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We study Chebyshev-polynomial expansion of the inverse localization length of Hermitian and non-Hermitian
random chains as a function of energy. For Hermitian models, the expansion produces this energy-dependent
function numerically in one run of the algorithm. This is in strong contrast to the standard transfer-matrix method,
which produces the inverse localization length for a fixed energy in each run. For non-Hermitian models, as in
the transfer-matrix method, our algorithm computes the inverse localization length for a fixed (complex) energy.
We also find a formula of the Chebyshev-polynomial expansion of the density of states of non-Hermitian models.
As explained in detail, our algorithm for non-Hermitian models may be the only available efficient algorithm for
finding the density of states of models with interactions.
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I. INTRODUCTION

Impurities are ubiquitous in nature and play essential
roles in various physical phenomena; one of the most im-
portant phenomena is Anderson localization. Anderson [1]
had originally introduced his model to describe localization of
electrons diffusing in randomly disordered lattices, but later
it has been applied to various other systems where waves are
present in a random environment; see e.g., Ref. [2]. Waves,
quantum mechanical or classical, that are scattered by random
impurities tend to interfere destructively with each other
and consequently become localized in space under specific
conditions.

These localized waves typically have an envelope with an
exponential tail

|ψ(x)| ∼ e−κ|x−x0| (1)

in the limit |x − x0| → ∞, where x0 is the center of local-
ization. The parameter κ specifies how strongly the wave is
localized and is referred to as the inverse localization length.
A small value of κ indicates a weakly localized (i.e., widely
spread) wave, while a large value indicates a strongly localized
(i.e., narrowly spread) one.

The inverse localization length κ of each eigenstate of the
Hamiltonian depends on its eigenenergy. For large quantum-
mechanical systems, the function κ(E) is typically larger
(stronger localization) near energy-band edges and smaller
(weaker localization) away from them, and may even vanish
in an energy range. It is now widely accepted that in one
dimension, in the absence of interparticle interactions, almost
all eigenstates are localized, that is, κ(E) > 0 for any E,
while in three spatial dimensions there is an energy region
where κ(E) = 0, namely, a phase of extended states, with
a transition to a phase of localized states at the so-called
mobility edge. It has been stressed [3–6] that a detailed
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finite-size scaling analysis of numerical data is essential to
fix accurately the exponent ν, which determines the energy
dependence κ(E) ∼ |E − Ec|ν of the inverse localization
length in the localized phase, as one approaches the mobility
edge Ec, and thereby the universality class of the Anderson
localization transition. Numerical methods for computing the
inverse localization length precisely are still in need for more
intricate systems, such as quantum Hall systems, systems with
spin-orbit coupling, and topological insulators.

In the present paper, we introduce a novel numerical
method for computing the energy dependence of the inverse
localization length κ(E); we derive an expansion of the
function κ(E) in terms of Chebyshev polynomials Tn(E). The
most popular method at present is presumably to find it as
the Lyapunov exponent of the random transfer matrix [3–7].
Our method is completely different; it extracts the inverse
localization length directly from the density of states of the
Hamiltonian. The most prominent practical difference may be
the following point: Each run of the transfer matrix method
finds the inverse localization length for a very large system at
a fixed energy. In contrast, each run of our method finds κ(E)
as a function for a moderately large system.

We also present an algorithm for computing the inverse
localization length of non-Hermitian Hamiltonians in the
complex energy plane, using again the Chebyshev-polynomial
expansion. Non-Hermitian Hamiltonians and Liouvillians can
appear in quantum mechanics when the environment is
traced out in open quantum systems [8–17]. Interest in non-
Hermitian quantum mechanics was renewed in 1990s when
several important studies on non-Hermitian Hamiltonians
appeared, including a non-Hermitian extension of a model
of the Anderson localization [18–20] and the PT -symmetric
quantum mechanics [21–23]. In the former, competition
between randomness and non-Hermiticity was found; the
inverse localization length vanishes at the critical value of
a non-Hermitian parameter. If we go further away from the
realm of quantum mechanics, the presence of randomness
in non-Hermitian matrices is quite common, such as in the
Fokker-Planck dynamics [24,25], fluid dynamics [26], and
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neural networks [27,28], and the concept of the Anderson
localization flourishes. Our method should come in handy in
analyzing such non-Hermitian systems.

Chebyshev-polynomial algorithms, and more generally the
kernel-polynomial methods, employ repeated multiplication
of some vector by the Hamiltonian matrix. Consequently, for
sparse Hamiltonian matrices (which is the case for nearest-
neighbor hopping systems), it is possible to carry out the
algorithms by storing in computer memory only several vectors
of the size of the Hilbert space. Because of this feature,
Chebyshev-polynomial algorithms as a matter of principle
should be more efficient in analyzing many-body Hamiltonians
with interactions, which typically involve Hilbert spaces
of very large dimensions. The present algorithm for non-
Hermitian models is, as far as we know, potentially the only
one available for finding the density of states of general large
non-Hermitian models, particularly large many-body ones, as
a function of complex energy; we are aware only of existing
algorithms that find individual complex eigenvalues [29–35]
and those that find spectra of specific types of large sparse
non-Hermitian matrices [36–38].

The paper is organized as follows. We first review in
Sec. II A the Chebyshev-polynomial expansion of the density
of states ρ(E) of Hermitian Hamiltonians. We then move
to our new Chebyshev-polynomial expansion of the inverse
localization length κ(E) in Sec. II B. We present in Sec. II C
two demonstrations of the method, employing the random-
potential and random-hopping tight-binding models.

We turn to our method for the inverse localization length
of non-Hermitian Hamiltonians in Sec. III. After derivation
of the expansion formula, we demonstrate it in the case of a
non-Hermitian random-sign model [39].

We finally present the method for the density of states of
non-Hermitian Hamiltonians in Sec. IV. A demonstration with
full (i.e., nonsparse) non-Hermitian random matrices follows.

The methods for the density of states given in Secs. II A
and IV do not depend on the dimensionality of the system. The
methods for the inverse localization length given in Secs. II B
and III are primarily for one-dimensional systems, because
they utilize the Thouless formula. Some comments on the
applicability of our method to higher spatial dimensional
systems are deferred to Sec. II B.

II. THE CHEBYSHEV-POLYNOMIAL METHOD FOR
DISORDERED HERMITIAN CHAINS

A. Computing the density of states

Let us first briefly overview the Chebyshev-polynomial
expansion method for computing the density of states of a
(Hermitian) Hamiltonian matrix [40–42]. The method in which
errors due to termination of the expansion are taken care of is
often called the kernel-polynomial method [43]. Throughout
this paper, for the sake of simplicity, we employ the simpler,
straightforward Chebyshev-polynomial expansion and avoid
any issues of optimized truncation for minimizing errors
pertaining to the kernel-polynomial method. We justify this
simplification by demonstrating numerically the convergence
of the expansion as the number of terms summed increases.
The method works most efficiently for large sparse matrices,

to which point we will come back below. We emphasize that
the discussion in the present subsection is not restricted to
one-dimensional systems.

Suppose that an L × L Hermitian matrix H has the real
(unknown) eigenvalues {Eν |ν = 1,2, . . . ,L}. Its density of
states is given by

ρ(E) := 1

L

L∑
ν=1

δ(E − Eν). (2)

For large systems L � 1, the sum over the dense delta-function
spikes in Eq. (2) is typically smoothed out into a continuous
function ρ(E). The strategy is to expand the density of states
ρ(E) in terms of a set of orthogonal polynomials; often used are
Chebyshev polynomials. To employ Chebyshev polynomials,
we have to rescale the matrix H such that all its eigenvalues
Eν lie in the range [−1,1], which is the standard domain
of orthogonality of the Chebyshev polynomials. In order to
determine the required scaling factor, the upper and lower
bounds of the eigenvalue spectrum are roughly estimated, e.g.,
by the Gershgorin circle theorem. We assume that the matrix
H has been already normalized properly throughout this and
next subsections.

