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Gaseous microflow modeling using the Fokker-Planck equation
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We present a comparative study of gaseous microflow systems using the recently introduced Fokker-Planck
approach and other methods such as: direct simulation Monte Carlo, lattice Boltzmann, and variational solution
of Boltzmann-BGK. We show that this Fokker-Plank approach performs efficiently at intermediate values of
Knudsen number, a region where direct simulation Monte Carlo becomes expensive and lattice Boltzmann
becomes inaccurate. We also investigate the effectiveness of a recently proposed Fokker-Planck model in
simulations of heat transfer, as a function of relevant parameters such as the Prandtl, Knudsen numbers.
Furthermore, we present simulation of shock wave as a function of Mach number in transonic regime. Our
results suggest that the performance of the Fokker-Planck approach is superior to that of the other methods in
transition regime for rarefied gas flow and transonic regime for shock wave.
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I. INTRODUCTION

The fluid dynamics of gases at the micrometer scale has
attracted a lot of attention in recent years due to engineering
applications in areas such as microelectromechanical systems,
shale gas transport, and fuel cells [1–5]. In these setups, the
physical length scale is of the order of the mean free path
and thus continuum approximation starts to break down. Due
to strong departure from equilibrium behavior in these setups
Navier-Stokes-Fourier (NSF) equations are no longer valid. In
this regime, the dilute gas dynamics is well described by the
Boltzmann equation [6,7]. Due to the complexity of the Boltz-
mann collision term, one often resorts to numerical simulation
using the direct simulation Monte Carlo (DSMC) method
[1,8–10]. However, due to low Mach number (Ma) and low (but
finite) Knudsen number (Kn) regime, large statistical fluctua-
tions make efficient numerical simulations using DSMC quite
expensive [1]. In order to reduce computational costs, simpli-
fied collision mechanism and discrete models such as Lattice
Boltzmann (LB) discrete velocity models [4,11–26] are often
used. Theses discrete velocity models were also used to get
analytical solutions for canonical flows in microflow regime
[15,23,26]. Out of all these approaches, LB has emerged as
a viable methodology for microflow simulations at low mach
number and moderate Knudsen number. Due to computational
efficiency of LB, these methods were often used to get numer-
ical solutions in nontrivial microflow setups as well [4,5,26].
These results show that lower-order LB models are limited
to Kn < 0.1 [20], whereas higher-order LB models provide
correct results up to Kn < 0.25 in isothermal setups [15,20].

Ideally, one would like to have accuracy of DSMC method
with computational efficiency of mesoscale methods such
as LB. In this context, it was recently pointed out that
another possible computationally attractive option is to work
with the Fokker-Planck (FP) collision model [27–29]. The
computational motivation behind this approach is that, unlike
DSMC, collision dynamics for FP model is much simpler
and can be mapped to computationally efficient Langevin
dynamics [30,31]. The basic model in this approach is the
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FP collision model proposed by Lebowitz et al. [32], where
the Boltzmann collision operator was replaced by a diffusive
dynamics in velocity space. Though this model has correct
hydrodynamic limit [32], like BGK collision model [33], this
model also leads to a wrong value of the Prandtl number
(Pr). Unlike, Boltzmann equation, which predicts the Prandtl
number of monatomic gas to be Pr = 2/3, Lebowitz et al.’s
[32] FP model predicts Pr = 3/2 and the BGK model predicts
Pr = 1. An alternate modification to the original FP model [32]
is proposed in Ref. [34], where the Prandtl number appears
as a free parameter in the kinetic model. It was shown that
this approach, when coupled with the FP approach, leads to a
simple but quite accurate model with flexible Prandtl number
(Pr) and a valid H -theorem. In the present study, we explore the
effectiveness of this approach by simulating various canonical
flows such as: Couette flow, Poiseuille flow, normal shock
wave, and heat transfer between parallel heated plates over
a wide range of Kn and contrasting the result with known
numerical (DSMC) and analytical solutions of the Boltzmann
BGK equation for canonical flows [15,20,35–39].

The present work is arranged as follows: In Sec. II, the
Boltzmann equation, BGK model, and phenomenological FP
model with its properties are discussed in detail. In Sec. III,
Langevin equations corresponding to the FP equation are
provided and solution algorithm is discussed. In Sec. IV, we
describe the existing analytical and numerical solutions of the
Couette flow, Poiseuille flow, heat flow between two infinitely
long parallel plates, and normal shock tests. Furthermore, we
present simulation results for these flows via present FP model
and compare with existing solutions obtained using analytical,
DSMC, LB, etc. In Sec. V, conclusion of the study is presented
and effectiveness of this model is discussed in brief.

II. BOLTZMANN EQUATION AND FOKKER-PLANCK
MODEL

The Boltzmann equation provides a quantitatively correct
dynamics of the dilute gas even when the gas is far away from
equilibrium. In this description, the state of the gas at any
location x ∈ R3 and time t � 0 is described in terms of the
single-particle distribution function f (x,c,t) � 0, where c ∈
R3 is the molecular velocity. f (x,c,t)dxdc is the probability
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of finding a particle centered at the point (x,c) in infinitesimal
volume dxdc. In order to define macroscopic quantities, it is
convenient to first define inner product:

〈φ1(c),φ2(c)〉 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dcφ1 φ2, (1)

where φ(c) is a polynomial of molecular velocity. As the
description is that rarefied gas, the equation of state in this
description is that of an ideal gas and the Temperature T of
the gas is defined in terms of the internal energy e and mass
density ρ as e = 3 ρkBT/(2m), where kB is the Boltzmann
constant and m is the mass of a gaseous particle.

