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Finite-time and finite-size scalings in the evaluation of large-deviation functions:
Analytical study using a birth-death process
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The Giardinà-Kurchan-Peliti algorithm is a numerical procedure that uses population dynamics in order to
calculate large deviation functions associated to the distribution of time-averaged observables. To study the
numerical errors of this algorithm, we explicitly devise a stochastic birth-death process that describes the time
evolution of the population probability. From this formulation, we derive that systematic errors of the algorithm
decrease proportionally to the inverse of the population size. Based on this observation, we propose a simple
interpolation technique for the better estimation of large deviation functions. The approach we present is detailed
explicitly in a two-state model.
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I. INTRODUCTION

Cloning algorithms are numerical procedures aimed at
simulating rare events efficiently, using a population dynamics
scheme. In such algorithms, copies of the system are evolved
in parallel and the ones showing the rare behavior of interest
are multiplied iteratively [1–18] (see Fig. 1). One of these
algorithms proposed by Giardinà et al. [12–18] is used to
evaluate numerically the cumulant generating function (a
large deviation function, LDF) of additive (or time-extensive)
observables in Markov processes [19,20]. It has been applied
to many physical systems, including chaotic systems, glassy
dynamics, and nonequilibrium lattice gas models, and it has
allowed the study of novel properties, such as the behavior
of breathers in the Fermi-Pasta-Ulam-Tsingou chain [14],
dynamical phase transitions in kinetically constrained models
[21], and an additivity principle for simple exclusion processes
[22,23].

While the method has been used widely, there have been
fewer studies focusing on the analytical justification of the
algorithm. Even though it is heuristically believed that the
LDF estimator converges to the correct result as the number
of copies Nc increases, there is no proof of this convergence.
Related to this lack of the proof, although we use the algorithm
by assuming its validity, we do not have any clue how fast
the estimator converges as Nc → ∞. In order to discuss this
convergence, we define two types of numerical errors. First, for
a fixed finite Nc, averaging over a large number of realizations,
the LDF estimator converges to an incorrect value, which is
different from the desired large deviation result. We call this
deviation from the correct value systematic errors. Compared
with these errors, we also consider the fluctuations of the
estimated value. More precisely, for a fixed value of Nc, the
results obtained in different realizations are distributed around
this incorrect value. We call the errors associated to these
fluctuations the stochastic errors. Although both errors are
important in numerical simulations, the former one can lead
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this algorithm to produce wrong results. For example, as seen
in Ref. [24], the systematic error grows exponentially as a
temperature decreases (or generically in the weak noise limit
of diffusive dynamics).

In order to study these errors, we employ a birth-death pro-
cess [25,26] description of the population dynamics algorithm
as explained below: We focus on physical systems described
by a Markov dynamics [12,13,16] with a finite number of states
M , and we denote by i (i = 0,1, . . . ,M − 1) the states of the
system. This Markov process has its own stochastic dynamics,
described by the transition rates w(i → j ). In population
dynamics algorithms, in order to study its rare trajectories,
one prepares Nc copies of the system and simulates these
copies according to (i) the dynamics of w(i → j ) (followed
independently by all copies) and (ii) cloning step in which
the ensemble of copies is directly manipulated, i.e., some
copies are eliminated while some are multiplied (see Table I).
Formally, the population dynamics represents, for a single
copy of the system, a process that does not preserve probability.
This fact has motivated the studies of auxiliary processes
[27], effective processes [28], and driven processes [29] to
construct modified dynamics (and their approximations [30])
that preserve probability. Different from these methods, in
this article, we formulate explicitly the metadynamics of the
copies themselves by using a stochastic birth-death process.
The process preserves probability, and it allows us to study the
numerical errors of the algorithm when evaluating LDF.

In this article, we consider the dynamics of the copies
as a stochastic birth-death process whose state is denoted
n = (n0,n1,n2, . . . ,nM−1), where 0 � ni � Nc represents the
number of copies which are in state i in the ensemble of
copies. We explicitly introduce the transition rates describing
the dynamics of n, which we denote by σ (n → ñ). We show
that the dynamics described by these transition rates lead
in general to the correct LDF estimation of the original
system w(i → j ) in the Nc → ∞ limit. We also show that
the systematic errors are of the order O(1/Nc), whereas the
numerical errors are of the order O[1/(τNc)] (where τ is
an averaging duration). This result is in clear contrast with
standard Monte Carlo methods, where the systematic errors are
always 0. Based on this convergence speed, we then propose a
simple interpolation technique to make the cloning algorithm
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FIG. 1. Schematic picture illustrating the principle of the pop-
ulation dynamics algorithm. Clones (or copies) of the system are
prepared and they evolve following a mutation-and-selection process,
maintaining the total population constant.

more reliable. Furthermore, the formulation developed in
this paper provides us the possibility to compute exactly the
expressions of the convergence coefficients, as we do in Sec. IV
on a simple example.

The analytical analysis presented in this paper is supple-
mented with a thorough numerical study in a companion paper
[31]. In the companion paper, we employ an intrinsically
different cloning algorithm, which is the continuous-time
population dynamics algorithm, that cannot be studied by the
methods presented in this paper (see Sec. II D 2). We show
in the companion paper [31] that the validity of the scaling
that we derive analytically here is very general. In particular,
we demonstrate in practice the efficiency of the interpolation
technique in the evaluation of the LDF, irrespective of the
details of the population dynamics algorithm.

The construction of this paper is as follows. We first define
the LDF problem in the beginning of Sec. II, and then formulate
the birth-death process used to describe the algorithm in
Sec. II A. By using this birth-death process, we demonstrate
that the estimator of the algorithm converges to the correct
large deviation function in Sec. II B. At the end of this section,
in Sec. II C, we discuss the convergence speed of this estimator
(the systematic errors) and derive its scaling ∼1/Nc. In Sec. III,
we turn to stochastic errors. For discussing this, we introduce
the large deviation function of the estimator, from which we
derive that the convergence speed of the stochastic errors is
proportional to 1/(τNc). In the next section, Sec. IV, we
introduce a simple two-state model, to which we apply the

formulations developed in the previous sections. We derive
the exact expressions of the systematic errors in Sec. IV A and
of the stochastic errors in Sec. IV B. At the end of this section,
in Sec. IV C, based on these exact expressions, we propose
another large deviation estimator defined in the population
dynamics algorithm. In the final section, Sec. V, we first
summarize the result obtained throughout this paper, and then
in Sec. V A, we propose a simple interpolation technique based
on the convergence speed of the systematic errors which allows
us to devise a better practical evaluation of the LDF. Finally in
Sec. V B, we discuss two open questions.

