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A method for analytic continuation of imaginary-time correlation functions (here obtained in quantum
Monte Carlo simulations) to real-frequency spectral functions is proposed. Stochastically sampling a spectrum
parametrized by a large number of δ functions, treated as a statistical-mechanics problem, it avoids distortions
caused by (as demonstrated here) configurational entropy in previous sampling methods. The key development is
the suppression of entropy by constraining the spectral weight to within identifiable optimal bounds and imposing
a set number of peaks. As a test case, the dynamic structure factor of the S = 1/2 Heisenberg chain is computed.
Very good agreement is found with Bethe ansatz results in the ground state (including a sharp edge) and with
exact diagonalization of small systems at elevated temperatures.
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I. INTRODUCTION

Obtaining real-frequency dynamic response functions from
imaginary-time correlations remains one of the outstanding
challenges for quantum Monte Carlo (QMC) and related
simulation methods (e.g., lattice QCD). The general form of
the problem is to invert the relationship

G(τ ) =
∫

dω A(w)K(τ,ω), (1)

where a QMC estimate G̃(τ ) of the correlation function G(τ ) is
available, A(ω) is the spectral function sought, and the kernel
K(τ,ω) depends on the type of spectral function. Similar to
an inverse Laplace transform, there is no general closed form
for A(ω). Only broad features of A(ω) can be resolved in
numerical analytic continuation, because information on fine
structure is only present at a level of precision of G(τ ) that
is not attainable in practice. Nevertheless, one can extract
important dynamical features and the key question is how to do
that with the maximum fidelity, given G̃(τ ) and its statistical
errors. Significant progress will be presented here.

The maximum entropy (ME) method [1] was adapted to the
particulars of QMC some time ago [2]. Overcoming problems
of previous approaches [3,4], it quickly became a standard
tool [5]. The ME method has an appealing (though often
over-stated) footing in probability theory, but in many cases
the entropic prior regularizes the spectrum too heavily, leading
to excessive broadening and distortions. To avoid this, an
alternative line of methods has been developed [6–10] (and
applied to diverse systems [11–14]) that does not impose the
entropic prior, instead using stochastic sampling of A(ω) with
the likelihood function

P (A) ∝ exp(−χ2/2�), (2)

where χ2 is the standard measure of the goodness of the
fit of G(τ ) obtained from A(ω) according to Eq. (1) to the
QMC-computed G̃(τ ) with its full covariance matrix [5,8] for
a set of imaginary-time points {τi}. The spectrum is typically
parametrized as a sum of a large number of δ functions, though
other forms have also been proposed [10]. The sampling
temperature � in Eq. (2) acts as a regularization parameter,

and the main remaining issue has been how to choose its value
properly.

An important insight was gained by Beach [7], showing
that a mean-field treatment of the sampling approach gives
the ME method, with � corresponding to the entropic weight.
Subsequently, Syljuåsen argued for fixing � = 1 [8] (as had
also been done by White in earlier work [15]). A recent variant
of the method by Fuchs et al. uses Bayesian inference to
determine � [9].

Here a previously overlooked problem with the sampling
approach is pointed out and a solution is offered that improves
the performance of the method to the point that a sharp edge
of the spectrum can be resolved without having to resort to
imposing such a feature by hand (e.g., by fitting to a functional
form containing a sharp edge [16]). The key insight is that,
when parametrizing A(ω) with N δ functions and treating these
as the configuration space of a statistical mechanics problem
with χ2 corresponding to the energy, the configurational
entropy at a fixed value of � (not to be confused with the
information entropy of the ME methods, though the two are
ultimately related) increases when N is increasing, thereby
forcing A(ω) away from a good fit. This happens primarily
because χ2 does not have the normal extensive property of
an energy function. Spectral weight is therefore forced out
by entropic pressure beyond the bounds of the true spectrum,
leading also to severe distortions of other parts of the spectrum.
Ways to counteract this entropic catastrophe will be presented.