The macroscopic quantities such as mass density ρ,
momentum density j = ρu with u as mean velocity and energy
density E = ρu2/2 + e are obtained as lower-order moments
of f defined by the following relation:

ρ = 〈1,f 〉, ρu = 〈c,f 〉, e =
〈
ξ 2

2
,f

〉
, (2)

where ξξξ = c − u is the peculiar velocity. The stress tensor σαβ

and heat flux qα are

σαβ = 〈ξαξβ〉 and qα =
〈
ξαξ 2

2

〉
, (3)

where for any second-order tensor Aαβ , its traceless part
Aαβ = (Aαβ + Aβα)/2 − Aγγ /Dδαβ . Similarly, the flux of
stress tensor is related to the traceless part of third-order
moment

Qαβγ =
∫

dcf
[
ξαξβξγ − 1

D + 2
(ξ 2ξαδβγ

+ ξ 2ξβδγα + ξ 2ξγ δαβ)

]
. (4)

The time evolution of single-particle distribution f as
governed by the Boltzmann equation [6,7] is

∂tf + cα∂αf = �B(f,f ), (5)

where Boltzmann collision operator �B, a bilinear function of
f . Due to the complexity of the Boltzmann collision term for
many applications, one resorts to simplified collision models
[7]. The simplest approximation of Boltzmann collision is
given by Bhatnagar, Gross, and Krook (BGK) [33], where it
is assumed that the collision dynamics can be replaced by
relaxation toward the Maxwell-Boltzmann distribution,

f MB = ρ

(
m

2πkB T

)3/2

exp

(
− mξ 2

2 kBT

)
, (6)

with single relaxation time τ as the mean free time. The explicit
form of BGK collision model is

�BGK = 1

τ
(f MB − f ). (7)

This model preserves almost all of the qualitative features of
the Boltzmann collision term [6,7]. The simplicity of the form
and having qualitative correct features of the Boltzmann equa-
tion make BGK quite suitable for understanding of phenomena
far from equilibrium [7,40] and this model is routinely used
for analytical as well as numerical investigations of gas flows
[15,16,20,35,36,38]. However, a quantitative comparison with

Boltzmann dynamics is not possible when heat transfer is
also under consideration. As the basic assumption behind
BGK approximation is that the relaxation of all higher-order
moments toward their Maxwell-Boltzmann value happens
with the same rate of relaxation, Prandtl number (Pr = 1)
for monatomic gas flow is wrongly predicted by the model.
This defect was removed by more refined model such as
Ellipsoidal-BGK model [41].

Lebowitz’s et al. [32] introduced an alternate way to
simplify collision dynamics, which introduces a diffusion term
in the velocity space to model the Boltzmann collision term.
Unlike the BGK model, this model was largely ignored in gas
dynamics applications. Recently, there is a renewed interest in
this model due to its potential utility as an efficient numerical
tool. A series of works have shown the feasibility of this model
via Langevin dynamics [27–29,42–46]. However, this model
predicts Prandtl number Pr = 3/2 for monatomic gases, which
does not match with the prediction of Boltzmann equation
(Pr = 2/3). To make FP model a better approximation to the
Boltzmann equation, Gorji et al. [29] introduced a modified FP
approximation with nonlinear drift term to correct the Prandtl
number (Pr = 2/3). Afterwards, to introduce Prandtl number
as a free parameter in the model, an alternate modification of
the original FP model was proposed in Ref. [34]. In this model,
following Ref. [47], an additional contribution to the advective
term of the Boltzmann equation was added. In the free flight
term of the Boltzmann equation, they used apparent streaming
velocity ĉα [47] as

ĉα = cα − τFP

2
λq

(
ξ 2 − 3kBT

m

)
∂α ln T + χ (ρ)ξα, (8)

with λq is a positive constant related to the Prandtl number and
τFP as the relaxation time associated with the FP model and
χ (ρ) is the compressibility factor, relevant for corrections due
to nonidea gas behavior. In present work we are interested in
rarefied gas behavior only, so compressibility χ = 0 is set in
present work. The physical motivation behind this model can
be easily understood by considering the motion of a tagged
particle. According to Eq. (8), if the tagged particle finds itself
in nonhomogenous temperature field, it gets a correction in
velocity depending on local temperature gradient. Using this
apparent streaming velocity, the FP model [32] was modified
as

∂tf + ∂α[ĉαf ] = �FP, (9)

where �FP is the FP collision operator, defined as

�FP = 1

τFP
∂cα

(
ξαf + kBT

m

∂f

∂cα

)
. (10)

This model assumes that the approach toward equilibrium
(via collision process) can be well approximated by diffusion
in the velocity space. The physical rationale is that many
qualitative features of the binary collision (the Boltzmann
dynamics) remains intact if we replace it with collision of
a tagged molecule with a heat bath. This simplification of the
collision mechanism leads to an O(N ) algorithm to simulate
Boltzmann-type dynamics, which is O(N2). It needs to be
remarked that although the correction to the advection velocity
is orthogonal to the mass conservation in the present FP model,
it gives finite contribution to the stresses. This is evident due
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to the relation

〈f (ĉα − cα),1〉 = 0, 〈f (ĉα − cα),cβ〉 = −τFPλ
qqβ∂α ln T .

(11)

Similarly, the projection to the energy conservation by this
correction term is

〈f (ĉα − cα),c2〉=
(

−τFP

2
λq∂α ln T

)(
R′+ 6p2

ρ
+ 4uβqβ

)
.

(12)

In this section, we briefly highlight some of the key features
of this Boltzmann-Fokker-Planck dynamics.