II. BIRTH-DEATH PROCESS DESCRIBING THE
POPULATION DYNAMICS ALGORITHM

As explained in the introduction (also see Table I), the
state of the population is n = (n0,n1, . . . ,nM−1), where ni

represents the number of clones in the state i. The total
population is preserved:

∑
i ni = Nc. Below, we introduce the

transition rates of the dynamics between the occupations n,
σ (n → ñ) that describe corresponding large deviations of the
original system, where the dynamics of the original system is
given by the rates w(i → j ) as detailed below.

As the original system, we consider the continuous-time
Markov process in a discrete-time representation. By denoting
by dt as the time step, the transition matrix Rj,i for time
evolution of the state i is described as

Rj,i = δi,j + dt

[
w(i → j ) − δi,j

∑
k

w(i → k)

]
, (1)

where we set w(i → i) = 0. The probability distribution of the
state i, pi(t), evolves in time as pi(t + dt) = ∑

j Ri,jpj (t).
In the dt → 0 limit, one obtains the continuous-time mas-
ter equation describing the evolution of pi(t) [25,26]. For
simplicity, especially for the cloning part of the algorithm,
we keep here a small finite dt . The reason why we use a
discrete-time representation is solely for simplicity of the
discussion. The main results can be derived even if we start
with a continuous-time representation (see Sec. II D 1). For the
original dynamics described by the transition matrix (1), we
consider an observable bi depending on the state i and we are
interested in the distribution of its time-averaged value during
a time interval τ , defined as

B(τ ) = 1

τ

τ/dt∑
t=0

dt bi(t). (2)

TABLE I. Correspondence between the population dynamics and the birth-death process to describe it.

Birth-death process describing
Population dynamics algorithm the population dynamics

State of the system i n = (n0,n2, . . . ,nM−1)
(i = 0,1, . . . ,M − 1) (0 � ni � Nc with

∑
i ni = Nc)

Transition rates w(i → j ) σ (n → ñ)
Markov process on states i Markov process on states n

Numerical procedure Prepare Nc clones and evolve those Described by the dynamics
for rare-event sampling with a mutation-selection procedure of rates σ (n → ñ)
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TABLE II. Transition matrices [see Eq. (4)] describing the birth-death process.

Transition matrices

Dynamics (“mutations”) Tñ,n ≡ δñ,n + dt
∑M−1

i=0 ni

∑M−1
j=0,(j �=i) w(i → j )

[
δñi ,ni−1δñj ,nj +1 δ

i,j
ñ,n − δñ,n

]
Cloning (“selection”) Cñ,n = δñ,n + s dt

∑M−1
i=0 ni |αi |

[
δñi ,ni+αi /|αi | δi

ñ,n − δñ,n

] + O(dt2)

Maintaining Nc Kñ,n = δ∑
ni ,Nc

δñ,n + ∑
k=−1,1 δ∑

i ni ,Nc+k

∑M−1
i=0 δñi ,ni−k δi

ñ,n
ni

Nc+k

Full process (KCT )ñ,n = δñ,n + dt
∑M−1

i=0 ni

∑M−1
j=0,(j �=i)[w(i → j ) + sw̃n(i → j )]

[
δñi ,ni−1δñj ,nj +1 δ

i,j
ñ,n − δñ,n

]
with w̃n(i → j ) = nj

Nc

[
αj δj∈�(+)

Nc

Nc+1 − αiδi∈�(−)
Nc

Nc−1

]

Here i(t) is a trajectory of the system generated by the Markov
dynamics described by Rj,i . We note that B(τ ) is a path-
(or history- or realization-) dependent quantity. Since τB(τ )
is an additive observable, the fluctuations of B(τ ) depending
on the realizations are small when τ is large, but one can
describe the large deviations of B(τ ). Those occur with a
small probability and obey a large deviation principle. We
denote by Prob(B) the distribution function of B(τ ). The large
deviation principle ensures that Prob(B) takes an asymptotic
form Prob(B) ∼ exp[−τI (B)] for large τ , where I (B) is a
large deviation function (or rate function) [19,20]. If the
rate function I (B) is convex, the large deviation function is
expressed as a Legendre transform of a cumulant generating
function (CGF) ψ(s) defined as

ψ(s) = lim
τ→∞

1

τ
log〈e−sτB(τ )〉, (3)

namely, I (B) = − infs [sB + ψ(s)]. The large deviation func-
tion I (B) and this generating function ψ(s) are by definition
difficult to evaluate numerically in Monte Carlo simulations
of the original system of transition rates w(i → j ) (see,
for example, [32]). To overcome this difficulty, population
dynamics algorithms have been developed [12–18]. Here,
we describe this population dynamics algorithm by using a
birth-death process on the occupation state n, allowing us to
study systematically the errors in the estimation of ψ(s) within
the population dynamics algorithm. We mention that, without
loss of generality, we restrict our study to so-called type B
observables that do not depend on the transitions of the state
[33], i.e., which are time integrals of the state of the system,
as in (2). Indeed, as explained, for example, in Refs. [16] and
[24], one can always reformulate the determination of the CGF
of mixed-type observables into that of a type B variable, by
modifying the transition rates of the given system.

A. Transition matrices representing the
population dynamics algorithm

We denote the probability distribution of the occupation
n at time t by Pn(t). The time evolution of this probability
is decomposed into three parts. The first one is the original
Monte Carlo dynamics based on the transition rates w(i → j ).
The second one is the cloning procedure of the population
dynamics algorithm, which favors or disfavors configurations
according to a well-defined rule. The third one is a supplemen-
tary (but important) part which maintains the total number of
clones to a constant Nc. We denote the transition matrices
corresponding to these steps by T , C, and K, respectively. By
using these matrices, then, the time evolution of the distribution

function is given as

Pn(t + dt) =
∑

ñ

(KCT )n,ñPñ(t). (4)

We derive explicit expressions of these matrices in the
following subsections. We also summarize the obtained results
in Table II.

1. Derivation of the original dynamics part, T
We first consider the transition matrix T , which de-

scribes the evolution of the occupation state n solely
due to the dynamics based on the rates w(i → j ). Dur-
ing an infinitesimally small time step dt , the occupa-
tion n = (n0,n1, . . . ,nM−1) changes to ñ = (n0,n1, . . . ,ni −
1, . . . ,nj + 1, . . . ,nM−1), where 0 � i < M and 0 � j < M

(for all i �= j ). Since there are ni clones in the state i before
the transition, the transition probability of this change is given
as niw(i → j )dt . Thus, we obtain

Tñ,n ≡ δñ,n + dt

M−1∑
i=0

ni

M−1∑
j=0,(j �=i)

w(i → j )

× [
δñi ,ni−1δñj ,nj +1 δ

i,j
ñ,n − δñ,n

]
, (5)

where δ
i,j
ñ,n is a Kronecker δ for the indices except for i,j : δi,j

ñ,n ≡∏
k �=i,j δñk,nk

. One can easily check that this matrix satisfies the
conservation of the probability:

∑
ñ Tñ,n = 1. It corresponds to

the evolution of Nc independent copies of the original system
with rates w(i → j ).