Chebyshev polynomials of the first kind, which are defined
on [−1,1] by

Tn(x) := cos(n arccos x), (3)

constitute a set of orthogonal polynomials that satisfy the
orthogonality relation

∫ 1

−1
Tn(x)Tm(x)

dx√
1 − x2

=
⎧⎨
⎩

0 for n �= m,
π for n = m = 0,
π/2 for n = m > 0

(4)

and the three-term recursion relation

Tn+1(x) = 2xTn(x) − Tn−1(x), (5)

with T0(x) = 1 and T1(x) = x. These polynomials have
definite parity: Tn(−x) = (−1)nTn(x).

We can use this complete set of orthogonal polynomials to
expand the density of states in the form

ρ(E) = 1√
1 − E2

∞∑
n=0

μnTn(E). (6)

The orthogonality relation (4) determines the expansion
coefficients as

μn = 2

π

∫ 1

−1
Tn(E)ρ(E) dE (7)

for m > 0 along with

μ0 = 1

π

∫ 1

−1
T0(E)ρ(E) dE = 1

π

∫ 1

−1
ρ(E) dE = 1

π
. (8)

Substituting the density of states (2) into the expression (7),
we have

μn = 2

π

1

L

L∑
ν=1

Tn(Eν) = 2

π

1

L
Tr Tn(H ), (9)
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where we used

L∑
ν=1

Eν
k = Tr Hk. (10)

The expansion (6) can be therefore rewritten as

ρ(E) = 1

π
√

1 − E2

{
1 + 2

∞∑
n=1

[
1

L
Tr Tn(H )

]
Tn(E)

}
. (11)

The key aspect of the method is the fact that we can evaluate
the expansion coefficients by numerical matrix multiplication.
Using the diagonalizing basis of the matrix H , we can show
that the matrix polynomial Tn(H ) should satisfy the recursion
relation of the same form as Eq. (5):

Tn+1(H ) = 2HTn(H ) − Tn−1(H ) (12)

with T0(H ) = I , which is the L × L identity matrix, and
T1(H ) = H . We can therefore recursively generate the matrix
polynomial Tn(H ) by matrix multiplications (once every
order), and thereby find the expansion coefficient 1

L
Tr Tn(H )

in Eq. (11).
In practical numerical calculation, we of course have

to truncate the summation over n in the expansion (11).
Since all the N real roots of TN (E) lie in the domain
[−1,1], the Chebyshev polynomial of the N th order accounts
for oscillations of wavelength ∼1/N . This implies that the
truncation at the N th order can reproduce structures up to the
resolution of order 1/N . On the other hand, the level spacing
is of order 1/L for a matrix with an almost uniform density
of states, which means that the truncation at the order N � L

is legitimate for finding the general features of the density of
states. Various other methods for minimizing truncation errors
have also been devised [43]; as was mentioned above, for
simplicity of discussion and demonstration, we do not employ
any such methods throughout the present paper.

As another comment, any kind of orthogonal polynomial
should work in the expansion, but Chebyshev polynomials
usually work best in practical numerical calculations. We
use only Chebyshev polynomials in the present paper. For
problems with an unbounded spectrum, e.g., for a random
model with the Cauchy (Lorentzian) distribution, we would
need orthogonal polynomials with infinite support, e.g., the
Hermite polynomials, although it is typically less stable
numerically because the expansion coefficients are often less
convergent.

When one applies the present algorithm to a many-body
Hamiltonians with interactions, the Hamiltonian matrix can
be sparse but very large. For such matrices, the trace operation
in Eq. (11) is often replaced by Monte Carlo summation
over a set of basis vectors less than L [40–42]. We can
then carry out the algorithm by storing only a few vectors
in the computer memory rather than storing the whole matrix;
furthermore, multiplying a vector by a sparse L × L matrix
only takes CPU time of order L. This is the advantage of
the Chebyshev-polynomial method over the diagonalization
of the matrix itself (which consumes memory size of order L2

and CPU time of order L3). For the sake of demonstration,
however, throughout this paper, we use only matrices that we
can store in the computer memory.

B. Chebyshev-polynomial expansion of the inverse
localization length

We now introduce the Chebyshev-polynomial expansion
of the inverse localization length κ(E) of the Hermitian one-
dimensional random tight-binding model, whose Hamiltonian
is given by

H = −
L−1∑
x=1

(t∗x,x+1|x + 1〉〈x| + tx,x+1|x〉〈x + 1|)

+
L∑

x=1

Vx |x〉〈x|. (13)

The idea is simple; we employ the Thouless formula [44],
which relates the inverse localization length κ(E) to the density
of states ρ(E) in the form

κ(E) =
∫ 1

−1
ρ(x) ln |E − x| dx − ln |τ |, (14)

where |τ | is the geometric mean of the moduli of the hopping
amplitudes, and then expand the density ρ(E) according to
Eq. (6).

We can sketch the derivation of the Thouless formula as
follows. The end-to-end Green’s function G1L(E) of a chain
of length L under open boundary conditions is given by

G1L(E) =
∏L−1

x=1 tx,x+1

det(E − H )
=

∏L−1
x=1 tx,x+1∏L

ν=1(E − Eν)
, (15)

while it presumably decays as exp(−κ(E)L). Taking logarithm
of the moduli of both sides of Eq. (15) results in the formula
(14), with ln |τ | being the average of ln |tx,x+1| over the L sites.

We note that attempts were made to extend the Thouless
formula beyond one spatial dimension [45]. The Thouless
formula (14) relates, essentially, the inverse localization length
and the trace over the logarithm of the characteristic polyno-
mial of the tight binding hopping Hamiltonian, Tr log(E − H ).
The latter trace may be represented straightforwardly as an
integral over the eigenvalue density [see Eq. (14)]. The inverse
localization length encodes directional information about the
spatial behavior of the associated wave function. The purely
spectral quantity Tr log(E − H ), on the other hand, being
independent of any particular basis in the Hilbert space,
does not express any such spatial information. The fact that
these two quantities can be related is peculiar only to one
spatial dimension, since the energy eigenstate has only one
direction to decay or grow along. Such a connection between
the inverse localization length and Tr log(E − H ) cannot
hold, therefore, in higher spatial dimensions. The authors of
Ref. [45] argued that Tr log(E − H ) may contain approximate
qualitative information about localization in higher spatial
dimension, but this claim seems dubious.

After inserting the Chebyshev-polynomial expansion of the
density of states Eq. (6) into the Thouless formula (14) we
obtain

κ(E) =
∞∑

n=0

μnfn(E) − ln |τ |, (16)
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FIG. 1. (a) The density of states and (b) the inverse localization
length computed from the Chebyshev-polynomial expansion up to the
1000th order of the random-potential chain (22) of length L = 1001
under open boundary conditions. We averaged over a set of 1000
random samples. For comparison, we also plotted in (b) in green
dots the inverse localization length given in Fig. 14 of Ref. [19],
which was deduced (see the text for more details) by monitoring the
changes in the spectrum as we increase the real parameter g for one

where

fn(E) :=
∫ 1

−1
Tn(x) ln |E − x| dx√

1 − x2
(17)

(with |E| � 1, by assumption).
Following the results of Appendix A we obtain

fn(E) = −π

n
Tn(E) (18)

for n > 0, along with

f0(E) = −π ln 2. (19)

We thereby arrive at the expansion

κ(E) = −2
∞∑

n=1

1
L

Tr Tn(H )

n
Tn(E) − ln(2|τ |). (20)

Note the resemblance of the factor 1/n in Eq. (20) to the
one appearing in the Taylor expansion of logarithm ln(1 − x).
Indeed, simple substitution of Eq. (2) into Eq. (14) results in

κ(E) = 1

L

L∑
ν=1

ln |E − Eν | − ln |τ |

= 1

L
Tr ln |E − H | − ln |τ |, (21)

from which we can derive the expansion (20) directly by
expanding the logarithm according to Eq. (A9) in Appendix A.
Thanks to the suppressing factor 1/n in the expansion
coefficient, higher-order Chebyshev polynomials contribute
less in the expansion of κ(E) than in the one of ρ(E), and
hence the former is generally smoother than the latter, as we
will demonstrate below.