(1) Collisional invariants: In this collision model too,
the only invariants of the collision term are the mass, the
momentum, and the energy. This is evident due to the following
identity involving FP collision operator:

〈�FP,φ(c)〉

= − 1

τFP

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dc

(
ξαf + kBT

m

∂f

∂cα

)
∂φ

∂cα

, (13)

where surface terms have dropped out due to the fact that the
distribution function attains zero value at infinity faster than
any polynomial. This implies that for φ0 = a1 + a2 · c + a3c2,
we have

〈�FP,φ0〉 = − 1

τFP

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dc

(
ξαf + kBT

m

∂f

∂cα

)
× (a2α + 2a3cα) = 0. (14)

Thus, similar to the Boltzmann collision term or BGK
collision term, the FP model also satisfies the condition
〈�FP,{1,c,c2}〉 = 0.

(2) Conservation laws: The macroscopic conservation
laws obtained from kinetic Eq. (9) by taking appropriate
moment of the distribution function are

∂tρ + ∂αjα = 0,

∂t jα + ∂β(ρuαuβ + pδαβ) + ∂βσN
αβ = 0, (15)

∂tE + ∂α

(
(E + p)uα + σN

αγ uγ

) + ∂αqN
α = 0,

where p (= ρkBT/m) is the pressure term and the corrected
stress σN

αβ and corrected heat flux qN
α as

σN
αβ = σαβ − τFPλ

q qβ ∂α ln T ,

qN
α = qα − 3

2
ρτFP

(
kBT

m

)2

λq∂α ln T − τFP

4
λqR′∂α ln T ,

(16)

which has an additional contribution other than kinetic
part σαβ and qα due to temperature gradient. Here, the
form of conservation laws remain the same as macroscopic
hydrodynamics. Thus, similar to Boltzmann dynamics, the

present model also correctly predicts the correct macroscopic
behavior.

(3) Maxwell-Boltzmann distribution: For this model, zero
of collision term suggests

1

τFP
∂cα

(
ξαf + kBT

m

∂f

∂cα

)
= 0. (17)

Integrating Eq. (17) with respect to the velocity space and using
the fact that distribution function and its derivative attains the
zero value at infinity, we have

ξαf + kBT

m

∂f

∂cα

= 0. (18)

Solving Eq. (18), we get the Maxwell-Boltzmann distribution
as a solution. Thus, similar to Boltzmann dynamics, the present
model has Maxwell-Boltzmann distribution at equilibrium.

(4) H theorem: Like Boltzmann dynamics, the nonequi-
librium generalization of the entropy is given by H function
defined as H = ∫

dc(f ln f − f ). The evolution equation for
H function using Eq. (9) is written as

∂tH + ∂α

∫
dcĉαf (ln f − 1) = 〈�FP, ln f 〉 = −�,

(19)

where � is the entropy production term and it is positive
definite as

� =
⎛
⎝τFP

2
λq

(
3ρkBT

m

)
(∂α ln T )2

+
⎧⎨
⎩

∫
dξξξ f

[
∂ ln

(
f

f MB

)
∂ξα

]2
⎫⎬
⎭

⎞
⎠ � 0, (20)

where following identity was used to show positivity of the
entropy production,

∫
dξξξ f

[
∂ ln

(
f

f MB

)
∂ξα

]2

= −3 ρm

kBT
+

∫
dξξξ

1

f

∂f

∂ξα

∂f

∂ξα

. (21)

(5) Hydrodynamics and transport properties: For this
FP model of the Boltzmann equation, the evolution equation
for the higher-order moments like σαβ and qα are

∂tσαβ + Aαβ + 2p∂αuβ − 1

2
∂k

[
λqτFP(∂k ln T )

×
(

Rαβ − 3kBT

m
σαβ

)]
− (τFPλ

q∂k ln T )qβ∂kuα

= −2σαβ

τFP
, (22)

where term Aαβ , which is nonzero only in the nonequilibrium
condition, is given as

Aαβ = ∂γ (σαβuγ ) + 2σαγ ∂γ uβ + ∂γ Qαβγ + 4

D + 2
∂αqβ.

(23)
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Similarly, evolution equations for the heat flux qα is

∂tqα + Bα + (D + 2)

2
p∂α

p

ρ
+ 2

D + 2
(qγ ∂αuγ + qα∂βuβ) − 1

4
∂k

[
λqτFP(∂k ln T )

(
�α − 6

p

ρ
qα

)]

−1

4
(τFPλ

q∂β ln T )

(
R′ + 6(p)2

ρ

)
∂βuα − 1

4
(τFPλ

q∂β ln T )

(
Rαk + R′δαk

D
+ 2p2δαk

ρ
− 3pσαk

ρ

)
∂βuk = −3qα

τFP
, (24)

where term Bα , which is nonzero only in the nonequilibrium condition, is

Bα = ∂β

(
qαuβ + Rαβ

2
+ R′δαβ

2D

)
+ 2

D + 2
(qγ ∂αuγ + qα∂βuβ) − σαβ∂βp

ρ
+ (D + 4)

D + 2
qβ∂βuα

+Qαβγ ∂βuγ − (D + 2)p

2ρ
∂βσαβ − σακ∂βσκβ

ρ
, (25)

with R′ = ∫
dcf ξ 2ξ 2 − (15p2/ρ), Rαβ = ∫

dcf ξ 2ξαξβ . and
�α = ∫

dcf ξ 2ξ 2ξα . Here, it is evident from evolution equa-
tion for stress and heat flux that the moment chain is not
closed. However, in the limit of Knudsen number going to
zero, the dynamics of higher-order moments get decoupled
with the dynamics of lower-order moments. In order to derive
the transport coefficients, we analyze the hydrodynamic limit
of the FP model by applying the Chapman-Enskog expansion
procedure on Eqs. (22) and (24) (here the distribution function
and time derivative of nonconserved quantity are expanded in
terms of τFP); finally, we have

σαβ = −τFPp∂αuβ, qα = −τFP
D + 2

6
p∂α

p

ρ
. (26)

Using Eqs. (26) and (16) while retaining only first-order terms
in τFP, we obtain

σN
αβ = −2

(
τFPp

2

)
∂αuβ,

(27)

qN
α = −τFP

[
D + 2

6
p∂α

p

ρ
+ 3

2
ρ

(
kB

m

)2

T λq∂αT

]
.