2. Derivation of the cloning part, C
In the population dynamics algorithm (for example, the

one described in Appendix A of Ref. [24]), at every certain
time interval �t , one evaluates the exponential factor for all
clones, which is equal to e−s

∫ t+�t

t
dt ′bi(t ′ ) if the clone is in state

(i(t ′))t+�t
t ′=t during a time interval t � t ′ � t + �t . We also

call this exponential factor cloning ratio, because this factor
determines whether each clone is copied or eliminated after
this time interval. Although the details of how to determine
this selection process can depend on the specific type of
algorithms, the common idea is that each of the clones is
copied or eliminated in such a way that a clone in state i(t) has
a number of descendant(s) proportional to the cloning factor
on average after this time interval.

In order to implement this idea in our birth-death process,
we assume this time step �t to be small. For the sake of
simplicity, we set this �t to be our smallest time interval
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dt : �t = dt . This condition is not mandatory whenever the
�t → 0 limit is taken at the end (see Sec. II D 1 for the case
�t > dt). Then, noticing that the time integral

∫ t+�t

t
dt ′bi(t ′)

is expressed as dt bi(t) for small dt , we introduce the following
quantity for each state i (i = 0,1,2, . . . ,M − 1):

νi ≡ nie
−sdtbi∑M−1

j=0 nje
−sdtbj

Nc. (6)

Note that there is a factor ni in front of the exponential
function e−sdtbi which enumerates the number of clones that
occupy the state i. The quantity νi is aimed at being the
number of clones in state i after the cloning process; however,
since νi is not an integer but a real number, one needs a
supplementary prescription to fix the corresponding integer
number of descendants. In general, in the implementation of
population dynamics, this integer is generated randomly from
the factor νi , equal either to its lower or to its upper integer
part. The probability to choose either the lower or upper integer
part is fixed by imposing that the number of descendants is
equal to νi on average. For instance, if νi is equal to 13.2,
then 13 is chosen with probability 0.8, and 14 with probability
0.2. Generically, �νi� and �νi� + 1 are chosen with probability
1 + �νi� − νi and νi − �νi�, respectively. We note that we need
to consider these two possibilities for all indices i. We thus
arrive at the following matrix:

Cñ,n ≡
1∑

x0=0

1∑
x1=0

1∑
x2=0

· · ·
1∑

xM−1=0

M−1∏
i=0

δñi ,�νi�+xi

×[(νi − �νi�)xi + (1 + �νi� − νi)(1 − xi)]. (7)

Now, we expand C at small dt and we keep only the terms
proportional to O(1) and O(dt), which do not vanish in the
continuous-time limit. For this purpose, we expand νi as

νi = ni

⎡
⎣1 + s dt

⎛
⎝∑

j

njbj

Nc

− bi

⎞
⎠

⎤
⎦ + O(dt2), (8)

where we have used
∑

i ni = Nc. This expression indi-
cates that �νi� is determined depending on the sign of∑

j njbj /Nc − bi , where we assumed s > 0 for simplicity
without loss of generality (because when s < 0, we can always
redefine −b as b to make s to be positive). By denoting this
factor by αi , i.e.,

αi(n) ≡
∑

j

njbj

Nc

− bi, (9)

we thus define the following state space �(±)(n):

�(±)(n) = {i|0 � i < M and ±αi(n) > 0}. (10)

From this definition, for sufficiently small dt , we obtain

�νi� = ni (11)

for i ∈ �(+), and

�νi� = ni − 1 (12)

for i ∈ �(−). Substituting these results into (7) and expanding
in dt , we obtain [denoting here and thereafter αi = αi(n)]

Cñ,n = δñ,n + s dt

M−1∑
i=0

ni |αi |

× [
δñi ,ni+αi/|αi | δi

ñ,n − δñ,n

] + O(dt2), (13)

where δi
ñ,n is a Kronecker δ for the indices except for i: δi

ñ,n =∏
k �=i δñk,nk

. One can easily check that this matrix preserves
probability:

∑
ñ Cñ,n = 1.

3. Derivation of the maintaining part, K
As directly checked, the operator T preserves the total

population
∑

i ni . However, the operator representing the
cloning C does not. In our birth-death implementation, this
property originates from the rounding process �νi� in the
definition of C: Even though νi itself satisfies

∑
i νi = Nc,

because of the rounding process of νi , the number of clones
after multiplying by C (that is designed to be proportional to
νi on average) can change. There are several ways to keep the
number Nc of copies constant without biasing the distribution
of visited configurations. One of them is to choose randomly
and uniformly δNc clones from the ensemble, where δNc is
equal to the number of excess (respectively, lacking) clones
with respect to Nc, and to eliminate (respectively, multiply)
them.

In our birth-death description, we implement this procedure
as follows. We denote by K the transition matrix maintaining
the total number of clones to be the constant Nc. We now
use a continuous-time asymptotics dt → 0. In this limit, from
the expression of the transition matrix elements (13), we find
that at each cloning step the number of copies of the cloned
configuration varies by ±1 at most. Hence, the total number
of clones after multiplying by C,

∑
i ni , satisfies the following

inequality

Nc − 1 �
∑

i

ni � Nc + 1. (14)

Among the configurations n that satisfy this inequality, there
are three possibilities, which are

∑
i ni = Nc and

∑
i ni =

Nc ± 1. If n satisfies
∑

i ni = Nc, we do not need to adjust
n, while if n satisfies

∑
i ni = Nc + 1 (respectively,

∑
i ni =

Nc − 1), we eliminate (respectively, multiply) a clone chosen
randomly and uniformly. Note that in our formulation, we
do not distinguish the clones taking the same state. This
means that we can choose one of the occupations ni of a
state i according to a probability proportional to the number
of copies ni in this state. In other words, the probability to
choose the state i and to copy or to eliminate a clone from this
state is proportional to ni/

∑M−1
j=0 nj . Therefore, we obtain the

expression of the matrix K as

Kñ,n = δ∑
ini ,Nc

δñ,n +
∑

k=−1,1

δ∑
ini ,Nc+k

×
M−1∑
i=0

δñi ,ni−k δi
ñ,n

ni

Nc + k
(15)

for ñ that satisfies
∑

i ñi = Nc, and Kñ,n = 0 otherwise.
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4. Total transition, KCT
We write down the matrix describing the total transition

of the population dynamics [see Eq. (4)]. From the obtained
expressions of K, C, T , we calculate KCT

(KCT )ñ,n

= δñ,n + dt

M−1∑
i=0

ni

M−1∑
j=0,(j �=i)

[w(i → j ) + s w̃n(i → j )]

× [
δñi ,ni−1δñj ,nj +1 δ

i,j
ñ,n − δñ,n

]
, (16)

where the population-dependent transition rate w̃n(i → j ) is
given as

w̃n(i → j ) = nj

Nc

[
αjδj∈�(+)

Nc

Nc + 1
− αiδi∈�(−)

Nc

Nc − 1

]
.