C. Numerical demonstration

Let us demonstrate the Chebyshev-polynomial expansion
of the density of states, Eq. (11) [40–42], as well as that of
the inverse localization length, Eq. (20), for random-potential
and random-hopping tight-binding models. In Figs. 1 and 3
below, we remove the normalization of the spectrum into
the region [−1,1] and show the plots in the original energy
scale.

First, Fig. 1 shows the results for the random-potential
model

H = − t

2

L−1∑
x=1

(|x + 1〉〈x| + |x〉〈x + 1|) +
L∑

x=1

Vx |x〉〈x|.

(22)

[Here we have set tx,x+1 = t/2 in Eq. (13).] We sampled
the potential Vx at each site randomly from the uniform
distribution on [−1,1], taking t as the unit of energy. In

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sample of the HN model (23) of length L = 1000 under periodic
boundary conditions. (c) An example of the spectrum of the model
(23) of length L = 10 000 for g = 0.5 with the random potential in
the range [−1,1]. In all panels, we have removed the normalization
of the spectrum into the region [−1,1] and use the original energy
scale with t = 1.
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FIG. 2. The modulus of 1
L

Tr Tn(H ) from the zeroth order (unity)
(a) to the 20th order and (b) to the 1000th order. For (a), we used
only one random sample of the random-potential chain (22) of length
L = 1001, whereas for (b), we plotted the data for one sample (solid
red line), the average over 100 samples (broken green line) and for
10 008 samples (dotted blue line).

both Figs. 1(a) and 1(b), we computed the arithmetic average
over the same set of 1000 random samples of length L =
1001 under open boundary conditions and terminated the
Chebyshev-polynomial expansion at the 1000th order.

Notice that the result of our expansion of the localization
length κ(E) in Fig. 1(b) is much smoother than that of
the density of states ρ(E) in Fig. 1(a). This is presumably
because, as we mentioned at the end of Sec. II B, higher-order
polynomials contribute less in the expansion of κ(E) than in the
expansion of ρ(E). We show in Fig. 2 the modulus of the factor
1
L

Tr Tn(H ) in the expansion coefficients. This quantity decays
at what appears to be an exponential rate throughout the first
20 to 30 terms [Fig. 2(a)], after which it fluctuates around zero.
The amplitude of the fluctuation decreases as the square root
of the number of samples [Fig. 2(b)], which implies that the
fluctuation is statistical rather than systematic; similar behavior
of this quantity is observed for the random-hopping model
mentioned below. This is presumably because the Lyapunov
exponent is self-averaging [46,47]; as we can see in Eq. (21),
it is the average over many random terms.

The above observation means that the numerical evaluation
of the density of states (11) requires quite many terms, while
that of Eq. (20) for the inverse localization length can be quite
stable; the numerical error due to truncating the series at the
1000th term in the evaluation of the inverse localization length
would result in an error less than 10−5 for only one sample,
because the expansion coefficient is divided by the number of
the order and would decrease further as we increase the sample
number, whereas that of the density of states would be of order
10−2, which is indeed the order of fluctuation of the plot in
Fig. 1(a).

One might alternatively argue that the zigzag features in
Fig. 1(a) were due to the truncation of the expansion rather than
due to the delta peaks of the individual eigenvalues. In Fig. 1(a),
we have more than 106 eigenvalues (1000 samples of 1001
eigenvalues) rather uniformly distributed in the range around
[−1.5,1.5], which implies that the average level spacing is
about 3 × 10−6. On the other hand, the resolution due to the
truncation of the expansion is of order 4 × 10−3, which is too
coarse to see the delta peaks of individual eigenvalues.

In contrast, such truncation errors are virtually invisible
in Fig. 1(b). This demonstrates the high potential of our
Chebyshev-polynomial expansion of the localization length.

Incidentally, we superimpose on Fig. 1(b) a numerical
estimate of κ(E) by an independent method given in Refs. [18–
20], where a non-Hermitian extension of the random tight-
binding model, also known as the Hatano-Nelson (HN) model,
was introduced by making the amplitude of the hopping to the
right different from the one to the left:

H = − t

2

L∑
x=1

(eg|x + 1〉〈x| +e −g|x〉〈x + 1|) +
L∑

x=1

Vx |x〉〈x|,

(23)

where g is a real constant with periodic boundary conditions
being assumed. It was shown in Refs. [18–20] that an
eigenstate for g = 0 with the inverse localization length κ

is delocalized upon increasing the asymmetric parameter g up
to g = κ and at the same time the corresponding eigenvalue,
unchanged (up to small exponential corrections which vanish
in the thermodynamic limit of large systems) for g < κ , gets
off the real axis into the complex energy plane. We can
thus obtain an estimation of κ(E) of the Hermitian random
model, which is superimposed on Fig. 1(b), by monitoring the
movement of the eigenvalues (not the eigenvectors) that the
change of the real parameter g gives rise to; e.g., in Fig. 1(c),
the states on the bifurcating endpoints of the bubble of the
spectrum for g = 0.5 would have inverse localization κ = 0.5
for g = 0. The result from the model (23) is indeed consistent
with the present computation of κ(E).

Next, we present the results for the random-hopping model

H = −1

2

L−1∑
x=1

tx(|x + 1〉〈x| + |x〉〈x + 1|); (24)

see Fig. 3. Here we sampled the hopping element at each link
tx from a uniform distribution on [−t − 	, − t + 	] with
	/t = 0.5. In both Figs. 3(a) and 3(b), we averaged over a
set of 1000 random samples of length L = 1001 subjected
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FIG. 3. The central part of (a) the density of states and (b) the
inverse localization length computed from the Chebyshev-polynomial
expansion up to the 10 000th order of the random-hopping chain (24)
of length L = 1001 under open boundary conditions. The peak height
of the density of states in (a) at E = 0 is 5.76785 in this particular
calculation. The broken (green) curves in (a) and (b), respectively,
follow Eqs. (25) and (26) with proportionality constants 3 and 4 to
guide the eye. The inset in each panel shows the result in the entire
range. Here we averaged over a set of 1000 random samples. In both
panels, we have removed the normalization of the spectrum into the
region [−1,1] and use the original energy scale with t = 1.

to open boundary conditions, and terminated the Chebyshev-
polynomial expansion at the 10 000th order.

Note the sharp peak of the density of states and a dip of
the inverse localization length at E = 0. (These are indeed the
reason why we terminated the expansion at the high order.)
It is widely accepted [48–52] that the random-hopping chain
(24) has a diverging density of states around E = 0 and the
corresponding singularity of the localization length:

ρ(E) ∼ |E(ln E2)3|−1, (25)

κ(E) ∼ |ln E2|−1. (26)

These are indeed consistent with our data in Fig. 3. Since
the eigenvalue spectrum of the random-hopping chain (24)
is symmetric under E → −E, chains of odd length has an
eigenstate with the zero eigenvalue, namely, a zero mode.

Let us take a look at the zero mode from the point of
view of the Chebyshev-polynomial expansion. At E = 0, the
expansions (11) and (20) reduce to

ρ(0) = 1

π

[
1 + 2

∞∑
m=1

(−1)m
1

L
Tr T2m(H )

]
, (27)

κ(0) = −2
∞∑

m=1

(−1)m
1
L

Tr T2m(H )

2m
− ln 2|τ |, (28)

where we used T2m(0) = (−1)m and took advantage of the
fact that only the even-order terms contribute because the
spectrum of this model is symmetric with respect to E = 0. We
have noticed in our numerical data that the factor Tr T2m(H )
almost alternates in sign with respect to m, which makes the
series nonalternating when combined with the factor (−1)m.
Because of this behavior, the estimates of ρ(0) and κ(0)
change monotonically as we increase the cutoff order N of
the polynomial. Figure 4 shows the cutoff dependence of the
two quantities ρ(0) and κ(0). The former increases and the
latter decreases seemingly in power of the cutoff N , which
indeed suggests that the density of states diverges and the
inverse localization length vanishes at E = 0.