Thus, we have viscosity coefficient (μ) and heat conductivity
(κ) as

μ = τFPp

2
,

κ = τFP

[
D + 2

6

kB

m
p + 3

2
ρ

(
kB

m

)2

T λq

]
, (28)

which implies that the Prandtl number is

Pr = 3Cp

2Cp + 9λq(kB/m)
. (29)

Equation (29) allows us to choose the Prandtl number
independently in interval (0, 3

2 ].
It is evident that Lebowitz’s et al. [32] model is a special

case, which can be obtained via setting λq = 0. Thus, Fokker-
Planck model considered in the present work provides a
convenient phenomenological description of gaseous flow
at kinetic level. Unlike BGK model, present model can be
discretized using particle methods (similar to DSMC) in a

straight-forward manner. The next section will describe one
such discretization strategy.

III. LANGEVIN EQUATION AND SOLUTION ALGORITHM

The FP model presented above [Eq. (9)] can be transformed
into equivalent Langevin equation for particles [48]. In the
present case, for an ensemble of gaseous molecules whose
states (xα,cα), the equivalent Langevin equation is

dxα = cαdt − τFP

2
λq(∂α ln T )

(
ξ 2 − D

kBT

m

)
dt,

(30)

dcα = − ξα

τFP
dt +

√
2
kBT

m
dWα,

where W (t) with dW (t) = W (t + dt) − W (t) is the standard
Weiner process, which is a rapidly changing random force with
mean and variance as

〈dWα〉 = 0, 〈dWαdWβ〉 = dtδαβ. (31)

Thus, the detailed binary collision description is approx-
imated by a random collision with a heat bath in the
model.

These stochastic differential equations of Langevin type can
be solved quite efficiently. To solve the Langevin equations
[Eq. (30)], the stochastic version of the Verlet algorithm [49]
is applied. The stochastic Verlet scheme for the present model
is

x(1)
α = xα + 1

2

[
cα(t)

− τFP

2
λq(∂α ln T )

(
ξ 2 − D

kBT

m

)]
�t,

cα(t + �t) = cα(t) − ϑ

1 + ϑ/2
[cα(t) − uα] +

√
2 kBT

m
ϑ

1 + ϑ/2
φt ,

xα(t + �t) = x(1)
α + 1

2

[
cα(t + �t)

− τFP

2
λq(∂α ln T )

(
ξ 2 − D

kBT

m

)]
�t, (32)
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where ϑ = �t
τFP

and φt is normal random number generator
with mean 0 and variance 1. This scheme works efficiently for
small time step, i.e., ϑ < 0.01. Temperature gradient term in
Eq. (32) can be easily evaluated using Eq. (26), then we have

x(1)
α = xα + 1

2

[
cα(t)

+ 27λqρqα

4(D + 2)e2

(
ξ 2 − D

kBT

m

)]
�t,

cα(t + �t) = cα(t) − ϑ

1 + ϑ/2
[cα(t) − uα] +

√
2 kBT

m
ϑ

1 + ϑ/2
φt ,

xα(t + �t) = x(1)
α + 1

2

[
cα(t + �t)

+ 27λqρqα

4(D + 2)e2

(
ξ 2 − D

kBT

m

)]
�t. (33)

In particular, λq = 5/18 for BGK model (Pr = 1).
For actual implementation, similar to DSMC, physical

domain can be partitioned into cells of size similar to mean
free path. As FP is stochastic like DSMC, required physical
quantities are calculated as averages. For example, physical
quantities like mass density (ρ), momentum density (ρu), and
energy (e) density are given by

ρi = 1

Vcell

∑
i

m, ρiui = 1

Vcell

∑
i

mci,

(34)

ei = 1

Vcell

∑
i

m|ci |2,

where summation is taken over the ith cell, and m and
Vcell are mass of particle and volume of computational cell,
respectively. We need sufficient number of particles in each
cell to reduce statistical fluctuations about the average.

The wall boundary condition can be implemented using
diffusive wall approximation (regularly used for DSMC),
where it is assumed that any particle hitting the wall emerges
in a random direction with conditions corresponding to wall
equilibrium. The physical picture behind this model is that a
particle hitting the wall get absorbed in the wall and undergoes
multiple collisions before reemerging in the fluid [50]. Thus,
a particle emerging from the wall has no memory of its
initial velocity and acquires Maxwell-Boltzmann distribution
corresponding to the wall temperature Tw and wall velocity
uw. The component normal to the wall v⊥ have a distribution

f (v⊥) = m

kBTw

v⊥ exp

(
− mv2

⊥
2kBTw

)
, (35)

while each parallel component will have distribution

f (v‖) =
√

m

2πkBTw

exp

(
−m(v‖ − uw)2

2kBTw

)
. (36)

In actual implementation, the biased Maxwellian distribution
in normal direction can be achieved by introducing a variable
transformation

ru = exp

(
− mv2

⊥
2kBTw

)
. (37)

x

y

z

uw

FIG. 1. Geometrical representation diffusive boundary condition.