(17)

The comparison of the expression (16) with the original part
T provides an insight into the obtained result. The jump ratio
w(i → j ) in the original dynamics is replaced by w(i → j ) +
s w̃n(i → j ) in the population dynamics algorithm. We note
that this transition rate depends on the population n, meaning
that we cannot get a closed equation for this modified dynamics
at the level of the states i in general. We finally remark that
the transition matrix σ (n → ñ) for the continuous-time limit
is directly derived from (16) as

σ (n → ñ) =
M−1∑
i=0

ni

M−1∑
j=0,(j �=i)

[w(i → j ) + sw̃n(i → j )]

× [
δñi ,ni−1δñj ,nj +1 δ

i,j
ñ,n

]
. (18)

B. Derivation of the large deviation results
in the Nc → ∞ asymptotics

In this subsection, we study the Nc → ∞ limit for the
transition matrix of rates σ (n → ñ) and derive the validity of
the population dynamics algorithm.

1. The estimator of the large deviation function

One of the ideal implementations of the population dynam-
ics algorithm is as follows: We make copies of each realization
(clone) at the end of simulation, where the number of copies
for each realization is equal to the exponential weight e−sτB(τ )

in Eq. (3) (so that we can discuss an ensemble with this
exponential weight without multiplying the probability by it).
In this implementation, the number of clones grows (or decays)
exponentially proportionally as 〈e−sτB(τ )〉 by definition. In
real implementations of the algorithm, however, since taking
care of an exponentially large or small number of clones
can cause numerical problems, one rather keeps the total
number of clones to a constant Nc at every time step, as
seen in (6). Within this implementation, we reconstruct the
exponential change of the total number of clones as follows:
We compute the average of cloning ratio (see the beginning
of Sec. II A 2 for its definition) at each cloning step, and
we store the product of these ratios along the cloning steps.
At final time, this product gives the empirical estimation of
total (unnormalized) population during the whole duration

of the simulation [18], i.e., an estimator of 〈e−sτB(τ )〉. One
thus estimates the CGF ψ(s) given in Eq. (3) [12–18] as the
logarithm of this reconstructed population, divided by the total
time.

In our formulation, the average cloning ratio is given as∑
i nie

−sdtbi /Nc, and thus the multiplication over whole time
interval reads

∏τ/dt

t=0 {ni(t)e−sdtbi /Nc}. Because we empirically
assume that the CGF estimator converges to ψ(s) in the
Nc,τ → ∞ limit, the following equality is expected to hold in
probability 1:

ψ(s)
?= lim

Nc→∞
lim

τ→∞
1

τ

τ/dt∑
t=0

log
∑

i

ni(t)e−sdtbi

Nc

+ O(dt).

(19)

Since the dynamics of the population n is described by a
Markov process, ergodicity is satisfied, i.e., time averages can
be replaced by the expected value with respect to the stationary
distribution function. Applying this result to the right-hand side
of (19), we obtain

lim
τ→∞

1

τ

τ/dt∑
t=0

log
∑

i

ni(t)e−sdtbi

Nc

= 1

dt

∑
n

P st
n log

∑
i

nie
−sdtbi

Nc

+ O(dt), (20)

where P st
n is the stationary distribution function of the

population n in the dt → 0 limit, (namely, P st
n is the stationary

distribution of the dynamics of transition rates σ (n → ñ)). By
expanding this right-hand side with respect to dt , we rewrite
the expected equality (19) as

ψ(s)
?= −s lim

Nc→∞

∑
n

P st
n

∑
i

nibi

Nc

+ O(dt). (21)

where we used that
∑

i ni = Nc is a conserved quantity. Below
we demonstrate that this latter equality (21) is satisfied by
analyzing the stationary distribution function P st

n .

2. The connection between the distribution functions of the
population and of the original system

From the definition of the stationary distribution function
P st

n , we have∑
ñ

P st
ñ σ (ñ → n) −

∑
ñ

P st
n σ (n → ñ) = 0 (22)

(which is a stationary master equation.) In this equation, we
use the explicit expression of σ shown in (18). By denoting by
nj→i the configuration where one clone in the state j moves to
the state i: nj→i ≡ (n0,n1, . . . ,ni + 1, . . . ,nj − 1, . . . ,nM−1),
and the stationary master equation (22) is rewritten as∑

i,j (i �=j )

[fi→j (nj→i) − fi→j (n)] = 0, (23)

where we defined fi→j (n) as

fi→j (n) = P st
n ni[w(i → j ) + sw̃n(i → j )]. (24)

012102-5



NEMOTO, GUEVARA HIDALGO, AND LECOMTE PHYSICAL REVIEW E 95, 012102 (2017)

Now we multiply expression (23) by nk (k is arbitrary from
k = 0,1,2, . . . ,M − 1), and sum it over all configurations n:∑

n

∑
i,j (i �=j )

nk[fi→j (nj→i) − fi→j (n)] = 0. (25)

We can change the dummy summation variable n in the first
term to ni→j , which leads to

∑
n

∑
i,j (i �=j )(n

i→j )kfi→j (n).
Since the second term has almost the same expression as the
first one except for the factor nk , the sum in (25) over the
indices (i,j ), where none of i nor j is equal to k, becomes 0.
The remaining term in (25) is thus

0 =
∑

n

∑
j (j �=k)

[(nk→j )k − nk]fk→j (n)

+
∑

n

∑
i(i �=k)

[(ni→k)k − nk]fi→k(n). (26)

Using the definition of ni→j in this equation, we arrive at

0 =
∑

n

⎡
⎣ ∑

i(i �=k)

fi→k(n) − fk→i(n)

⎤
⎦. (27)

This equation (27) connects the stationary property of the
population dynamics (described by the occupation states n)
and the one in the original system (described by the states i).

The easiest case where we can see this connection is when
s = 0. By defining the empirical occupation probability of the
original system as pi ≡ ∑

n P st
n ni/Nc, Eq. (27) leads to the

following (stationary) master equation for w(i → j ):

0 =
∑

j

pjw(j → i) −
∑

j

piw(i → j ) (for s = 0). (28)

This is valid for any Nc, meaning that, for original Monte
Carlo simulations in s = 0, the empirical probability pi is
exactly equal to the steady-state probability, being the unique
solution of (28). It means that there are no systematic errors
in the evaluation of pi (see the introduction of this paper
for the definition of the term systematic errors). However,
in the generic case s �= 0, this property is not satisfied. One
thus needs to understand the Nc → ∞ limit to connect the
population dynamics result with the large deviation property
of the original system.

