we turn to discuss the properties of the entanglement
entropy and start in Fig. 7 with the results for the Q = 4
model. In this case the transition is being of second order the
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1-h
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(d
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/d
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FIG. 7. Entanglement entropy of the Q = 4 model in the vicinity
of the phase transition calculated by DMRG. The arrow indicates the
limiting value at h = 0 and the dotted lines are guide to the eye. In
the inset the inverse slope is plotted versus (1 − h), see Eq. (25). Here
the slope of the dashed straight line is 9, which corresponds to the
analytical prediction.
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FIG. 8. Entanglement entropy of the Q = 6 model in the vicinity
of the phase transition calculated by DMRG. The arrow indicates the
limiting value at h = 0.

entanglement entropy at the critical point is logarithmically
divergent, as given in Eq. (5). In the vicinity of the transition
point in Eq. (5) one should replace � with the correlation
length [12], ξ ∼ |1 − h|−ν , thus the slope of the entanglement
entropy has a divergence of the form:

∂S
∂h

≈ −cν

6
|1 − h|−1. (25)

The numerical results in the inset of Fig. 7 are in agreement
with this prediction, and the prefactor is compatible with the
analytical value with c = 1 and ν = 2/3.

Results of a similar calculation for the Q = 6 model are
shown in Fig. 8. In this case the entanglement entropy is a
monotonously increasing function of h � 1 and the position
of its (finite) maximum value is located at the transition
point. Then, at h = 1 it has a jump of �S = 1.04(2), which
is considerably larger than the first-order 1/Q result in
Eq. (24). Thus the higher-order terms are quite large for
Q = 6. In the paramagnetic phase the entanglement entropy
is monotonously decreasing up to its limiting value S = 0, for
large h.

0.98 0.99 1 1.01 1.02
h

0.5

1

1.5

2

2.5

S
(h

)

FIG. 9. The same as in Fig. 8 for the Q = 8 model.

We have also studied the Q = 8 model, in which case the
entanglement entropy has similar features as for Q = 6, see
in Fig. 9. In this case the jump of the entropy at the transition
point is found �S = 1.64(8).

V. DISCUSSION

In this paper we have considered the ferromagnetic quantum
Potts chain for Q � 4 states and studied its entanglement
properties close to the phase-transition point. Most of the
results are numerical and obtained by the application of the
DMRG method. To test the accuracy of the method, first we
have calculated some known properties of the model (ground-
state energy density, latent heat) and studied their finite-size
scaling properties, both for second-order (Q = 4) and for
first-order (Q = 6) transitions. In this way we have illustrated
how the finite-size scaling behavior of these quantities at a
first-order transition is modified, when the size of the system
exceeds the equilibrium correlation length.

The entanglement entropy is found to show different scaling
behavior at the transition point, depending on the order of
the transition. For Q = 4 at the second-order transition point
the entanglement entropy is logarithmically divergent and
the prefactor is observed in agreement with the prediction
of conformal invariance. On the other hand for Q > 4 at
the first-order transition point the entanglement entropy stays
finite, but develops a finite jump �S(Q) > 0. This jump is a
monotonously increasing function of Q and—according to our
1/Q expansion—it behaves as ln Q for large Q. It would be
interesting to study by some method the behavior of �S(Q)
close to Q = 4. Here one expects some kind of an essential
singularity: �S(Q) ∼ exp[−A(Q − 4)−1/2], such as in the
latent heat.

Another measures of the entanglement are expected to show
jumps at the transition point for Q > 4, too. For example the
jump in the Rényi entropy for large Q is given by:

�S (n) = ln Q + 2

Q

1

1 − n
[n − Q2(n−1)] + O(1/Q2), (26)

which is given by Eq. (24) in the n → 1 limit. In a pure state
the logarithmic negativity is just the n = 1/2 Rényi entropy.