III. METHOD FOR THE INVERSE LOCALIZATION
LENGTH OF NON-HERMITIAN CHAINS

For non-Hermitian hopping matrices, we need a method for
computing the density of states ρ(ReE,ImE) and the inverse
localization length κ(ReE,ImE) in the complex energy plane.
These are real functions of the two real variables ReE,ImE,
and are clearly not complex-analytic functions of the complex
variable E. We would therefore need to expand them in double
series of orthogonal polynomials,∑

m,n

cm,nTm(Re E)Tn(Im E), (29)

for which, however, there are no equivalents of the expansions
(11) and (20) available. This is because the non-Hermitian
Hamiltonian in question is typically not a normal matrix,
i.e., it does not commute with its adjoint H †. Consequently,
these two matrices cannot be diagonalized simultaneously.
Therefore,

∑
ν(Re Eν)k is not simply Tr[(H + H †)/2]k , unlike

in Eq. (10), and similarly for powers of the imaginary part or
products thereof.

A. Method of Hermitization

In order to overcome this difficulty, we employ the method
of Hermitization invented in Ref. [53] (see also Ref. [54]).
Given an L × L non-Hermitian Hamiltonian matrix H , con-
sider the 2L × 2L “Hermitized” matrix

H(z,z∗) =
(

0 H − z

H † − z∗ 0

)
. (30)
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FIG. 4. (a) The increase of ρ(0) in Eq. (27) and (b) the decrease
of κ(0) in Eq. (28) as we raise the cutoff N of the series for a
random-hopping chain (24) of length L = 1001. We estimated the
average and the error from 24 random samples.

The density of states ρ(z,z∗) of the non-Hermitian matrix H

in terms of the variables

z = Re E + i Im E and z∗ = Re E − i Im E (31)

is given by [53]

ρ(z,z∗) = − 4

π

∫ ∞

0
∂∂∗ �(μ; z,z∗)

μ
dμ, (32)

where

∂ = ∂

∂z
= 1

2

(
∂

∂ Re E
− i

∂

∂ Im E

)
, (33)

∂∗ = ∂

∂z∗ = 1

2

(
∂

∂ Re E
+ i

∂

∂ Im E

)
, (34)

and �(μ; z,z∗) is the integrated density of states of the
Hermitized matrix H(z,z∗). In other words,

�(μ; z,z∗) =
∫ μ

−∞
ω(μ′; z,z∗) dμ′, (35)

where ω(μ; z,z∗) is the density of states of H(z,z∗), supported
along the real-μ axis:

ω(μ; z,z∗) = 1

2L

2L∑
ν=1

δ[μ − μν(z,z∗)]. (36)

Here μν(z,z∗) denote the (unknown) eigenvalues of the
Hermitized matrix H(z,z∗). It turns out that ω(μ; z,z∗) is an
even function of μ, due to the chiral block structure ofH(z,z∗),
which implies that eigenvalues of H(z,z∗) come in pairs ±μν .

For later convenience, let us represent Eq. (32) in terms of
ω instead of �. Partial integration gives

ρ(z,z∗) = − 4

π
lim
M→∞
ε→0

∫ M

ε

∂∂∗�(μ; z,z∗)

μ
dμ

= − 4

π
lim
M→∞
ε→0

[
[∂∂∗�(μ; z,z∗) ln μ]Mμ=ε

−
∫ M

ε

∂∂∗ω(μ; z,z∗) ln μdμ

]
. (37)

For a large M , the integrated density of states �(M; z,z∗)
approaches unity, while for a small ε, it approaches 1/2
(because ω(μ; z,z∗) is an even function of μ), losing the
dependence on z and z∗ in both limits. The first term in the
parentheses of Eq. (37) therefore vanishes after the derivative
∂∂∗. We thus have

ρ(z,z∗) = 4

π

∫ ∞

0
∂∂∗ω(μ; z,z∗) ln μdμ, (38)

where we took the limit M → ∞, assuming that the density of
states has a compact support, and took the limit ε → 0 because
the integrand now does not have a singularity there. We can
now exchange the integral and the derivative, arriving at

ρ(z,z∗) = 4

π
∂∂∗

∫ ∞

0
ω(μ; z,z∗) ln μdμ. (39)

B. Method of Hermitization for the inverse localization length

Our strategy is now obvious. We can obtain the Chebyshev-
polynomial expansion of the density of states ρ(z,z∗) of
H(z,z∗) by applying the method to the density of states
ω(μ; z,z∗), which is supported along the real μ-axis. In fact, we
find that the Chebyshev-polynomial expansion of the inverse
localization length κ(z,z∗) is easier to carry than that of
ρ(z,z∗). In this section we shall focus on κ(z,z∗), and return
to ρ(z,z∗) in Sec. IV.

In order to find the Chebyshev-polynomial expansion
of the inverse localization length κ(z,z∗), we first need to
express κ(z,z∗) in terms of the density of states ω(μ; z,z∗)
of the Hermitized matrix. The formula that we utilize is the
generalized Thouless formula derived by Derrida et al. [55]:

ρ(z,z∗) = 2

π
∂∂∗κ(z,z∗) (40)

for non-Hermitian random chains. In fact, this formula
coincides with Eq. (2.9) in Ref. [53] upon the identification

κ(z,z∗) = 1

2L
〈log det(z − H )†(z − H )〉, (41)
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which means that Eq. (40) holds also for non-Hermitian
matrices H more generic than hopping matrices (e.g., non-
sparse, completely full matrices, such as the matrices analyzed
in Sec. IV B). For such matrices, however, κ(z,z∗) in the
expression above does not control the spatial decay (or
growth) of any of its eigenvectors, losing its meaning as the
inverse localization length. Incidentally, noting that Eq. (40)
is the Poisson equation in two dimensions [53], we obtain its
functional inverse [55] as

κ(z,z∗) = 1

2

∫∫
dζ dζ ∗ρ(ζ,ζ ∗) ln |z − ζ |, (42)

which is the two-dimensional analog of the Thouless formula
(14). Comparing Eq. (40) with Eq. (39), we have

κ(z,z∗) = 2
∫ ∞

0
ω(μ; z,z∗) ln μdμ + f (z) + g(z∗), (43)

where f (z) and g(z∗) are arbitrary functions, which we fix
hereafter by looking into the limit of |z| → ∞.

To this end, for the sake of concreteness, with no loss of
generality, we focus back on hopping matrices. For very large
values of |z|, we can find the inverse localization length κ(z,z∗)
as follows. Suppose that the one-dimensional Hamiltonian
matrix is given by

H =
∞∑

x=−∞
(tx−1,x |x〉〈x − 1| + tx+1,x |x〉〈x + 1| + Vx |x〉〈x|).

(44)

The eigenvalue equation 〈x|H |ψ〉 = E〈x|ψ〉 reads

E〈x|ψ〉 = 〈x|H |ψ〉
= tx−1,x〈x − 1|ψ〉 + tx+1,x〈x + 1|ψ〉 + Vx〈x|ψ〉.

(45)

We can cast this into the form of the transfer matrix as(
〈x + 1|ψ〉

〈x|ψ〉

)
=

(
(E − Vx)/tx+1,x −tx−1,x/tx+1,x

1 0

)

×
(

〈x|ψ〉
〈x − 1|ψ〉

)
. (46)

For a large value of |E|, we can ignore Vx in the upper-left
element. The eigenvalues of the transfer matrix are then
approximately given by

λ

(
λ − E

tx+1,x

)
+ tx−1,x

tx+1,x

= 0, (47)

which is followed by

λ = 1

2

(
E

tx+1,x

±
√

E2

tx+1,x
2

− 4
tx−1,x

tx+1,x

)

 E

tx+1,x

,
tx−1,x

E
. (48)

For the wave function to be normalizable, we choose the
second eigenvalue for large values of |E|, having

〈L|ψ〉 
(

L−1∏
x=0

tx−1,x

E

)
〈0|ψ〉. (49)

Identifying them with

|〈L|ψ〉|  e−κL|〈0|ψ〉|, (50)

we conclude that

κ(E)  ln |E| − ln |τ |, (51)

where |τ | is the geometric mean of |tx−1,x |. This is the behavior
of the left-hand side of Eq. (43) for large values of |z| = |E|.