3. Justification of the convergence of the large deviation estimator
as population size becomes large

In order to take the Nc → ∞ limit, we define a scaled
variable xi as ni/Nc. With keeping this occupation fractions
xi to be O(1), we take the Nc → ∞ limit in (27), which
leads to

0 =
∑

n

P st
n

⎡
⎣∑

j

xjw(j → i) −
∑

j

xiw(i → j )

− sxi

(
bi −

∑
k

xkbk

)]
+ O(1/Nc). (29)

Inspired by this expression, we define a matrix Ls
i,j as

Ls
i,j = w(j → i) − δi,j

(∑
k

w(i → k) + sbi

)
, (30)

and a correlation function between xi and xj as

ci,j =
∑

n

xixjP
st
n − pipj (31)

(where we recall pi ≡ ∑
n xiP

st
n ). From these definitions, (29)

is rewritten as∑
j

pjL
s
i,j = −spi

∑
k

pkbk − s
∑

k

ci,kbk + O

(
1

Nc

)
.

(32)

Since xi is an averaged quantity (an arithmetic mean) with re-
spect to the total number of clones (xi ≡ ni/Nc), we can safely
assume that the correlation ci,j becomes 0 in Nc → ∞ limit:

lim
Nc→∞

ci,k = 0. (33)

[For more detailed discussion of why this is valid,
see the description after Eq. (36).] Thus, by defining
p∞

i ≡ limNc→∞ pi , we obtain∑
j

p∞
j Ls

i,j = −sp∞
i

∑
k

p∞
k bk. (34)

From the Perron-Frobenius theory, the positive eigenvector of
the matrix Ls

i,j is unique and corresponds to its eigenvector of
largest eigenvalue (in real part). This means that −s

∑
k p∞

k bk

is the largest eigenvalue of the matrix Ls
i,j . Finally, by

recalling that the largest eigenvalue of this matrix Ls
i,j is equal

to the generating function ψ(s) (see Ref. [33], for example),
we have finally justified that the CGF estimator (21) is valid
in the large-Nc limit.

C. Systematic errors due to finite Nc; convergence speed of the
large deviation estimator as Nc → ∞

In the introduction of this paper, we defined the systematic
errors as the deviations of the large deviation estimator from
the correct value due to a finite number of clones Nc. From
(21), we quantitatively define this systematic error εsys as

εsys ≡
∣∣∣∣∣ψ(s) + s

∑
i

pibi

∣∣∣∣∣. (35)

From a simple argument based on a system size expansion, we
below show that this εsys is of order O(1/Nc).

We first show that one can perform a system size expansion
(as, e.g., in van Kampen [25]) for the population dynamics. In
(23), by recalling the definition of the vector x as x = n/Nc,
and by denoting P̃ st(x) = P st

xNc
, we obtain

0 =
∑

i,j (i �=j )

∞∑
r=1

1

r!

1

Nr
c

(
∂

∂xi

− ∂

∂xj

)r

xi P̃
st(x)

× [w(i → j ) + sw̃n(i → j )|n=xNc
]. (36)

This indicates that the stochastic process governing the
evolution of x becomes deterministic in the Nc → ∞ limit.
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The deterministic trajectory for x is governed by a differential
equation derived from the sole term r = 1 in the expansion
(36) (see, e.g., Sec. 3.5.3 in Ref. [26] for the detail of how to
derive this property). Thus if x converges to a fixed point as
Nc increases, which is normally observed in implementations
of cloning algorithms, the assumption (33) is satisfied.

From the expression of εsys, we see that the dependence
in Nc comes solely from pi , which can be calculated from
the first-order correction of P st

n (at large Nc). The equation
to determine P st

n is the stationary master equation (22) or
equivalently, the system-size expansion formula (36). We
expand the jump ratio w(i → j ) + sw̃n(i → j ) in (36) with
respect to 1/Nc as

w(i → j ) + sw̃n(i → j ) = w(i → j ) + sw̃∞
x (i → j )

+ s

Nc

δwx(i → j ) + O
(
1/N2

c

)
,

(37)

where w̃∞
x (i → j ) and δwx(i → j ) are defined as

w̃∞
x (i → j ) = xj [αjδj∈�(+) − αiδi∈�(−) ] (38)

and

δwx(i → j ) = −xj [αjδj∈�(+) + αiδi∈�(−) ]. (39)

By substituting (37) into the system-size expansion formula
(36) and performing a perturbation expansion, we find that a
first-order correction of p is naturally of order O(1/Nc), i.e.,
εsys = O(1/Nc). For a practical scheme of how to implement
this perturbation on a specific example, see Sec. IV A. In
our companion paper [31], the scaling analysis of the 1/Nc

correction is shown to hold numerically with the continuous-
time cloning algorithm (see Sec. II D 2). We also show that
the 1/Nc correction behavior remains in fact valid at finite
time [31], an open question that remains to be investigated
analytically.

D. Remarks

Here, we discuss some remarks on the formulation pre-
sented in this section.

1. Relaxing the condition dt = �t

In Sec. II A 2, we set the discretization time of the process dt

to be equal to the time interval for cloning �t , and we took the
dt = �t → 0 limit at the end. We note that the condition �t =
dt is not necessary if both limits �t → 0 and dt → 0 (with
dt < �t) are taken at the end. This is practically important,
because we can use the continuous-time process to perform the
algorithm presented here by setting dt = 0 first, and �t → 0
limit afterwards. More precisely, replacing dt by �t in the
matrix C and K, we build a new matrix KC(T �t/dt ). Taking the
dt → 0 limit in this matrix while keeping �t noninfinitesimal
(but small), this matrix represents the population dynamics
algorithm of a continuous-time process with a finite cloning
time interval �t . The arguments presented in this section can
then be applied in the same way, replacing dt by �t . We note
that the deviation due to a noninfinitesimal �t should thus
appear as O(�t) [see Eq. (19), for example].

2. A continuous-time algorithm used in the companion paper

The �t → 0 limit is the key point in the formulation
developed in this section. Thanks to this limit, upon each
cloning step, the total number of clones

∑M−1
j=0 nj always

varies only by ±1, which makes the expression of the
matrices C and K simple enough to develop the arguments
presented in Secs. II B and II C. Furthermore, during the time
interval �t separating two cloning steps, the configuration is
changing at most once. The process between cloning steps is
thus simple, which allows us to represent the corresponding
time-evolution matrix as T (by replacing dt by �t as explained
in Sec. II D 1 above). Generalizing our analytical study to a
cloning dynamics in which the limit �t → 0 is not taken is
therefore a very challenging task, which is out of the scope of
this paper.