In the Q > 4 model there is finite energy gap at the
transition point, which is somewhat similar to the Haldane-
phase [47] or the AKLT model [48] of the S = 1 antiferro-
magnetic Heisenberg model. In the latter case the spectrum
of the reduced density matrix contains information about the
topological order [49] in the system and it is found different
[50] from that of the Q > 4 quantum Potts chain, as shown in
Sec. IV B.

To close our paper we mention a few related problems. For
disordered chains the transition is of second order, which is
controlled by a so-called infinite disorder fixed point [51,52].
Then the entanglement entropy at the critical point follows the
logarithmic scaling law in Eq. (5) with a so-called effective
central charge given by: ceff = ln Q/2 [53]. In the second
problem we consider a single defect, which connects the
two halves of the system, thus it is between sites i = L/2
and i = L/2 + 1 and given by κJ . For the quantum Ising
chain with Q = 2 this problem has already been studied in
different papers [14,54–59] and κ-dependent effective central
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charge has been obtained. This result is in agreement with
the fact that the defect represents a marginal perturbation
[60] for the Ising chain and the local critical behavior is
κ dependent. In the second-order transition regime and for
2 < Q � 4 the defect is a relevant perturbation [60], so that
for 0 < κ < 1 it renormalizes to a cut and for κ > 1 it stays
ordered at the transition point. In both cases the entanglement
entropy is expected to have a finite, L-independent value
(see related studies in Ref. [56]). In the first-order transition
regime for Q > 4 the previous reasoning does not hold and
separate (numerical) investigations are needed to clarify the
behavior of the entanglement entropy. One further question is
about the time dependence of the entanglement entropy of the
quantum Potts chain after a nonequilibrium process, such as
a global or a local quantum quench [61]. In the former case
the couplings are changed uniformly and suddenly at t = 0
and we are interested in the behavior of S(t) for t > 0. Based
on the quasiparticle picture a linearly increasing entanglement
entropy,S(t) ∼ t is expected asymptotically [62]. The problem
for local quench when just the strength of a local coupling, say
the coupling connecting the two subsystems, is changed is
more complicated and one can not use results from conformal
invariance [63–65].
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APPENDIX: SOLUTION ON FINITE CHAINS

In these calculations we use the transformed basis in (9) and
make use of the fact that eigenstates of H′ are separated into

Q disjoint sectors. The ground-state sector is characterized by
the state:

|φ1〉 = |1′1′ . . . 1′〉 (A1)

and the other QL−1 − 1 states of the sector are obtained by
acting H′ on |φ1〉. The other sectors are characterized with
the states: |2′1′ . . . 1′〉〉, |3′1′ . . . 1′〉〉, . . . ,|Q′1′ . . . 1′〉〉, and
these sectors are degenerate by symmetry. In the following
we concentrate on the ground-state sector and determine its
lowest state, which is thus the ground state of the system.
Generally the ground state has the maximal symmetry, which
helps us to construct it in a smaller basis set.

1. L = 2

The ground state of the problem is in the sector |1′1′〉
having the maximal symmetry. This subspace is spanned by
the vectors:

|φ1〉 = |1′1′〉
|φ2〉 = 1√

Q − 1
[|2′Q′〉 + |3′(Q − 1)′〉 + · · · + |Q′2′〉].

(A2)

We note that for L = 2—having periodic boundary
conditions—there are two couplings between the two spins.
Then the eigenvalue matrix corresponding to the symmetric
subspace is given by:

HL=2
sym =

(
−2(Q − 1)h −2

√
Q − 1

−2
√

Q − 1 2h − 2(Q − 2)

)
(A3)

and the eigenvector corresponding to the ground state has the

components: a1 and a2 =
√

1 − a2
1 , which is given in Eq. (18).