On the other hand, we can find the right-hand side of
Eq. (43) for large values of |z| as follows. The Hermitized
matrix H(z,z∗) in Eq. (30) is reduced to

H →
(

0 −z

−z∗ 0

)
(52)

for large values of |z|, and hence its eigenvalues degenerate
into μν = ±|z|, which means

ω(μ; z,z∗) = 1
2 [δ(μ − |z|) + δ(μ + |z|)]. (53)

Therefore, the first term on the right-hand side of Eq. (43) is
reduced to ln |z|, which is the same as the first term of the
right-hand side of Eq. (51).

The remaining terms in Eq. (43), f (z) + g(z∗), therefore
should converge to the constant value − ln |τ | for large values
of |z|. An analytic function in general attains its maximum in
a given domain on the boundary of that domain. Moreover, a
bounded analytic function is necessarily a constant. Since both
f (z) and g(z∗) are bounded, they are constants; they cannot
balance each other, since one is holomorphic and the other
is antiholomorphic. In other words, we can fix the arbitrary
functions as

f (z) + g(z∗) = − ln |τ | (54)

for all z and z∗.
We therefore arrive at the relation

κ(z,z∗) = 2
∫ ∞

0
ω(μ; z,z∗) ln μdμ − ln |τ |. (55)

Comparing this to Eq. (39), we note that we have gotten rid
of the differentiation ∂∂∗ here. This is the reason why the
Chebyshev-polynomial expansion of κ(z,z∗) is easier than that
of ρ(z,z∗).

C. Chebyshev-polynomial expansion of the inverse
localization length

We are now in a position to find the Chebyshev-polynomial
expansion of the inverse localization length κ(z,z∗) by apply-
ing the method to the density of states ω(μ; z,z∗) on the real
axis of μ. Assume that the density of states of the Hermitized
matrix is expanded in the form

ω(μ; z,z∗) = 1√
1 − μ2

∞∑
m=0

c2m(z,z∗)T2m(μ), (56)

where we used only even-order terms because ω(μ; z,z∗) is an
even function of μ, thanks to the chiral block structure of the
Hermitized matrix H.

We repeat here the important remark that we can employ the
Chebyshev polynomial expansion only after we have properly
rescaled the non-Hermitian Hamiltonian H in such a way that
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the support of the spectrum ω(μ; z,z∗) of the Hermitized matrix
H is contained in [−1,1]. Let us find the proper rescaling
factor. Suppose that the sum of the moduli of all elements in
a row or a column of the non-Hermitian matrix H is bounded
by a constant �, which also bounds the spectrum, according
to the Gershgorin circle theorem. Let us then rescale H by
a factor r , so that the bound is rescaled as �/r . It is then
enough to scan the spectrum over the range | Re E| � �/r and
| Im E| � �/r , which means that it is enough to investigate
the spectrum in the range |z| = |z∗| �

√
2�/r . Therefore, the

sum of the moduli of all elements in a row or a column of the
Hermitized matrix H(z,z∗) is bounded by (1 + √

2)�/r if
we scan the spectrum only over the above domain in the
complex z-plane. The support [−1,1] of the Chebyshev
polynomials (along the μ-axis) should contain this bound.
We therefore rescale the non-Hermitian Hamiltonian H with
a rescaling factor r that is equal to or greater than (1 + √

2)�.
We assume that the matrix H has been already normalized in
this way throughout this subsection.

Let us come back to Eq. (56) and find the expansion
coefficients using the orthogonality relation (4). In a manner
similar to Eqs. (7)–(9) we find that the coefficients are given
by

c2m(z,z∗) = 2

π

∫ 1

−1
ω(μ; z,z∗)T2m(μ) dμ

= 2

π

1

2L

2L∑
ν=1

T2m(μν) = 2

π

1

2L
Tr T2m[H(z,z∗)]

(57)

for m � 1 and

c0(z,z∗) = 1

π

∫ 1

−1
ω(μ; z,z∗)T0(μ) dμ

= 1

π

∫ 1

−1
ω(μ; z,z∗) dμ = 1

π
. (58)

The trace on the right-hand side of Eq. (57) is recursively
generated from

Tn+1(H) = 2HTn(H) − Tn−1(H). (59)

Recall that we need only the even-order Chebyshev polyno-
mials of H. As we show in Appendix B, the even-order matrix
polynomials T2m(H) have nonvanishing elements only in the
L × L upper-left and lower-right diagonal blocks, whereas the
odd-order ones have their nonvanishing elements only on
the off-diagonal blocks. We also prove in Appendix B that for
the even-order polynomials of H, the trace of the upper-left
block is equal to the trace of the lower-right block. We can
therefore reduce the matrix size of the recursion relation (59)
from 2L × 2L to L × L:

T
(1,1)

2m = 2(H − z)T (2,1)
2m−1 − T

(1,1)
2m−2, (60)

T
(2,1)

2m+1 = 2(H † − z∗)T (1,1)
2m − T

(2,1)
2m−1, (61)

where the superscripts (1,1) and (2,1) denote the L × L upper-
left and lower-left blocks, respectively (with obvious similar
notation for the remaining blocks). We can save computer

memory storage by using these recursion relations and write

c2m(z,z∗) = 2

π

1

L
Tr T

(1,1)
2m [H(z,z∗)] (62)

instead of Eq. (57).
We now plug in the expansion (56) into Eq. (55) to have

κ(z,z∗) = − ln |τ | + 2

π

∫ 1

0

ln μ√
1 − μ2

dμ

+ 4

π

∞∑
m=1

1

L
Tr T

(1,1)
2m [H(z,z∗)]

×
(∫ 1

0
T2m(μ)

ln μ√
1 − μ2

dμ

)
, (63)

where we reduced the upper limit of the integration range
from ∞ to 1 because we rescaled H so that ω(μ; z,z∗) vanishes
beyond unity. The integral in the second term on the right-hand
side of Eq. (63) is given by the formula∫ 1

0

ln μ√
1 − μ2

dμ = −π

2
ln 2. (64)

The other integrals for m � 1 are given by substituting E = 0
in Eqs. (17) and (18):∫ 1

0
T2m(μ)

ln μ√
1 − μ2

dμ = −π

2

(−1)m

2m
; (65)

see Appendix C for an alternative derivation. We therefore
arrive at the expansion of the inverse localization length in the
form

κ(z,z∗) = −
∞∑

m=1

(−1)m

m

1

L
Tr T

(1,1)
2m [H(z,z∗)] − ln(2|τ |).

(66)

We show in Appendix D that this indeed reduces to Eq. (20)
when H is Hermitian.

D. Demonstration

Let us now demonstrate our new algorithm of the
Chebyshev-polynomial expansion (66). In Figs. 5 and 7 below,
we have removed the normalization of the spectrum and plotted
the results in the original energy scale.