It is straight forward to verify that if ru is a uniformly
distributed random number in (0,1) then v⊥ will be distributed
according to Eq. (35). The parallel component can be generated
via standard Box-Muller transform [31]. As a specific example,
as shown in Fig. 1, we consider wall normal to be in z direction
and wall to be moving in x direction with velocity uw. In this
case the three components of the velocity of a particle emerging
from wall can be written as

vx =
√

kTw

m
r + uw, vy =

√
kTw

m
r ′, vz =

√
−2kTw

m
ln ru,

(38)

where ru is uniformly distributed random numbers in (0,1)
and, r and r ′ are the Gaussian random numbers distributed
with mean zero and variance one, respectively.

Finally, for engineering applications, one needs to specify
inlet and outlet boundary conditions too. In the present
FP framework, we work with local one-dimensional ap-
proach regularly used for Euler equations [51]. First, we
assume that near inlet and outlet distribution is well approx-
imated by Maxwell-Boltzmann distribution. The assumption
of Maxwell-Boltzmann and one dimensionality of the flow
near boundary allow us to use characteristic analysis of the
Euler equations [51], which gives characteristic velocities
as λ1 = u − c, λ5 = u + c, λ2 = λ3 = λ4 = u, and c = γp

ρ
,

is the speed of sound with γ as the adiabatic exponent.
The amplitudes of characteristic waves L′

is in terms of the
characteristic velocities are

L1 = λ1

(
∂p

∂x
− ρc

∂u

∂x

)
,

L2 = λ2

(
c2 ∂ρ

∂x
− ∂p

∂x

)
,

L3 = λ3
∂v

∂x
, (39)

L4 = λ4
∂w

∂x
,

L5 = λ5

(
∂p

∂x
+ ρc

∂u

∂x

)
.

The local one-dimensional inviscid (LODI) analysis is used
to calculate the outlet boundary conditions. In this case the
problem is one-dimensional, which makes it one-dimensional
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FIG. 2. Computation time as a function of numbers of particles for Fokker-Planck and DSMC (SPARTA).

globally as well. The LODI system in primitive variables is

∂ρ

∂t
+ 1

c2

[
L2 + 1

2
(L5 + L1)

]
= 0,

∂p

∂t
+ 1

2
(L5 + L1) = 0,

∂u1

∂t
+ 1

2ρc
(L5 − L1) = 0, (40)

∂u2

∂t
+ L3 = 0,

∂u3

∂t
+ L4 = 0.

In this approach, we used a supersonic inlet condition on the
left boundary and a subsonic outlet condition on the right
boundary according to Refs. [51,52]. All the variables (ρ,u,T )
are imposed on the left boundary, as all the characteristics
move into the interior of the domain for a supersonic inlet. For
a subsonic outlet, we impose only pressure, as there is only
one characteristic moving into the domain from outside, and
the rest are calculated from the neighboring boundary cells
according to Refs. [51,52]. Since we impose a steady pressure
at the outlet, the LODI relation for pressure suggests that

L1 = −L5. (41)

The rest of the L′
is are obtained from the interior of the domain

using Eq. (39). We used a one-sided finite difference to cal-
culate the spatial derivatives. All the variables except pressure
are estimated from Eq. (40) to get their values at the next time
step. As the density is proportional to the number of particles
in a cell, additional particles are introduced and removed in the
boundary cells according to the required density. The boundary
cells are completely reinitialized uniformly in space and with
Maxwellian distribution in velocity, pertaining to the values
obtained at respective boundaries.

As discussed earlier, for rarefied gas flow the most widely
used methodology is DSMC. The standard DSMC without
making any approximation is O(N2) algorithm, with N

being number of particles in a cell [50]. The algorithm is

O(N2) due to the need of finding maximum relative velocity
in every cell. However, DSMC algorithm can be modified
into O(N ) alternate via approximating velocity maximum
in a cell globally [50]. There are many highly optimized
implementations of DSMC available in the literature. In order
to compare speed between our FP algorithm and DSMC, we
choose recently developed SPARTA framework for DSMC
[53,54].

In the present algorithm, the binary collision is approxi-
mated by a Gaussian random noise. This simplification of the
collision mechanism leads to an inherently O(N ) algorithm
to simulate Boltzmann type dynamics. Both DSMC and FP
approaches have their own strength and weaknesses. While,
O(N ) version of DSMC collision is faster than FP due to
the fact that it does not require Gaussian random number
which involves significant amount of mathematical function
calls such as logarithm. On the other hand, FP collision does
not involve collision pairs, so collision implementation does
not require sorting step. Thus, one would expect that DSMC
is faster for smaller system size, whereas FP should become
more efficient as system size increases.

In Fig. 2, FP algorithm and an O(N ) implementation of
DSMC using SPARTA framework are contrasted for two
different system sizes. As expected, DSMC is faster for
smaller system size and FP is more efficient option for
larger system size. Thus, present FP scheme is a potentially
attractive O(N ) alternate to DSMC. Here, we would like
to mention that it is just speed comparison of both the
algorithms (not related with the convergence of result). Also,
it is important to mention that all physical results simulated
using FP algorithm (shown in next section) are contrasted only
with results obtained by using basic O(N2) version of standard
DSMC [50].

IV. BENCHMARKING FOR CANONICAL FLOWS

In order to show usefulness of the Fokker-Planck and
Langevin approach, we shall consider a number of canonical
set-ups of microflow. We restrict our attention to the set-up
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of Couette flow, Poiseuille flow, heat transfer between parallel
plates, and normal shock wave.