2. L = 4

In this case the symmetric subspace of the ground-state sector is spanned by the vectors:

|φ1〉 = |1′1′1′1′〉
|φ2〉 = 1√

4Q1
[|1′1′2′Q′〉 + |1′1′3′(Q − 1)′〉 + · · · + |1′1′Q′2′〉 + c.p.]

|φ3〉 = 1√
2Q1

[|1′2′1′Q′〉 + |1′3′1′(Q − 1)′〉 + · · · + |1′Q′1′2′〉 + c.p.]

|φ4〉 = 1√
Q1

[|2′Q′2′Q′〉 + |3′(Q − 1)′3′(Q − 1)′〉 + · · · + |Q′2′Q′2′〉]

|φ5〉 = 1√
4Q1Q2

[|1′2′2′(Q − 1)′〉 + |1′2′3′(Q − 2)′〉 + · · · + |1′2′(Q − 1)′2′〉

+ |1′3′2′(Q − 2)′〉 + · · · + |1′3′Q′Q′〉 + · · · + |1′Q′3′Q′〉]
|φ6〉 = 1√

2Q1Q2
[|2′Q′3′(Q − 1)′〉 + |2′Q′4′(Q − 2)′〉 · · · + |2′Q′Q′2′〉

+ |3′(Q − 1)′2′Q′〉 + · · · + |3′(Q − 1)′Q′2′〉 + · · · + |Q′2′(Q − 1)′3′〉]
|φ7〉 = 1√

Q1Q2Q3
[|2′2′2′(Q − 2)′〉 + |2′2′3′(Q − 3)′〉 · · · + |2′2′(Q − 2)′2′〉

+|2′3′2′(Q − 3)′〉 · · · + |2′3′Q′(Q − 1)′〉 + · · · + |Q′Q′Q′4′〉] (A4)
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and the corresponding eigenvalue matrix is given by:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4Q1h −√
4Q1 0 0 0 0 0

−√
4Q1 −2Q2h − Q2 −√

8 −2 −2
√

Q2 −√
2Q2 0

0 −√
8 −2hQ2 0 −√

8Q2 0 0
0 −2 0 4h 0 −√

8Q2 0
0 −2

√
Q2 −√

8Q2 0 −Q4h − 2Q2 −√
8 −4

√
Q3

0 −√
2Q2 0 −√

8Q2 −√
8 4h − 2Q3 −√

8Q3

0 0 0 0 −4
√

Q3 −√
8Q3 4h − 4Q4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

Here and in the following we use the shorthand notation,
Qk ≡ Q − k, for k = 1,2,3, and 4. The matrix elements of
the reduced density matrix, ρA(s ′

1s
′
2,s̃

′
1s̃

′
2), are nonzero only for

states with s ′
1 + s ′

2 − (s̃ ′
1 + s̃ ′

2) = 0,modQ. The reduced den-
sity matrix is divided into Q orthogonal sectors. The first sector
contains matrix elements between the states: 11,2Q,3(Q −
1), . . . ,Q2. In the second sector there are matrix elements
between the states: 12,21,3Q, . . . ,Q3. The nth sector is
characterized by the states: 1n,n1,2(n − 1), . . . ,Q(n + 1).
These latter (Q − 1) sectors are degenerate due to symmetry. In
the following we solve the eigenvalue problems of the different
sectors.

11 sector. The Q×Q eigenvalue matrix in this sector is
given in the form:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a c c c c . . . c

c b d d d . . . d

c d b d d . . . d

c d d b d . . . d

c d d d b . . . d
...

...
...

...
...

. . .
...

c d d d d . . . d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A6)

with

a = a2
1 + a2

2

/
4

b = 1

4Q1

(
a2

2 + 4a2
4 + 2a2

6

)

c = a1a2

2
√

Q1
+ a2a4

2Q1
+ a2a6

√
Q2√

8Q1

d = a2
2

4Q1
+

√
2a4a6

Q1
√

Q2
+ a2

6Q3

2Q1Q2
. (A7)

Two eigenvalues are given in the space of the vectors:

Ψ1 = ϕ1

Ψ2 = 1√
Q1

[ϕ2 + ϕ3 + · · · + ϕQ] (A8)

having an eigenvalue matrix:(
a c

√
Q1

c
√

Q1 b + dQ2

)
(A9)

with the eigenvalues:

λ1,2 = a + b + dQ2

2
±

√[
a − b − dQ2

2

]2

+ c2Q1. (A10)

The other (Q − 2) eigenvalues are degenerate. The corre-
sponding eigenvectors are given in the form:

Φ3 = 1√
Q1

[ϕ2 + ηϕ3 + η2ϕ3 + · · · + ηQ2ϕQ]

Φ4 = 1√
Q1

[ϕ2 + η2ϕ3 + η4ϕ3 + · · · + η2Q2ϕQ]

...