II. MODEL AND METHOD

The method will here be demonstrated for the dynamic spin
structure factor of the S = 1/2 Heisenberg spin chain, with the
Hamiltonian

H =
L∑

i=1

Si · Si+1. (3)

The stochastic series expansion QMC algorithm [17] is used
to compute the correlation function

Gq(τ ) = 〈
Sz

−q(τ )Sz
q(0)

〉
, (4)

where Sz
q is the Fourier transform of the spins. With the kernel

K(τ,ω) = π−1e−τω in Eq. (1) and ω ∈ (−∞,∞), A(ω) is
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the dynamic structure factor S(q,ω). At inverse temperature
β = 1/T it satisfies S(q,−ω) = e−βωS(q,ω). In the
method to be discussed, it is more practical to define
Aq(ω) = S(q,ω)(1 + e−βω), so that

K(τ,ω) = 1

π

e−τω + e−(β−τ )ω

1 + e−βω
(5)

and integrating over ω ∈ (0,∞) in Eq. (1).
Here Gq(τ ) is computed for a set τ ∈ {τ1, . . . ,τM} with

τj = (j − 1)	τ and because of symmetry properties, only
the range 0 � τ � β/2 has to be considered. For large τ the
statistical errors may become too large and the number of
points M is therefore adjusted in this work so that the relative
error never exceeds 10%.

With Aq(ω) parametrized as

Aq(ω) =
N∑

n=1

anδ(ω − ωn), ωn = (n − 1/2)	ω, (6)

the weights {an} will first be importance sampled using Eq. (2)
with � = 1 and later with a modified form. Different types
of updates are carried out to transfer weight between two or
more δ functions, with the normalization Gq(0) conserved to
achieve a high acceptance rate [6,8]. Conservation of higher
moments can also be incorporated [6] but will not be done here.
Single-weight updates account for the (small) normalization
fluctuations.

The T = 0 results for S(q,ω) are available from Bethe
ansatz (BA) calculations including two- and four-spinon
processes, which accounts for almost all spectral weight [18].
Comparisons will be made with these results for a system with
500 spins [19] as well as with exact diagonalization results for
an L = 16 chain at T > 0 [20].

III. UNCONSTRAINED SAMPLING

To illustrate the entropic problem with the sampling
method in the � = 1 formulation [8], results for L = 500 and
q = 0.8π are shown in Fig. 1. The QMC calculations were
carried out at inverse temperature β = 500, which for all
practical purposes gives T = 0 results for Gq(τ ) at the
momentum considered. The time spacing was 	τ = 1/4 and
the number of data points M = 33. The relative statistical
error of Gq(τ ) was ≈10−5 at τ1 = 0 and ≈0.1 at τM . Figure 1
shows results obtained with several different numbers of δ

functions in the spectrum. Comparing with the BA result, a
striking feature is how the low-energy weight in the region
below the actual spectral edge increases with increasing N

(and the weight similarly increases also above the upper bound
at ω ≈ 3), while the peak is suppressed. The main peak is too
far to the right and there is a second, spurious peak at higher ω

that is more prominent for small N . Overall, the results look
similar to those of Ref. [8], where only a fixed N = 1000 was
used.

From a statistical-mechanics point of view, it is clear that the
sampling method suffers an entropic catastrophe for large N ,
with growing weight outside the bounds of the actual spectrum
and therefore a rapidly increasing χ2. Results indicating a
similar problem with the Bayesian selection of � can be
seen in Fig. 7 of Ref. [9]. To counteract the entropy, several
modifications of the sampling method will be introduced next.
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FIG. 1. Dynamic structure factor at q = 0.8π obtained by un-
constrained sampling for ω ∈ [0,4] and different N of the form
100 × 2n (peak decreasing with increasing N ), compared with a BA
result [18,19]. The bottom panel shows details of the low-frequency
part. The inset shows the goodness of the fit versus N .

IV. CONSTRAINED SAMPLING AT T = 0

If the spectral bounds are known one can prevent the
entropy-driven leakage of weight and, presumably, the associ-
ated distortions of the spectrum within the bounds. Normally
the bounds are not known, however, but, as will be shown
below, they can be approximately determined using the data.
Before discussing how this is done, another important feature
reducing the configurational entropy will be incorporated.

With the spectrum parametrized as in (6), no particular
shape is imposed and when N becomes sufficiently large any
spectrum can be reproduced in principle. In practice, however,
one can only hope to resolve some prominent features of the
spectrum. In particular, it is difficult to resolve a large number
of closely spaced peaks. In many cases one has some prior
information, e.g., one may know that the spectrum should
have one or two peaks. In other cases, recognizing the generic
limitations of analytic continuation, one may want to use a
spectrum with the smallest number of peaks consistent with
the QMC data. It is easy to impose a fixed number of peaks
in sampling a δ-function sum (6), by starting with a spectrum
with the desired number of peaks and only proposing updates
that do not create or destroy peaks. Here a one-peak spectrum
Aq(w) will be considered [which implies a single peak also in
S(q,ω), unless T is very high and a small peak at low ω can
appear], but the procedures can be very easily generalized to
any number of peaks.
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FIG. 2. Goodness of fit versus the lower bound of the spectrum
for an L = 500 chain at q = 0.8π , for several choices of the upper
bound ωN and 	ω = 0.0025. The vertical line shows the location of
the edge of the BA spectrum.