A. Couette flow

In Couette flow setup, steady flow is confined between two
infinitely long parallel plates, which are moving with respect
to each other. The lower and upper plates are kept at x = −L/2
and x = L/2, moving with velocity U1 and U2, respectively.
The relative motion of both parallel plates generates a shear
force, which is responsible for the motion of fluid. This setup
is extensively studied via various analytical and numerical
approaches [15,35–37]. Using BGK approximation, Willis
[35] formulated this flow problem in terms of integral equation
and solved using Wiener-Hopf technique. Later, Cercignani
and coworkers [36] solved this integral equation formulation
using a variational approach. Recently, it was recognized that
discrete velocity model associated with the lattice Boltzmann
model leads to a finite moment chain and explicit specification
of the boundary condition in terms of these moment [15].
Using this moment chain for various lattice Boltzmann based
discrete velocity models analytical solutions were obtained
[15,20]. Later, these boundary value problems were also
solved using the regularized-13 equations [37]. Based on
these results, it can be said that the velocity profile in this
setup is well approximated by an expression of the form

(see Refs. [15,20,37])

u(y) = U1 + U2

2
+ 1

�

y

L
(U2 − U1)

+ 1

Z
(U2 − U1) sinh

(
y

c1Kn L

)
, (42)

where �, Z, and c1 are the appropriate model dependent
constants. Here, we have defined Knudsen number as Kn =
(τFP/L)

√
(kBT)/2m = (τ/L)

√
(2kBT)/m, where L is the gap

between the parallel plates. This allows us to write difference
between nondimensional velocity gradient with its continuum
value at the center-line (say, Y ),

Y = 1 − 1

(U2 − U1)

∂ux

∂(y/L)

∣∣∣∣
y=0

= c1ZKn(� − 1) − �

c1ZKn�
,

(43)

and dimensionless velocity slip (S) at wall is given by

S = U2 − U1

Uwall

[
1

2
− 1

2�
− 1

Z
sinh

(
1

2c1Kn

)]
. (44)

It has be shown that many higher-order LB models and R13
model are able to reproduce profiles suggested by Eq. (42)
[15,20,37]. We choose to work with the LB model, which
shows very good agreement with the true Boltzmann dynamics
for the given setup. Following Ref. [15], for D2Q16 LB model,
c1 = √

3/2 and values of � and Z are given as

� = 1 +
√

6Kn
[
3.076 sinh

(
1√
6Kn

) + 2 cosh
(

1√
6Kn

)]
3.076 cosh

(
1√
6Kn

) + 2
√

3 sinh
(

1√
6Kn

) , (45)

Z =
18.456(3.076Kn + √

2) sinh
(

1√
6Kn

) + 3.076(12Kn + 7.53463) cosh
(

1√
6Kn

)
12Kn

. (46)

Similarly dimensionless shear stress (σxy) has the following
form:

σxy =
(
ϒ1 coth

(
ϒ2
Kn

) + ϒ3
)
Kn

(ϒ4 + ϒ5Kn) coth
(

ϒ2
Kn

) + (ϒ6 + ϒ7Kn)
, (47)

where ϒ1,ϒ2... and ϒ7 are the appropriate model dependent
constants [15,20,37].

To simulate the Couette flow using FP approach, we
considered a computational zone of 200 × 4 × 4 cells and
each cell contains 500 gaseous particles, with initial density
as ρ0 = 1. Diffusive boundary condition was applied on
moving walls and periodic boundary condition was used in the
remaining directions (for details, see Ref. [50]). For low Kn
simulation, the magnitude of ϑ is restricted to ϑ < 0.01 due to
stability constraints. Simulations for different values of Kn in
transitional regime have been performed and compared with
existing standard results for three important physical quantities
related to Couette flow, i.e., shear stress, difference between
centerline velocity gradient and its continuum value (based on
NSF) and velocity slip at the wall. It is evident from the Fig. 3
(for shear stress) that FP approximation works quite well.
Like Boltzmann-BGK, effective shear stress converges to 1
as Kn → ∞ for the modified FP approximation. Yet another

important measure for departure from hydrodynamic behavior
is difference between centerline velocity gradient and its
continuum value (based on NSF). This quantity is evaluated via
direct simulation using FP approach and compared with results
obtained via Boltzmann-BGK-based method [35], DSMC
method [15], and lattice Boltzmann method [20] for different

FIG. 3. Shear stress (σxy) as a function of Kn for Couette flow.
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FIG. 4. Difference between the velocity slope at the centerline
and its continuum value or Navier-Stokes prediction (Y ) with Kn.

values of Kn (shown in Fig. 4). Furthermore, in Fig. 5, velocity
slip at the wall obtained via FP simulations is contrasted with
that provided in Ref. [35], lattice Boltzmann solution of Ref.
[15], and DSMC result [15]. Thus, similar to higher-order
LB, regularized 13 moment equation, and DSMC, the present
model is also able to predict behavior of Couette flow for finite
Knudsen number. Here, it is evident from Figs. 4 and 5 that
lattice Boltzmann method fails to capture exact dynamics for
Kn � 0.25. Whereas the present FP approach simulates these
three quantities correctly in even transitional regime. Finally,
it can be also seen that from the results, as expected, different
Pr values have no effect on isothermal Couette flow.

B. Poiseuille flow

As second setup, we consider Poiseuille flow in which a
pressure/force (F ) driven flow between the two infinitely long
parallel plates, which are kept at y = −L/2 and y = L/2,
is considered. The physical quantity of interest is often the
nondimensional mass flow rate (Q):

Q = − 1

L2
(F )−1

√
2kBT0

m

∫ L/2

−L/2
uxdy. (48)

FIG. 5. Velocity slip at the wall (S) with Kn.