ΦQ = 1√
Q1

[ϕ2 + ηQ2ϕ3 + η2Q2ϕ3 + · · · + ηQ2
2ϕQ] (A11)

with η = exp ( 2πı
Q−1 ). The eigenvalues are

λ3 = λ4 = · · · = λQ = b − d. (A12)

12 sector. The Q×Q eigenvalue matrix in this sector is
given in the form:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

α γ δ δ δ . . . δ

γ α δ δ δ . . . δ

δ δ β ε ε . . . ε

δ δ ε β ε . . . ε

δ δ ε ε β . . . ε
...

...
...

...
...

. . .
...

δ δ ε ε ε . . . β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A13)

with

α = 1

4Q1

(
a2

2 + 2a2
3 + a2

5

)
β = 1

2Q1Q2

(
a2

5 + a2
6 + 2a2

7

)

γ = a2a3√
2Q1

+ a2
5

4Q1

δ = a2a5

4Q1
√

Q2
+ a3a5√

8Q1
√

Q2

+ a5a6√
8Q1Q2

+ a5a7
√

Q3

2Q1Q2

ε = a2
5

2Q1Q2
+ a6a7

√
2

Q1Q2
√

Q3
+ a2

7Q4

Q1Q2Q3
. (A14)

Two eigenvalues are given in the space of the vectors:

Ψ 1 = 1√
2

[ϕ
1
+ ϕ

2
]

Ψ 2 = 1√
Q2

[ϕ
3
+ ϕ

4
+ · · · + ϕ

Q
] (A15)
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having an eigenvalue matrix:(
α + γ δ

√
2Q2

δ
√

2Q2 β + εQ3

)
(A16)

with the eigenvalues:

λ1,2 = α + γ + β + εQ3

2

±
√[

α + γ − β − εQ3

2

]2

+ δ22Q2. (A17)

Another (Q − 3) eigenvalues are degenerate. The correspond-
ing eigenvectors are given in the form:

Φ3 = 1√
Q2

[ϕ
3
+ ηϕ

4
+ η2ϕ

5
+ · · · + ηQ3ϕ

Q
]

Φ4 = 1√
Q2

[ϕ
3
+ η2ϕ

4
+ η4ϕ

5
+ · · · + η2Q3ϕ

Q
]

. . .

ΦQ−1 = 1√
Q2

[ϕ
3
+ ηQ3ϕ

4
+ η2Q3ϕ

5
+ · · · + ηQ2

3ϕ
Q

]

(A18)

with η = exp
(

2πı
Q−2

)
. The eigenvalues are

λ3 = λ4 = · · · = λQ−1 = β − ε. (A19)

Finally, last eigenvector is given by:

ΦQ = 1√
2

[ϕ
1
− ϕ

2
] (A20)

with the eigenvalue:

λQ = α − γ. (A21)

The entanglement entropy of the system is expressed in terms
of the eigenvalues, λi and λi and given in Eq. (21).

3. Large- Q limit

For large Q we consider the leading behavior up to 1/Q,
when the matrix elements of the reduced density matrix
are different in the disordered and in the ordered phase,
respectively. We start with the analysis of the results of the
previous subsection for the L = 4 chain.