However, interestingly, in the companion to this paper
[31] we observe numerically that our predictions for the
finite-time and finite-population scalings are still valid in a
different version of algorithm for which

∑M−1
j=0 nj can vary

by an arbitrary amount—supporting the hypothesis that the
analytical arguments that we present here could be extended to
more general algorithms. More precisely, we use a continuous-
time version of the algorithm [13] to study numerically an
observable of type A [33]. This version of the algorithm differs
from that considered in this paper, in the sense that the cloning
steps are separated by nonfixed noninfinitesimal time intervals.
These time intervals are distributed exponentially, in contrast
to the fixed ones taken in here (where �t is a constant). This
results in an important difference: The effective interaction
between copies due to the cloning and pruning procedure
is unbounded (it can a priori affect any proportion of the
population), while in the algorithm of the present paper, this
effective interaction is restricted to a maximum of one cloning
and pruning event in the �t → 0 limit. We stress that the
dt → 0 limit of the cloning algorithm studied here with a
fixed �t does not yield the continuous-time cloning algorithm,
stressing that these two versions of the population dynamics
present essential differences.

III. STOCHASTIC ERRORS: LARGE DEVIATIONS
OF THE POPULATION DYNAMICS

In the previous section, we formulated the population
dynamics algorithm as a birth-death process and evaluated
the systematic errors (which are the deviation of the large
deviation estimator from the correct value) due to a finite
number of clones (Table III). In this section, we focus on
stochastic errors corresponding to the run-to-run fluctuations
of the large deviation estimator within the algorithm, at fixed
Nc (see the introduction of this paper for the definition of the
terms stochastic errors and systematic errors).

TABLE III. Magnitudes of the numerical errors.

Magnitude of errors

Systematic errors O(1/Nc)
Numerical errors O(1/(τNc))
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In order to study stochastic errors, we formulate the
large deviation principle of the large deviation estimator. In
the population dynamics algorithm, the CGF estimator to
measure is the time-average of the average cloning ratio of
the population (see Sec. II B 1):

ψNc,τ (s) ≡ −s
1

τ

∫ τ

0
dt

M−1∑
i=0

ni(t)bi

Nc

. (40)

As τ increases, this quantity converges to the expected value
(which depends on Nc) with probability 1. However whenever
we consider a finite τ , dynamical fluctuations are present,
and there is a probability that this estimator deviates from
its expected value. Since the population dynamics in the
occupation states n is described by a Markov process, the
probability of these deviations are themselves described by a
large deviation principle [19,20]: By denoting by Prob(ψ) the
probability of ψNc,τ (s), one has

Prob(ψ) ∼ exp
[−τINc,s(ψ)

]
, (41)

where INc,s(ψ) is a large deviation “rate function” (of the large
deviation estimator). To study these large deviations, we can
apply a standard technique using a biased evolution operator
for our population dynamics: For a given Markov system, to
calculate large deviations of additive quantities such as (40),
one biases the time-evolution matrix with an exponential factor
[19]. Specifically, by defining the following matrix

Lh
ñ,n = σ (n → ñ) − δñ,n

∑
n′

σ (n → n′) − hs

M−1∑
i=0

nibi

Nc

(42)

and by denoting the largest eigenvalue of this matrix G(h,s)
[corresponding, as a function of h, to a scaled cumulant
generating function for the observable (40)], the large deviation
function INc,s(ψ) is obtained as the Legendre transform
suph [hψ − G(h,s)]. In the companion paper [31], we show
that a quadratic approximation of the rate function INc,s(ψ)
(i.e., a Gaussian approximation) can be estimated directly from
the cloning algorithm.

We consider the scaling properties of INc,s in the large-
Nc limit. For this, we define a scaled variable h̃ ≡ h/Nc

and a scaled function G̃(h̃,s) ≡ G(h̃Nc,s)/Nc. If this scaled
function G̃(h̃,s) ≡ G(h̃Nc,s)/Nc is well defined in the Nc →
∞ limit (which is natural, as checked in the next paragraph),
then we can derive that INc,s has the following scaling:

INc,s(ψ) = NcIs(ψ) + o(Nc) (43)

or equivalently,

Prob(ψ) ∼ e−τNcIs (ψ), (44)

where Is(ψ) = maxh̃ [h̃ψ − G̃(h̃,s)]. The scaling form (43) is
validated numerically in Ref. [31]. From this large deviation
principle, we can see that the stochastic errors of the large
deviation estimator is of O[1/(Ncτ )] as shown in Table III.

In the largest eigenvalue problem for the transition matrix
(42), by performing a system size expansion (see Sec. II C),

we obtain

G̃(h̃,s) =
∑

i,j (i �=j )

(
∂

∂xi

− ∂

∂xj

)
xiq(x)

×[
w(i → j ) + sw̃∞

x (i → j )
]

− h̃

s
s
∑

i

xibiq(x) + O(1/Nc), (45)

where q(x) is the right-eigenvector associated to the largest
eigenvalue of Lh

ñ,n (represented as a function of x ≡ n/Nc).
The first order of the right-hand side is of order O(N0

c ), so that
G̃(h̃,s) is also of order O(N0

c ) in Nc → ∞. (For an analytical
example of the function G̃(h̃,s), see Sec. IV B.)

IV. EXAMPLE: A SIMPLE TWO-STATE MODEL

In this section, to illustrate the formulation that we
developed in the previous sections, we consider a simple
two-state model. In this system, the dimension of the state
i is two (M = 2) and the transition rates w(i → j ) are

w(0 → 1) = c, (46)

w(1 → 0) = d, (47)

with positive parameters c,d and w(i → i) = 0. In this model,
the quantity αi defined in (9) becomes

αi = δi,0
n1

Nc

(b1 − b0) + δi,1
n0

Nc

(b0 − b1). (48)

Hereafter, we assume that b1 > b0 without loss of generality.
From this, the space �(±) is determined as �(+) = {0} and
�(−) = {1}, which leads to the jump ratio w̃n(i → j ) as

w̃n(i → j ) = δi,1δj,0
n0

Nc

(b1 − b0)

[
n1

Nc + 1
+ n0

Nc − 1

]
.