We here use a random-sign model, also known as the
Feinberg-Zee (FZ) random-hopping model [27,39,56–63],
defined by the Hamiltonian

H =
L∑

x=1

(tx |x + 1〉〈x| + sx |x〉〈x + 1|), (67)

where each of the hopping amplitudes {tx} and {sx} is inde-
pendently randomly chosen from ±1 with equal probabilities;
periodic boundary conditions are assumed. The spectrum is
a fuzzy fractal-like object as is shown in Fig. 5(a); note the
exact (deterministic) reflection symmetries with respect to the
real and imaginary axes as well as the statistical reflection
symmetries with respect to the 45◦ and 135◦ lines [27,39].
The deterministic symmetries are easy to understand. Since H

in Eq. (67) is a real matrix, its complex eigenvalues come in
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FIG. 5. Plots of the eigenvalue distributions of (a) the FZ random-hopping model (67) and (b) its HN-gauged version (68), both for chains
of length L = 10 000, obtained by direct numerical diagonalization. (c) A three-dimensional plot and (d) a contour plot of the result of the
expansion (66) up to the 500th order, averaged over 96 random samples of the FZ random-hopping model (67) of length L = 100. The
level contours in the panel (d) indicate the data from κ(E) = 0.1 inside to 1.0 outside in increments of 0.1. The thick yellow and red curves
superimposed on the panel (d) indicate the rims of the hole in the spectrum of the HN-gauged model with an asymmetric field g = 0.1 (the
spectrum in the panel (b)) and g = 0.2 added [27], respectively. Here we have removed the normalization of the spectrum and plot the results
in the original energy scale.

complex conjugate pairs E,E∗, which means the symmetry of
the spectrum against reflections with respect to the real axis.
The spectrum of H is also symmetric with respect to reflection
through the origin. This symmetry arises from the fact that the
diagonal matrix D with alternating ±1 diagonal elements, anti-
commutes with H (subjected to periodic boundary conditions),
provided the length L is even. (For open boundary conditions,
these matrices anticommute for any L.) Thus, eigenvalues of
H come in pairs ±E. Combining these two symmetries, we
see that complex eigenvalues come in quadruplets ±E,±E∗.

The statistical symmetry comes from the fact that the
statistics of the matrix does not change after multiplying it by
a factor i (or −i). This is so because, as explained in Sec. IV of
Ref. [39] and Sec. II of Ref. [27], the spectrum of H in Eq. (67)
depends only on products of pairs of opposing off-diagonal,
hopping matrix elements Rx = sxtx . In our model, {Rx |1 �
x � L} are statistically independent of each other, and each
takes on values ±1 with equal probabilities. Multiplying H by
a factor i is equivalent to choosing an equally probable element

on the ensemble with all {Rx} reversed in sign and hence, on
average, does not change the spectrum. The multiplication,
on the other hand, rotates the entire spectrum by 90◦ on the
complex energy plane. Thus, on average, the spectrum of H

should be symmetric against rotation by ±90◦.
The result of our expansion (66) for the inverse localization

length is shown in Figs. 5(c) and 5(d). This is basically
consistent with the result in Fig. 9(a) of Ref. [27], where
the inverse localization length of the FZ random-hopping
model (67) was estimated by means of the transfer-matrix
approach as the average of the logarithm of the Ricatti variable
〈x + 1|ψ〉/〈x|ψ〉.

Note the smoothness of the result in Fig. 5(c). We attribute
it again to the factor 1/m in the expansion (66), as we did
at the end of Sec. II B for Hermitian models. We display in
Fig. 6 the modulus of the factor 1

L
Tr T

(1,1)
2m [H(z,z∗)] in the

expansion coefficients. At z = 1 + i, the factor decays almost
exponentially up to the 200th order but then the modulus
fluctuates around 0.01 with a possible slight decay. This
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FIG. 6. Semilogarithmic plots of the modulus of
1
L

Tr T
(1,1)

2m [H(z,z∗)] (a) at z = 1 + i (thicker curve) and at
z = 0 (thinner curve) to the 1000th order, and (b) zooming into the
left part of the upper figure for z = 1 + i, up to the 200th order. We
here used only one random sample of the random-sign chain (67) of
length L = 1000, except that in (a) we also plotted the average over
10 008 samples (broken green line).

behavior is qualitatively similar for almost any value of z,
except for z = 0, where this coefficient decays regularly, as
shown in Fig. 6(b). The cutoff error is suppressed because of
the factor 1/m in the expansion coefficient. Incidentally, as
can be seen from Fig. 6 (a), these fluctuations do not seem
to depend on the number of samples, which implies that it is
not statistical, unlike the case in Fig. 2(b); the convergence to
the self-averaged value of the Lyapunov exponent may not be
uniform because of the additional z dependence.

While many studies [39,56–63] had focused on the fractal-
like spectrum of the FZ random-hopping model (67), Ref. [27]
found two new features of the model’s inverse localization
length, which we here reproduce by means of our Chebyshev-
polynomial expansion (66). First, the inverse localization
length was found numerically to behave interestingly around
E = 0 [27]. We can prove that the inverse localization
length vanishes at E = 0 [27] just as in the random-hopping
model (24), but the behavior around E = 0 [48–52] seems
to be very different from Eq. (26). Numerical data of the
Chebyshev-polynomial expansion in Fig. 7 seem to be con-

FIG. 7. The inverse localization length κ(E) at E = |E|eiϕ

according to the expansion (66) up to the 500 order of the random-sign
chain (67) of length L = 500 for four values of ϕ averaged over 96
random samples. Note that the horizontal axis indicates |E|2. Here
we have removed the normalization of the spectrum and plotted the
results in the original energy scale.

sistent with small-energy behavior κ(E,E∗) ∼ |E|2f (arg E)
for some function f of the argument of the complex energy
E. The linearity with respect to |E|2 seen in Fig. 7 implies
a nonsingular density of states around E = 0 according to
Derrida’s formula (40), which is indeed consistent with the
results in Ref. [27], where the density of states is shown to be
vanishing around E = 0 in a nonsingular way.

The other feature found in Ref. [27] for the FZ random-
hopping model (67) concerns the “HN-gauged” FZ random-
hopping model introduced in the spirit of the model (23):

H =
L∑

x=1

(egtx |x + 1〉〈x| + e−gsx |x〉〈x + 1|), (68)

where g is again a real parameter, and periodic boundary
conditions are assumed. As we increase g, a hole opens up
in the fractal-like spectrum as exemplified in Fig. 5(b) for
g = 0.1. It was conjectured [27] that the eigenstates that reside
on the rim of the hole for g > 0 had the inverse localization
length κ = g for g = 0, as was the case for the model (23).
As an example, the rims of the hole in the spectrum of the
HN-gauged model (68) for g = 0.1 [the one in Fig. 5(b)] and
g = 0.2 are superimposed on the contour plot of κ(E) of the
model (67) in Fig. 5(d). The rims of the hole fall nicely on to
the contours of κ(E) = 0.1 and 0.2, which indeed supports the
conjecture.

IV. METHOD FOR THE DENSITY OF STATES
OF NON-HERMITIAN MATRICES

A. Chebyshev-polynomial expansion of the density of states

We finally give the algorithm for the density of states of non-
Hermitian matrices. All we have to do is to plug the expansion
(66) for κ(z,z∗) into Eq. (40). Note that the content of the
present section is applicable to systems in any dimensions; in
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particular, we will demonstrate below how the algorithm works
for an example of full random matrices. Thus, we obtain

ρ(z,z∗) = − 4

π

∞∑
m=1

(−1)m

2m

1

L
Tr ∂∂∗T (1,1)

2m [H(z,z∗)] (69)

= − 4

π

∞∑
m=1

(−1)m

2m

1

2L
Tr ∂∂∗T2m[H(z,z∗)], (70)

where in the last equation we restored the full 2L × 2L

matrix (hence the extra 1/2 factor). We can generate the factor
1

2L
Tr T2m[∂∂∗H(z,z∗)] in Eq. (70) recursively as follows. By

differentiating Eq. (59), we have

∂Tn+1(H) = − 2

(
0 I

0 0

)
Tn(H) + 2H∂Tn(H) − ∂Tn−1(H),

(71)

∂∗Tn+1(H) = − 2

(
0 0
I 0

)
Tn(H)+2H∂∗Tn(H)−∂∗Tn−1(H),

(72)

∂∂∗Tn+1(H) = − 2

(
0 0
I 0

)
∂Tn(H) − 2

(
0 I

0 0

)
∂∗Tn(H)

+ 2H∂∂∗Tn(H) − ∂∂∗Tn−1(H). (73)

We can thereby generate the series of ∂Tn(H) and the series
of ∂∗Tn(H) with the help of the series Tn(H), and finally the
series of ∂∂∗Tn(H) with the help of the preceding two series.
We therefore need four matrix multiplications to generate one
more element in the series of ∂∂∗Tn(H).