Like Couette flow, Poiseuille flow problem was also solved
using via variational optimization method [36], lattice
Boltzmann method [20], and regularized equations [37]. For
this extensively studied setup via various analytical and
numerical approaches [20,36,37], it is widely agreed that the
velocity profile at steady state is of the form

ux(y) = F
y2

2τ
+ A2 + A3 cosh

(
y

c1KnL

)
, (49)

where A2, A3, and c1 are the appropriate model-dependent
constants [20,37]. Thus, using Eq. (49) the flow rate can be
evaluated as

Q = − 1

6Kn
+ �1 + �2Kn − �3 + �4Kn + �5Kn2

�6 coth
(

�7
Kn

) + 1
, (50)

where �1,�2, . . . and �7 are the model-dependent constants
[20,37]. Again, we choose to work with the LB model, which
shows very good agreement with the true Boltzmann dynamics
for the given setup. In particular, for off-lattice D3Q27 LB
model of Ref. [20], values of A2, A3, and c1 are

A2 = Fτ

[
−2 − 0.25

Kn2 − 1.08152

Kn
+ Kn + 0.165911

0.970474Kn + 1.0125Kn coth
(

0.248039
Kn

)
]
, (51)

A3 = Fτ

[
116.609Kn + 19.3468

75.696Kn sinh
(

0.248039
Kn

) + 78.9739Kn cosh
(

0.248039
Kn

)
]
, (52)

and c1 = 2.01581. For this case, values of �1,�2,... and �7 are
given in the Table I.

In order to simulate the isothermal steady Poiseuille flow
using the modified FP approximation for the Boltzmann
equation, we have created a computational zone with 200 ×

TABLE I. Constants appearing in a generic form for dimension-
less flow rate Q in Eq. (50).

LB model �1 �2 �3 �4 �5 �6 �7

D3Q27 1.08152 2.0 0.17096 2.06084 6.21071 1.04330 0.248039

4 × 4 cells, where each cell contains 500 gaseous molecules.
Diffusive boundary condition was applied on top and bottom
walls of channel and periodic boundary condition was applied
in other two directions [50]. In this setup of steady Poiseuille
flow for gaseous microflow, the nonhydrodynamic behavior
is characterized by so-called Knudsen paradox or Knudsen
minimum phenomenon. It is known that methods such as LB
give only qualitative correct behavior and are quantitatively
correct only for Kn < 0.5 only. This behavior was apparent
in our simulations too. In Fig. 6, present simulation results
are contrasted with the BGK, LB, and DSMC results. Present
methodology, similar to Boltzmann-BGK and DSMC, is able
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FIG. 6. Mass flux (Q) vs. Knudsen number (Kn) for Poiseuille
flow.

to predict this phenomena of Knudsen minima in a quantita-
tively correct fashion. Indeed, it is evident from Fig. 6 that the
FP approximation to the Boltzmann equation is quantitatively
correct for the transitional region (0.05 < Kn < 5). However,
as shown in Fig. 6, similar to any particle method stronger
fluctuation for smaller Kn is observed. As expected, in this
regime of low Knudsen number, LB provides good results up
to Kn ≈ 0.25. Thus, present methodology should complement
LB for high Knudsen number flows.

C. Heat transfer between parallel plates

Another standard setup for studying the effectiveness of
the finite Knudsen flow solvers is the heat transfer between
infinitely long parallel plates separated by a distance L. In this
setup, the bottom and top plates are kept at different tempera-
tures T1(= T − �T ) and T2(= T + �T ), respectively. The
relevant quantity in this setup is the normalized heat flux
defined as q̂(= q/qFM ), where q,qFM are the absolute heat
flux and free molecular heat flux, respectively. Thus, this setup
can also be used to test ability to tune Prandtl number in
simulations. Following [39], qFM can be written as

qFM ≈ −
√

2ζ

2 − ζ

2�T√
π

, (53)

where ζ is the accommodation coefficient and assumed to be
one for the present study.

Reference [38] derived the approximate value of the
normalized heat flux, valid for small temperature difference
(�T � 1), as

q̂ = 1

1 + 4
5
√

πKn

. (54)

To simulate the heat transfer between the parallel plates, we
considered 200 × 4 × 4 cells with each cell containing 500
gaseous particles. The diffusive wall condition was applied
on top and bottom walls of channel, while periodic boundary
condition was applied in other two directions. In Fig. 7, it
is evident that in low Kn regime the magnitude of heat flux
increases as Pr decreases, and approximately Fourier’s law of
heat transfer is captured at Kn = 0.05. Also, It is found that
the heat flux is approximately independent of Prandtl number
in free molecular regime (Kn → ∞). Similarly, simulations

FIG. 7. Heat flux (q̂) with Kn for different models.

show stronger fluctuations at low Kn and low Pr. It is also
evident from Fig. 7 that FP results for Pr = 1 have good
match with BGK based variational solution [38]. It is observed
from magnitude of heat flux for different Kn and Pr that the
contribution of correction term in free flight of molecule is
stronger at high value of Kn and low value of Pr.

D. Normal shock tests

An important canonical test problem for kinetic-theory-
based model is that of normal shock wave [40,55–57]. As the
Ma increases, departure from equilibrium becomes stronger
and thus dynamics of higher-order moments become sensitive
to details of the kinetic model being used. Therefore, we do
not expect the present simplified collision dynamics to provide
quantitative agreement with Boltzmann dynamics in case of
highly nonequilibrium flows and we restrict the attention to
regime of Ma < 2.