(49)

Finally, from the conservation of the total population, n0 +
n1 = Nc, we find that the state of the population n can be
uniquely determined by specifying only the variable n0. Thus
the transition rate for the population dynamics is a function of
n0 (and ñ0), σ (n0 → ñ0), which is derived as

σ (n0 → ñ0) = δñ0,n0+1

[
(Nc − n0)d + k(n0,Nc − n0)

×
(

n0

Nc − 1
+ Nc − n0

Nc + 1

)]
+ δñ0,n0−1 n0 c,

(50)

where we have defined

k(n0,n1) = n0n1

Nc

s[b1 − b0]. (51)

A. Systematic errors

We first evaluate the systematic errors (see Sec. II C). For
this, we consider the distribution function P st

n . Since the system
is described by a one-dimensional variable n0 restricted to 0 �
n0 � Nc, the transition rates σ (n0 → ñ0) satisfy the detailed
balance condition

P st
n0

σ (n0 → n0 + 1) = P st
n0+1σ (n0 + 1 → n0). (52)
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We can solve this equation exactly, but to illustrate the large-Nc

limit, it is in fact sufficient to study the solution in an expansion
1/Nc 
 1. The result is

P st
xNc

= C exp [−NcIconf(x) + δI (x) + O(1/Nc)] (53)

(with here x ≡ n0/Nc), where, explicitly

Iconf(x) = x + log(1 − x) − d log [d + (b1 − b0)sx]

(b1 − b0)s

− x log

[
1

cx
(1 − x)(d + (b1 − b0)sx)

]
(54)

and

δI (x) = −x − 2dx

(b1 − b0)s
+ x2 − log x

+ 2d2 log[d + (b1 − b0)sx]

(b1 − b0)2s2

+ d log[d + (b1 − b0)sx]

(b1 − b0)s
. (55)

We now determine the value of x that minimizes
−NcIs(x) + δI (x), which leads to a finite-size correction (i.e.,
the systematic errors) of the population dynamics estimator.
Indeed, denoting this optimal value of x by x∗

Nc
, the large

deviation estimator is obtained as

ψNc
(s) = −s

[
x∗

Nc
b0 + (

1 − x∗
Nc

)
b1

]
(56)

(see Sec. II B 1). From a straightforward calculation based on
the expressions Iconf(x) and δI (x), we obtain the expression
of x∗

Nc
as

x∗
Nc

= x∗ + 1

Nc

δx∗ + O[(1/Nc)2], (57)

with

x∗ = −c − d + (b1 − b0)s

2(b1 − b0)s

+
√

4d(b1 − b0)s + [−c − d + (b1 − b0)s]2

2(b1 − b0)s
(58)

and

δx∗ = [2d + 2(b1 − b0)sx∗]−1

× 2c{−d − (b1 − b0)sx∗[1 + x∗ − 2(x∗)2]}√
4d(b1 − b0)s + [c + d − (b1 − b0)s]2

. (59)

We thus arrive at

ψ(s) = −c − d − (b1 + b0)s

2

+
√

4d(b1 − b0)s + [−c − d + (b1 − b0)s]2

2
(60)

and

εsys = 1

Nc

1

|d + (b1 − b0)sx∗|

×
∣∣∣∣∣ sc(b0 − b1)[d + (b0 − b1)s(x∗ − 1)x∗(1 + 2x∗)]√

4(b1 − b0)ds + [c + d + (b0 − b1)s]2

∣∣∣∣∣
(61)

(see Eq. (35) for the definition of the systematic error εsys.)
We check easily that the expression of ψ(s) is the same as the
one obtained from a standard method by solving the largest
eigenvalue problem of a biased time-evolution operator (see,
for example, Ref. [18]).

B. Stochastic errors

We now turn our attention to the stochastic errors. The
scaled cumulant generating function NcG̃(h̃,s) is the largest
eigenvalue of a matrix Lh

ñ,n (see Eq. (42) and the explanations
around it). We then recall a formula to calculate this largest
eigenvalue problem from the following variational principle:

G̃(h̃,s) = sup
φ>0

∑
n

pst(n0)φ(n0)2

×
[
σ (n → n + 1)

Nc

(
φ(n0 + 1)

φ(n0)
− 1

)

+ σ (n → n−1)

Nc

(
φ(n0−1)

φ(n0)
− 1

)
− sh̃

∑
i nibi

N2
c

]
.

(62)

(See, e.g., Appendix G of Ref. [34] or Ref. [33] for the
derivation of this variational principle.) By following the usual
route to solve such equations (see, e.g., Sec. 2.5 of Ref. [35]),
we obtain

G̃(h̃,s) = sup
x

[−(
√

(1 − x)[d + (b1 − b0)sx] − √
cx)2

− sh̃[xb0 + (1 − x)b1]]. (63)

Thus, G̃(h̃,s) is well defined, demonstrating that the large
deviation principle (44) is satisfied. Furthermore, by expanding
this variational principle with respect to h̃, we obtain

G̃(h̃,s) = ψ(s)h̃ + κs

2
h̃2 + O(h̃3), (64)

where ψ(s) is given in (60), and the variance κs is given as

κs = c + cs(b1 − b0)√
4(b1 − b0)sd + [c + d + (b0 − b1)s]2

− c(c + d)2 + c(b0 − b1)(c − 3d)s

c2 + 2c[d + (b0 − b1)s] + [d + (b1 − b0)s]2
. (65)

We note that the expansion (64) is equivalent to the following
expansion of the large deviation function Is(ψ) [see (44)]
around the expected value ψ(s):

Is(ψ) = [ψ − ψ(s)]2

2κs

+ O[(ψ − ψs)
3]. (66)

The variance of the obtained large deviation estimator is thus
κs/(Ncτ ).

C. A different large deviation estimator

As an application of these exact expressions, we expand the
systematic error εsys and the stochastic error (variance) κs with
respect to s. A straightforward calculation leads to

εsysNc =
∣∣∣∣2c(b0 − b1)

c + d
s

∣∣∣∣ + O(s2) (67)
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and

κs = 2(b0 − b1)2cd

(c + d)3
s2 + O(s3). (68)

We thus find that the first-order of the error εsys scales as O(s)
at small s, but that the variance κs is of order O(s2). From this
scaling, as we explain below, one can argue that the following
large deviation estimator can be better than the standard one
for small s:

�̃(s) ≡ 1

τ
log

τ/dt∏
t=0

∑
i

ni(t)e−sdtbi

Nc

, (69)

where the overline represents the averaging with respect to
the realizations of the algorithm. [Normally, this realization
average is taken after calculating the logarithm, which cor-
responds to the estimator (19).] Mathematically, this average
[(69), before taking the logarithm] corresponds to a bias of the
time-evolution matrix σ as seen in (42) for h = 1. This means
that, in the limit τ → ∞ with a sufficiently large number of
realizations, this averaged value behaves as �̃(s) ∼ eτG(1,s).
By combining this result with the expansion (64), we thus
obtain

lim
τ→∞ lim

many
realizations

�̃(s) = ψ(s) + κs

2
N−1

c + O
(
N−2

c

)
(70)

(recalling G̃ = G/Nc and h̃ = h/Nc). When we consider small
s, by recalling εsysNc = O(s) and κs = O(s2), we thus find
that the deviations from the correct value are smaller in the
estimator �̃(s) than in the normal estimator given in (19),
which comes as a surprise because in (69) the average and the
logarithm are inverted with respect to a natural definition of
the CGF estimator.