B. Demonstration

We shall demonstrate the expansion (69) of ρ(z,z∗) first for
the FZ random-hopping model (67) and second for correlated
random-sign matrices. Note the fractal-like structure of the
spectrum in Fig. 5(a) of the FZ random-hopping model.
Clearly, truncating the series (70) can only be expected to
reproduce a coarse-grained approximation to its finely featured
spectrum; if it is truly fractal, and hence singular, we will never
be able to express it in terms of a finite-order polynomial. This
is indeed what we observe; see Fig. 8. Although the peaks on
the real and imaginary axes are consistent with the numerical
results in Fig. 3 of Ref. [27], we can have only a rough idea of
the spectrum in between.

Next, as promised, we apply the expansion (69) for a
non-Hermitian model with dense and smooth spectrum. We
draw a full L × L random matrix H from an ensemble as
follows: for each pair of off-diagonal elements Hij and Hji ,
we set both of them equal to ±1 with probability τ (that is,
to +1 with probability τ/2 and to −1 with probability τ/2),
but set them independently randomly to ±1 with probability
1 − τ , while setting all diagonal elements to zero. This means
a partially symmetric real random matrix with the correlation
〈HijHji〉 = τ .

According to Ref. [64] for Gaussian randomness (consistent
with 〈HijHji〉 = τ ), the density of states is uniform inside an

FIG. 8. (a) A three-dimensional plot of the density of states of
660 random samples of the FZ random-hopping model (67) of length
500, from the results of the expansion (70) up to the 500th order. We
used the data of the first quadrant to plot the other quadrants. (b) A
contour plot of the first quadrant of the same data. The level contours
indicate the data from −0.5 to 0.6 in increments of 0.1. The peaks
around the real and imaginary axes are cut off. We have removed
the normalization of the spectrum and plot the results in the original
energy scale.

ellipse:

ρ(E,E∗) =
{

(πab)−1 if (ReE/a)2 + (ImE/b)2 � 1,

0 otherwise,
(74)

where a = √
L(1 + τ ) and b = √

L(1 − τ ). This reduces to
the celebrated Wigner semicircle law [65] on the real axis in
the completely symmetric case, namely, τ = 1, and to Girko’s
circle law [66] in the completely asymmetric case, namely, τ =
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FIG. 9. Plots of the eigenvalue distributions of (a) the fully asymmetric random matrix (τ = 0) and (b) a partially asymmetric random
matrix (τ = 0.5), both of size 10 000 × 10 000, obtained by means of diagonalization, together with three-dimensional plots of the density of
states of 96 random samples of (c) the fully asymmetric random matrix (τ = 0) and (d) a partially asymmetric random matrix (τ = 0.5), both
of size 100 × 100, from the results of the expansion (70) up to the 500th order. Here we have removed the normalization of the spectrum and
plot the results in the original energy scale.

0. Figures 9(a) and 9(b) show the results of the diagonalization
of 10 000 × 10 000 random-sign matrices with τ = 0 and τ =
0.5, respectively, which are indeed consistent with the law (74)
for Gaussian random matrices, thus demonstrating universal
behavior. Our expansion (70), on the other hand, produces
Figs. 9(c) and 9(d) for 100 × 100 random matrices. We can
see a ridge on the real axis, which is a finite-size effect.

For relatively small full matrices, such as the matrices in
the present demonstration (Fig. 9), the expansion (69) for the
density of states is a much more time-consuming algorithm
than direct numerical diagonalization. For large general non-
Hermitian matrices, on the other hand, the expansion (69)
would be almost the only available algorithm at reasonable
CPU cost. Moreover, since it is of the form of repeated
multiplication of a vector by a matrix, it can be quite efficient
for sparse matrices, which appear often in many-body systems
with interaction. For large dense matrices, we might need
to replace the trace operation in Eq. (69) with Monte Carlo
summation over a set of basis vectors less than L.

In conclusion of this section, let us briefly mention again the
works in Refs. [36–38], which calculated, both analytically and
numerically, spectra of large sparse non-Hermitian matrices of
certain types by alternative methods. All these works made

use of the method of Hermitization described in Sec. III A; the
first one [36], in particular, analyzed as a test case the same
matrix model as in the latter example above.

V. SUMMARY

We have derived the Chebyshev-polynomial expansion of
the energy dependence of the inverse localization length for
both Hermitian and non-Hermitian chains. For Hermitian
chains, the expansion produces the energy dependence as
a function in one run. This is in strong contrast to the
standard transfer-matrix method, which produces the inverse
localization at a fixed energy in one run. Since our method
is based on the repeated multiplication of some vector by a
Hamiltonian matrix, which is sparse in many cases, we can,
in principle, execute the algorithm by storing only vectors; we
do not need to store the entire matrix in the computer memory.
This feature may come in handy when we try to generalize the
method to models with interactions in the future. Although the
Thouless formula does not apply, at least directly, to interacting
systems, the “localization length” (that is, the length scale
governing the decay) of the two-point Green’s function is still
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an important concept in studying, e.g., the Anderson-Mott
transition [67].

For non-Hermitian chains, the expansion produces only the
inverse localization length at a fixed (complex) energy in one
run. Again, we do not need to store the entire matrix in com-
puter memory. We have also found the Chebyshev-polynomial
expansion of the density of states for non-Hermitian matrices.
The present algorithm may be almost the only available
algorithm of finding the density of states without storing the
entire matrix in computer memory.

Yet another important application of the method in studying
the Anderson localization is to compute the density of
resonances of open disordered systems, particularly in three
dimensions. We can find the resonances as eigenvalues of an ef-
fective non-Hermitian Hamiltonian, which we obtain from the
full Hamiltonian, describing the system of interest and the en-
vironment it is coupled to, after properly eliminating the latter
and the outgoing waves in it as described, e.g., in Refs. [13,68–
72]. The density of resonances of an open disordered three-
dimensional system, unlike the density of states of a closed
system, can distinguish the localized and extended phases on
the both sides of the Anderson transition in higher dimensions.
See, e.g., Ref. [73].
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APPENDIX A: INTEGRATION OF EQUATION (17)

In order to find the integral fn(E) in Eq. (17), we first
differentiate it with respect to E:

f ′
n(E) =

∫ 1

−1
− Tn(x)

(E − x)
√

1 − x2
dx, |E| < 1. (A1)

We can find the formulas for this integral in 7.344.1 of
Ref. [74]; the answer is

f ′
n(E) = −πUn−1(E) (A2)

for n > 0, where Un(x) is the Chebyshev polynomial of the
second kind. For n = 0, we have

f ′
0(E) = lim

ε→0

(∫ E−ε

−1
+

∫ 1

E+ε

)
1

(E − x)
√

1 − x2
dx = 0.

(A3)

Equation (A2) is followed by

fn(E) = −π

∫ E

Un−1(x) dx = −π

n
Tn(E) + const (A4)

for n > 0 since

d

dx
Tn(x) = nUn−1(x). (A5)

Equation (A3) gives

f0(E) = const. (A6)

Finally, we can fix the constants in Eqs. (A4) and (A6) as
follows. First, we have

f0(1) =
∫ 1

−1

ln(1 − x)√
1 − x2

dx = −π ln 2, (A7)

f1(1) =
∫ 1

−1

x ln(1 − x)√
1 − x2

dx = −π ; (A8)

see 4.292.3 and 4.292.4 of Ref. [74], respectively. Further
integrations can be obtained from Eq. (2.10) of Ref. [75]:

ln(1 − x) = − ln 2 − 2
∞∑

n=1

Tn(x)

n
. (A9)

We therefore have

fn(1) =
∫ 1

−1

Tn(x) ln(1 − x)√
1 − x2

dx = −π

n
(A10)

for n > 0. We thereby conclude that

f0(E) = −π ln 2, (A11)

fn(E) = −π

n
Tn(E) (A12)

for n > 0, where we used Tn(1) = 1.