In the disordered regime, h > 1 + δh, in leading order the
following matrix elements are nonzero:

a = 1 − 3

Q(2h − 1)2
, b = d = α = 1

Q2(2h − 1)2

c = 1

Q(2h − 1)
(A22)

and the leading contribution to the entropy is given in Eq. (22).
In the ordered regime, h < 1 − δh, the nonzero matrix

elements in leading order are the following:

α = γ = 4

Q2(2 − h)2
, δ = 2

Q2(2 − h)
,

b = d = 1

Q2
, β = ε = 1

Q2

[
1 − 1

Q

(
8

(2 − h)2
+ 1

)]
(A23)

and the leading contribution to the entropy is given in Eq. (23).
Finally, at the phase-transition point, h = 1, the matrix ele-

ments in leading order are a = 1/2, β = 1/[(Q − 1)(Q − 2)]
and ε = (Q − 4)/[(Q − 1)(Q − 2)(Q − 3)] and the leading
contribution to the entropy is given by

SL=4 � 1
2 ln(4Q)[1 + O(1/Q)], h = 1,Q 	 1. (A24)

For general value of L � 4 we use a perturbation calculation.
In the large-h limit the symmetrical subspace is spanned by

two vectors:

|φ1〉 = |1′1′1′ . . . 1′1′1′〉
|φ2〉 = 1√

LQ1
[|1′1′1′ . . . 1′2′Q′〉 + |1′1′1′ . . . 1′3′(Q − 1)′〉

+ · · · + |1′1′1′ . . . 1′Q′2′〉 + c.p.] (A25)

and the ground state is given by: |�0〉 = a1|φ1〉 + a2|φ2〉, with
a2 = a1

√
L√

Q(2h−1)
and a2

1 + a2
2 = 1. Other excited states have

no contribution, provided h > 1 + δh and

δh ∼ Q−L/4−1/2 ∼ exp(−L/ξ ), (A26)

with ξ = 4/ ln Q being the correlation length for large q.
The reduced density matrix has the same structure, as for

L = 4: there is a nondegenerate subspace and a (Q − 1)-fold
degenerate one. In both subspaces just the largest eigenvalue
contributes to the entropy of the order of at least 1/Q and

these are: λ1 = 1 − 2a2
2

L
= 1 − 2

Q(2h−1)2 and λ1 = a2
2

L(Q−1) =
1

Q(Q−1)(2h−1)2 , which is twofold degenerate. Consequently the
leading 1/Q correction to the entanglement entropy, for
h > 1 + δh is the same for any chain of length L � 4, and
given in Eq. (22).

In the small-h limit we work in the original basis in Eq. (8)
and the ground state in leading order is given by: |�0〉 =
b1|φ1〉 + b2|φ2〉. Here |φ1〉 is given in the same form as in
Eq. (15) and

|φ2〉 = 1√
LQ(Q − 1)

[ ∑
|ii . . . ij i . . . i〉] (A27)

for i = 1,2, . . . ,Q, j �= i and there are L different positions
of the state |j 〉. The weights in the ground state are

b1 = 1 − h2 L(Q − 1)

2(2 − h)2Q2
, b2 = h

√
L(Q − 1)

Q(2 − h)
. (A28)

The reduced density matrix is split into Q identical sectors,
each of which is characterized by the state j = 1,2, . . . ,Q. The
nonvanishing diagonal (A,B) and off-diagonal (C,D) matrix
elements are

A = b2
1

Q
+ b2

2

2Q
, B = b2

2

LQ(Q − 1)
,

C = b1√
Q

b2√
LQ(Q − 1)

, D = b2
2

LQ(Q − 1)
. (A29)

In one of the sectors, the reduced density matrix has the
same form as given in Eq. (A6), with the correspondences:
a → A, b → B, c → C, and d → D, but the dimension of
the matrix is r = 1 + (Q − 1)L/2 instead of Q. With this
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the first two eigenvalues follows from Eq. (A10), which in
leading order are λ1 = 1

Q
[1 + O(Q−2)] and λ2 = O(Q−3),

while λ3 = λ4 = · · · = λr = B − D = 0. Consequently the
entanglement entropy in leading order is given by Eq. (23).
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