The bounds of the spectrum can be approximately deter-
mined by following the goodness of the fit as a function of the
frequencies ω1 and ωN in Eq. (6). Fixing one of the bounds,
ωN say, a minimum in χ2 versus ω1 has to exist for large
N , because the entropic effect is reduced as ω1 is increased
(provided of course that the true spectrum has vanishing or
very small low-frequency weight), thereby reducing χ2 until
ω1 starts to extend into the region of significant weight, whence
χ2 must increase. Figure 2 shows results of such scans for
the normalized goodness of fit χ2/M (with M used instead
of the unknown number of degrees of freedom NDOF [5]).
The minimum χ2/M is indeed for ω1 close to the lower
spectral edge and there is a sharp increase when ω1 is pushed
beyond the edge. The upper edge can be roughly determined to
within 5%–10% of the location of the sharp decay in weight at
ω ≈ 3.0 in the BA spectrum. The χ2 minimum becomes more
prominent for large N (hence making it easier to determine
the bounds), in accord with the entropic scenario.

When determining the spectral bounds it is safe to allow χ2

to deviate by a statistically insignificant amount proportional
to M1/2 from the best value χ2

min [given that the width of the
χ2 distribution is (2NDOF)1/2 and M ∼ NDOF], going toward
higher ω1, where χ2 grows very rapidly, and also toward higher
ωN , where the spectrum is less sensitive to the exact location
of the bound. For the lower bound in the case of a spectrum
with a sharp edge, as is the case here, one should not push ω1

beyond the point where the peak of the spectrum is at the lower
bound. One may also determine ω1 by separately analyzing the
large-τ behavior, though that is not always an easy task unless
the lower edge is a well isolated δ function.

A faster way to identify the spectral bounds is to begin
with a high upper edge (beyond what is expected for the
true spectrum) and identify the best lower bound under that
condition. With the lower bound fixed at its optimum, the
upper bound can be optimized next. Iterating this procedure
once or twice typically leads to excellent bounds very close
to those obtained in a two-dimensional search. The results of
such a procedure for a small spacing 	ω = 0.001 is shown
in Fig. 3. The agreement with the BA calculation (which for
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FIG. 3. The T → 0 dynamic structure factor at q = 0.8π for
L = 500, obtained after two adjustments of the spectral bounds (black
curve). The BA result [18,19] is shown with the red curve.

q = 0.8π misses about 2% of the known total spectral weight)
is remarkably good. The peak location is off by only 1%,
the lower bound slightly below it deviates by less than 0.5%
from the true edge, and the nontrivial profile is essentially
reproduced.

V. CONSTRAINED SAMPLING AT T > 0

In addition to the entropy-driven leakage of spectral weight
outside the correct bounds, there is another entropic effect in
the sampling of the single-peak spectrum at high (physical)
temperature. In such a spectrum the volume of the accessible
configuration space as a function of the peak height am (located
at the mth δ function) is given by

V (am) = (am − a0)m−1

(m − 1)!

aN−m
m

(N − m)!
, (7)

where a0 is a floor imposed on the spectrum at the low-
frequency bound a1 � a0, which again is regarded as an
adjustable parameter to be optimized by monitoring χ2(a0).
The floor at the high-frequency bound does not appear
explicitly, being at 0 since the spectrum always decays to 0
when ω → ∞, unlike at w → 0. Sampling a spectrum (6)
without any data, i.e., with χ2 = 0 in Eq. (2), the fact that
the configurational entropy ln(V ) increases rapidly with am

will drive the peak to infinite height (since no normalization
is imposed). Sampling with χ2 will of course counteract this
effect, but still the entropy will unduly favor a sharp peak
when N is large. This is not a serious issue in the T = 0
case discussed above (unless N is much larger than in Fig. 3),
because this spectrum has a very sharp peak. However, at high
T the peak entropy will cause problems, unless this version
of the entropic catastrophe is counteracted by dividing the
probability (2) by V (am).