To use this estimator, we need to discuss the two following
points. First, since the scaled cumulant generating function
G(1,s) has small fluctuations, one needs a very large number
of realizations in order to attain the equality (70). The difficulty
of this measurement is the same level as the one of direct
observations of a large deviation function; see, for example,
Ref. [32]. However, we stress that this point may not be fatal
in this estimator, because we do not need to attain completely
this equality; i.e., our aim is the zeroth-order coefficient, ψ(s),
in (70). Second, we have not proved yet the scaling properties
with respect to s, which are εsysNc = O(s) and κs = O(s2),
in a general setup aside from this simple two-state model. We
show in practice in Ref. [31] that for small values of s, the
estimator (69) is affected by smaller systematic errors, in the
numerical study of the creation-annihilation process studied in
this section. We will focus on the generality of our observations
on these points in a future study.

V. DISCUSSION

In this paper, we formulated a birth-death process that
describes population dynamics algorithms and aims at eval-
uating numerically large deviation functions. We derived that
this birth-death process leads generically to the correct large
deviation results in the large limit of the number of clones
Nc → ∞. From this formulation, we also derived that the
deviation of large deviation estimator from the desired value

(which we called systematic errors) is small and proportional
with O(N−1

c ). Below, based on this observation, we propose
a simple interpolation technique to improve the numerical
estimation of large deviation functions in practical uses of
the algorithm.

A. An interpolation technique using the O(1/Nc)
scaling of the systematic error

Imagine that we now apply the population dynamics
algorithm to a given system. We need to carefully consider the
asymptotic limit of the two large parameters τ and Nc in the
convergence of the large deviation estimator (40). Indeed, what
one needs to do in this simulation is (i) take the large-τ limit
for a fixed Nc and estimate the τ → ∞ value of the estimator
for this fixed Nc, then (ii) estimate this large-τ value for several
(and increasing) Nc, and finally estimate large-τ -Nc limit
value. This is different from standard Monte Carlo simulations,
where one needs to consider only the large-τ limit, thanks to
ergodicity.

Any method that can make the LDF estimation easier thus
will be appreciated. Based on our observations, we know
that the second part [(ii) above] converges with an error
proportional to 1/Nc. Also, from the large deviation estimator
(40), one can easily see that the convergence speed with respect
to τ for a fixed Nc is proportional to 1/τ (i.e., the first part
[(i) above] converges proportionally to 1/τ ). By using these
1/τ and 1/Nc scalings for (i) and (ii), one can interpolate the
large-τ and large-Nc asymptotic value of the LDF estimator
from the measured values for finite τ and Nc. We introduce
this numerical method in practice in the companion paper [31].
We demonstrate numerically that the interpolation technique is
very efficient in practice, by a direct comparison of the result-
ing estimation of the CGF to its analytical value, which is also
available in the studied system. We also stress that it is devel-
oped for a different cloning algorithm by using a continuous-
time population dynamics [13] (see Sec. II D 2 for the de-
scription of the conceptual difference). From these results, we
conjecture that the validity of the large-τ and large-Nc scalings
is very general and independent of the details of the algorithm.

B. Open questions

We mention two open questions. The first question is about
the precise estimate of the error due to a noninfinitesimal time
interval �t between cloning steps: As explained in Secs. II D 1
and II D 2, taking the �t → 0 limit is important in our analysis,
in order to make the estimator converge to the correct LDF.
The error due to noninfinitesimal �t is at most of order �t

as seen from Eq. (19) (see also Sec. II D 1). From a practical
point of view, taking this limit can, however, be problematic,
since it requires infinitely many cloning procedures per unit
time (as �t → 0). Interestingly, most of existing algorithms
do not take such a limit (see, for instance, the original version
of the algorithm [12]). Empirically, one thus expects that the
error goes to zero as Nc → ∞ while keeping �t finite. Within
the method developed in this paper, the analytical estimation
of this error is challenging (see Sec. II D 2) and remains an
open problem, but for example, one can approach to this issue
numerically at least.
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The second question is about possible extensions of the
formulation developed in this paper. In our algorithm, we
perform a cloning procedure for a fixed time interval, which
means that our formulation cannot cover the case of algorithms
where �t itself is statistically distributed, as in continuous-
time cloning algorithms [13]. Moreover, our formulation is
limited to Markov systems, although population dynamics
algorithms are applied to chaotic deterministic dynamics
[14,17] or to non-Markovian evolutions [36]. Once one
removes the Markov condition in the dynamics, developing
analytical approaches becomes more challenging. However,
as the physics of those systems are important scientifically
and industrially [37], the understanding of such dynamics
cannot be avoided for the further development of population
algorithms.
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Sciences Mathématiques de Paris – EOTP NEMOT15RPO,
PEPS LABS, and LAABS Inphyniti CNRS project. E.G.
thanks Khashayar Pakdaman for his support and discussions.
Special thanks go to the Ecuadorian Government and the Sec-
retarı́a Nacional de Educación Superior, Ciencia, Tecnologı́a
e Innovación, SENESCYT, for support. V.L. acknowledges
support by the National Science Foundation under Grant
No. NSF PHY11-25915 during a stay at KITP, UCSB, and
support by the ANR-15-CE40-0020-03 Grant LSD. V.L.
acknowledges partial support by the ERC Starting Grant No.
680275 MALIG. T.N. and V.L. are grateful to B. Derrida and S.
Shiri for discussions. We are grateful to S. Shiri for discussions
about the first paragraph of Sec. V B (open questions).

[1] J. B. Anderson, J. Chem. Phys. 63, 1499 (1975).
[2] P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic,

Proceedings of the 28th Conference on Winter Simulation,
WSC ’96 (IEEE Computer Society, Washington, DC, 1996),
pp. 302–308.

[3] Y. Iba, Trans. Japan. Soc. Artificial Intelligence 16, 279 (2001).
[4] P. Grassberger, Comput. Phys. Commun. 147, 64 (2002).
[5] P. L’Ecuyer, V. Demers, and B. Tuffin, in Proceedings of the 2006

Winter Simulation Conference (IEEE, 2006), pp. 137–148.
[6] O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert, J. Comput.

Graph. Stat. 13, 907 (2004).
[7] T. S. van Erp, D. Moroni, and P. G. Bolhuis, J. Chem. Phys. 118,

7762 (2003).
[8] R. J. Allen, P. B. Warren, and P. R. ten Wolde, Phys. Rev. Lett.

94, 018104 (2005).
[9] P. Del Moral and J. Garnier, Ann. Appl. Probab. 15, 2496

(2005).
[10] T. Dean and P. Dupuis, Stoch. Process. Appl. 119, 562 (2009).
[11] C. Frédéric and G. Arnaud, Stoch. Anal. Appl. 25, 417 (2007).
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