APPENDIX B: STRUCTURE OF THE RECURSION
RELATION (59)

We here show the matrix structure of the recursion relation
(59). Throughout this appendix, we use the shorthand notation
A = H − z and A† = H † − z∗.

It is easy to prove inductively that the even-order matrix
polynomials T2m(H) have non-vanishing elements only in the
L × L upper-left and lower-right diagonal blocks, which we
denote by T

(1,1)
2m and T

(2,2)
2m , respectively, while the odd-order

ones T2m+1(H) have nonvanishing elements only in the upper-
right and lower-left blocks, which we denote by T

(1,2)
2m+1 and

T
(2,1)

2m+1, respectively. The recursion relation (59) indeed reads(
T

(1,1)
2m 0

0 T
(2,2)

2m

)
= 2

(
0 A

A† 0

)(
0 T

(1,2)
2m−1

T
(2,1)

2m−1 0

)

−
(

T
(1,1)

2m−2 0

0 T
(2,2)

2m−2

)
, (B1)

(
0 T

(1,2)
2m+1

T
(2,1)

2m+1 0

)
= 2

(
0 A

A† 0

)(
T

(1,1)
2m 0

0 T
(2,2)

2m

)

−
(

0 T
(1,2)

2m−1

T
(2,1)

2m−1 0

)
, (B2)

which obviously prove the point.
The explicit forms of the first few matrix polynomials are

T0(H) =
(

I 0
0 I

)
, (B3)

T1(H) =
(

0 A

A† 0

)
, (B4)
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T2(H) =
(

2AA† − I 0
0 2A†A − I

)
, (B5)

T3(H) =
(

0 A(4A†A − 3)
A†(4AA† − 3) 0

)
, (B6)

T4(H) =
(

8(AA†)2 − 8AA† + I 0
0 8(A†A)2 − 8A†A + I

)
.

(B7)

Let us presume that

T
(1,1)

2m = T2m(
√

AA†), (B8)

T
(2,2)

2m = T2m(
√

A†A), (B9)

T
(1,2)

2m+1 = AT̃2m+1(
√

A†A), (B10)

T
(2,1)

2m+1 = A†T̃2m+1(
√

AA†), (B11)

where we used a temporary notation T̃2m+1(x) = x−1T2m+1(x).
It is indeed easy to prove this inductively by inserting
Eqs. (B8)–(B11) into the recursion relations (B1) and (B2).

We thereby conclude that

1

2L
Tr T2m(H) = 1

L
Tr T

(1,1)
2m = 1

L
Tr T

(2,2)
2m , (B12)

1

2L
Tr T2m+1(H) = 0. (B13)

APPENDIX C: INTEGRATION OF EQUATION (65)

In view of the representation Tn(x) = cos(n arccos x)
[Eq. (3)] for Chebyshev polynomials, we rewrite the left-hand
side of Eq. (65) as

I2m =
∫ π/2

0
cos(2mθ ) ln(cos θ ) dθ. (C1)

For m > 0, we integrate by parts and obtain

I2m = 1

2m
[sin(2mθ ) ln cos θ ]π/2

θ=0

+ 1

2m

∫ π/2

0
sin(2mθ )

sin θ

cos θ
dθ. (C2)

The boundary term clearly vanishes. We thus have

I2m = − 1

2m

∫ π/2

0

cos[(2m + 1)θ ] − cos[(2m − 1)θ ]

2 cos θ
dθ.

(C3)

We know this integration from the formula∫ π

0

sin[(2m + 1)θ ]

sin θ
dθ = π (C4)

independently of m. We therefore have∫ π/2

0

cos[(2m ± 1)θ ]

cos θ
dθ

= ±(−1)m
∫ π/2

0

sin[(2m + 1)θ ]

sin θ
dθ = ±(−1)m

π

2
(C5)

and arrive at the final formula

I2m = −π

2

(−1)m

2m
. (C6)

APPENDIX D: EQUATIONS (20) AND (66) FOR
HERMITIAN MATRICES

We here show that the Chebyshev expansion (66) for
non-Hermitian matrices reduces to the expansion (20) when
H is a Hermitian matrix. For the purpose, we first introduce
summation formulas for Chebyshev polynomials. We start
from the Fourier series∑

m=1

(−1)m
cos 2mθ

m
= − ln |2 cos θ |. (D1)

Setting θ = arccos(x − y) in Eq. (D1) to use the definition
Tn(x) = cos(n arccos x), we have

∞∑
m=1

(−1)m
T2m(x − y)

m
= − ln 2|x − y|. (D2)

We then next use the formulas

∞∑
n=1

cos nθ cos nφ

n
= −1

2
ln 2| cos θ − cos φ|, (D3)

∞∑
n=1

(−1)n
cos nθ cos nφ

n
= −1

2
ln 2| cos θ + cos φ|, (D4)

which we can prove as follows:

∞∑
n=1

cos nθ cos nφ

n

= 1

2

∞∑
n=1

cos n(θ + φ)

n
+ 1

2

∞∑
n=1

cos n(θ − φ)

n

= −1

2
ln

∣∣∣∣2 sin
θ − φ

2

∣∣∣∣ − 1

2
ln

∣∣∣∣2 sin
θ + φ

2

∣∣∣∣
= −1

2
ln

∣∣∣∣4 sin
θ + φ

2
sin

θ − φ

2

∣∣∣∣
= −1

2
ln |2(cos θ − cos φ)|, (D5)

∞∑
n=1

(−1)n
cos nθ cos nφ

n

= 1

2

∞∑
n=1

(−1)n
cos n(θ + φ)

n
+ 1

2

∞∑
n=1

(−1)n
cos n(θ − φ)

n

= −1

2
ln

∣∣∣∣2 cos
θ − φ

2

∣∣∣∣ − 1

2
ln

∣∣∣∣2 cos
θ + φ

2

∣∣∣∣
= −1

2
ln

∣∣∣∣4 cos
θ + φ

2
cos

θ − φ

2

∣∣∣∣
= −1

2
ln |2(cos θ + cos φ)|. (D6)
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We set θ = arccos x and φ = arccos y in Eqs. (D3) and (D4)
this time, having

∞∑
n=1

Tn(x)Tn(y)

n
= −1

2
ln 2|x − y|, (D7)

∞∑
n=1

(−1)n
Tn(x)Tn(y)

n
= −1

2
ln 2|x + y|. (D8)

Comparing Eqs. (D2) and (D7), we arrive at the formula
∞∑

m=1

(−1)m
T2m(x − y)

m
= 2

∞∑
n=1

Tn(x)Tn(y)

n
. (D9)

We use the formula (D9) to prove that Eq. (66) reduces to
Eq. (20) for a Hermitian matrix H . We here make use of the

last form of Eq. (B12) for the expansion coefficient in Eq. (66).
For Hermitian matrices, the eigenvalues {Eν} of H are all real.
We put z to the real variable E, because we are interested in
κ(E) on the real axis in Eq. (20). We can therefore cast Eq. (66)
into the form

κ(E) = − 1

L

L∑
ν=1

∞∑
m=1

(−1)m

m
T2m(Eν − E) − ln(2|τ |). (D10)

We are now in a position to employ the formula (D9) to
transform Eq. (D10) into

κ(E) = − 2

L

L∑
ν=1

∞∑
n=1

Tn(Eν)Tn(E)

n
− ln(2|τ |), (D11)

which is indeed equal to Eq. (20).
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[40] R. N. Silver and H. Röder, Densities of states of mega-
dimensional Hamiltonian matrices, Int. J. Mod. Phys. C 5, 735
(1994).

[41] A. F. Voter, R. N. Silver, H. Roeder, and J. D. Kress, Kernel
polynomial approximants for densities of states and spectral
functions, J. Comp. Phys. 124, 115 (1996).
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