In order to obtain continuity as a function of T , considering
that no entropic counterweighting was required above at
T = 0, the following probability is used:

P (A) ∝ exp{−χ2/2 − λ ln[V (am)]}, (8)

where λ is also to be optimized using χ2(λ). In practice, it
was found that λ = 1 gives good solutions when the floor
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FIG. 4. Dynamic q = π/2 structure factor for L = 16 chains at
T = 1 (top) and 0.5 (bottom). The histogram (red) represents exact
diagonalization results. The black curves were obtained with λ = 1
in Eq. (8) and three different values of the floor a0: at the minimum
χ 2(a0) (curves with the lowest a0) and for higher values where χ 2/M

is approximately its minimum value plus M−1/2 and 2M−1/2. The
insets show χ 2(a0)/M . The curves with higher peaks (blue) are from
unconstrained sampling. The upper spectral bounds were also chosen
according to a χ 2 criterion, as discussed in the text.

a0 > 0, while optimizing λ ∈ [0,1] is better when a0 = 0.
Optimizing λ after identifying the spectral bounds in the T = 0
case discussed above gave λ ≈ 0 and no significant change in
the spectrum from Fig. 3. The optimal λ varies monotonically
as T is increased.

The form (8) and the optimization procedures can be easily
generalized to more than one peak. An even better form of the
probability with entropy suppression may possibly be obtained
by using V (am) at fixed normalization, which, however, is
a much more complicated function that has not yet been
evaluated in closed form.

Figure 4 shows results at T = 1 and 1/2 for an L = 16
chain, obtained using λ = 1 and scanning over a grid of a0

values. Exact diagonalization results for the spectrum are
represented by histograms [20] and one of course cannot
expect to resolve the fine structures in such a spectrum by
analytic continuation of QMC results. With the single-peak
property imposed, however, one can observe very good
agreement with the broad features, including very reasonable
values for the low-energy limit, when choosing a0 such that

χ2 is close to its minimum value. In practice, it is better
to go slightly beyond the floor value minimizing χ2. When
a0 is taken past the minimizing value χ2 is seen growing
rapidly and the spectrum does not change much initially in
this region, though it changes noticeably at high T for smaller
a0. Since the best value χ2

min can fluctuate of the order M1/2,
it is statistically sound to choose a0 where χ2 ≈ χ2

min + M1/2,
where the solution typically has stabilized before χ2 increases
sharply. The solution is again not very sensitive to the upper
bound as long as ωN is reasonably close to the value to
optimizing χ2. One can again determine the two parameters
in an iterative fashion, adjusting a0 first with a high ωN , then
adjusting ωN to where χ2 ≈ χ2

min + M1/2 (above the point
where χ2 is minimized), and repeating this once or twice.

Results of this optimized constrained sampling scheme are
seen in Fig. 4 to be much better than those of unconstrained
sampling, which leads to excessively sharp peaks. One can
also counteract the peak sharpness in the unconstrained case,
e.g., by imposing a ceiling on the weights ai in the sampling.
However, results of such a procedure are still not as good as
with the constrained sampling, where the form (7) provides a
more natural mechanism for suppressing the entropy and the
shape of the spectrum comes out remarkably well.

VI. DISCUSSION

The main result of this work is the identification of
configurational entropy as a detriment to stochastic analytic
continuation with the sampling temperature � = 1 [8]. A
remarkable improvement in fidelity can be achieved with
respect to other methods by suppressing the entropy in various
ways. An important aspect of these procedures is that the
average spectrum no longer depends on the number of δ

functions N used to parametrize it, once N is sufficiently
large for discretization effects on the scale of the main spectral
features to become unimportant.

A bottleneck of the method is that sampling has to be carried
out for many values of the parameters to be optimized: ω1, ωN ,
a0, and λ. However, in practice good results can be obtained
with simple scans over a single parameter as follows. For fixed
ωN , if ω1 = 	ω/2 is found to be optimal, then a0 is adjusted
with λ = 1. If the optimum is at a0 = 0, then λ is optimized.
If ω1 > 0 is optimal one should subsequently also optimize λ.
Very good results for long Heisenberg chains were obtained in
this way for the full range of temperatures, where comparisons
can be made with the results of time-dependent density-matrix
renormalization calculations [21].
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