We study one-dimensional normal shock structure in a
shock stationary frame of reference. In this problem, a long
tube is initially separated into two regions at mid by a thin
diaphragm (as shown in Fig. 8). At time t = 0, the diaphragm
is removed and the two regions of gas are left to interact.
The initial conditions for density, velocity, and temperature
are specified using the Rankine-Hugoniot conditions [55].
The downstream quantities (ρ2,u2,T2) in terms of upstream
quantities (ρ1,u1,T1) can be written as

ρ2 = ρ1(γ + 1)Ma2
1

2 + (γ − 1)Ma2
1

, u2 = u1
(
2 + (γ − 1)Ma2

1

)
(γ + 1)Ma2

1

,

T2 = T1
(
2γ Ma2

1 − (γ − 1)
)(

(γ − 1)Ma2
1 + 2

)
(γ + 1)2Ma2

1

. (55)

where γ is the adiabatic exponent and Ma1 is the upstream
Mach number. The discontinuity in the initial condition
smooths with time and the shock structure is resolved.

1 1u ,T1, 2 2u ,T2,
t = 0

Ma1 Ma2
Diaphragm

Upstream Downstream

FIG. 8. Schematic diagram for normal shock test.
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x/λ

(a)
ρ̂

x/λ

(b)

q̂

×

×

FIG. 9. Normalized density (ρ̂) and heat flux (q̂) at Ma1 = 1.1 versus x/λ, where λ is mean-free length. 4 × 105 and 4 × 106 gaseous
particles gaseous particles were taken for DSMC and FP simulations, respectively.

To verify computational compatibility and efficiency of
present algorithm for supersonic flows, simulations were
carried out for different Ma1 = 1.1,1.5 and shock structure
was resolved for each case. Simulations were carried out with
250 and 300 cells in the shock direction for Ma1 = 1.1 and
Ma1 = 1.5 cases, respectively, and time averaging was carried
out over 200 ensembles in order to calculate macroscopic
quantities. In every simulation, supersonic inlet and subsonic
outlet boundary conditions was used for both FP and DSMC.
In this approach, we used a supersonic inlet condition on the
left boundary and a subsonic outlet condition on the right
boundary according to Refs. [51,52]. All the variables (ρ,u,T )
are imposed on the left boundary, as all the characteristics

move into the interior of the domain for a supersonic inlet.
For a subsonic outlet, we impose only pressure, as there is
only one characteristic moving into the domain from outside,
and the rest are calculated from the neighboring boundary cells
according to Refs. [51,52]. As the density is proportional to the
number of particles in a cell, additional particles are introduced
and removed in the boundary cells according to the required
density. The boundary cells are completely reinitialized uni-
formly in space and with Maxwellian distribution in velocity,
pertaining to the values obtained at respective boundaries.

Normalized density (ρ̂) profile and normalized heat flux
(q̂) profile based on FP and DSMC simulation results for
Ma1 = 1.1 are plotted in Fig. 9. It can be seen that FP results

x/λ

ρ̂

x/λ

q̂

×

×

FIG. 10. Normalized density (ρ̂) and heat flux (q̂) at Ma1 = 1.5 versus x/λ, where λ is mean-free length. 2 × 105 and 2 × 106 gaseous
particles were taken for DSMC and FP simulations, respectively.

063307-10



GASEOUS MICROFLOW MODELING USING THE FOKKER- . . . PHYSICAL REVIEW E 94, 063307 (2016)

closely match with DSMC for Ma1 = 1.1. Though, for same
quality results, FP requires roughly one order of magnitude
more particles per cell. However, even with order of magnitude
more particles, FP simulations are much cheaper than DSMC
due to O(N ) scaling of FP methods. Here, we remind that
the number of particles required for DSMC increase quite
drastically and corresponding simulation cost increase as
O(N2) for low Mach number simulations. Thus, FP approach
is quite efficient in this case of moderate and also for case of
low Mach number simulations. Plots for normalized heat flux
(q̂) in DSMC and FP confirm that large number of ensembles
are required to capture higher-order moments properly.

Similarly, normalized density (ρ̂) profile and normalized
heat flux (q̂) profile based on FP and DSMC simulation results
for Ma1 = 1.5 are plotted in and Fig. 10. Even though density
profile for FP has good agreement with DSMC, heat flux
profiles show differences among two methods. Normalized
heat flux plots confirm that the FP approach suffers from
stronger fluctuations than DSMC for higher Mach number.
In FP approach, increasing the number of particles in compu-
tational cell provides only better average, whereas fluctuations
(or deviation from average) are inversely proportional to the
square root of number of particles. Here, it is important to note
that accurate calculation of correction term in advection, which
depends on local temperature gradient, for higher Ma requires
finer resolution and this term starts dominating over actual
molecular velocity, so this approach deviates from DSMC for
high Ma number. This result suggests that FP approach should
be used only for low Mach number and transonic regime only.

V. OUTLOOK

A FP-based simulation framework was developed and
tested for various canonical setups such as Couette flow,

Poiseuille flow, and heat flow between infinitely long parallel
plates over wide range of Knudsen number. It is found that
the present FP approximation to the Boltzmann equation
works efficiently for isothermal Couette flow and isothermal
Poiseuille flow in transitional regime. In case of heat transfer,
effect of Pr is correctly reproduced. Normal shock wave
simulation results suggest that FP approach reproduces results
of DSMC in transonic flow regime and requires an order of
magnitude more particles per cell. However, in low Mach and
transonic flow regime, FP-based methods lead to an order
of magnitude improvement over DSMC due to the fact that
collision in FP does not require sorting steps. Also, it is found
that FP approach is more efficient than DSMC in the case
of larger system size. To conclude, FP approximation to the
Boltzmann equation provides a convenient phenomenological
model at single-particle distribution function level with tunable
Prandtl number. The results for the canonical flow setups
suggest that FP approach is a possible alternate in the low Mach
number and transonic regime for simulating hydrodynamics
of rarefied gases. Finally, it should be stressed that the current
approach of Langevin dynamics has a distinct disadvantage
that the momentum and energy conservation laws are valid
only on an average.
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