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Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid
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In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-
liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the
immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method
is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from
complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles
in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume,
contact angle, and separation distance. The results from the DNS are compared with theoretical equations and
other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial
liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results
are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and
particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the
critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations,
the strength of the present method is the ability to predict the liquid bridge problem under general conditions,
from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that
this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in
complex gas-solid-liquid flows.

DOI: 10.1103/PhysRevE.94.063301

I. INTRODUCTION

It is well known that in gas-solid-liquid flows, the fluid
interface meets the particle surface and forms a meniscus along
the three-phase contact line, of which the local meniscus shape
is determined by the contact angle as well as the configuration
of different phases. The resulting capillary force may cause the
migration, clustering, and adhesion of solid particles. Typical
examples include the particle flotation [1] and liquid bridge
[2], which are of special interest in various situations of
engineering and science. This study will focus on the liquid
bridge with fixed volume between spherical particles [3],
which can be found in systems at a wide range of spatial scales
[4]. The existence of liquid bridges may affect the mechanical
property of wet solids and change their behavior, of which
the influence is significant for granular particles in dilute
[5] and packed [6] states. From an engineering perspective,
the modeling of liquid bridges and their capillary actions on
surrounding solids is important for recent discrete particle
simulations of wet powder processing in, e.g., fluidized beds
[7,8], rotating drums [9], and pelletizers [10] to obtain high-
fidelity results. Recently, we have developed a macroscopic
numerical method for three-phase flows [11], which also
requires an accurate modeling of capillary effects between
particles and interfaces. For this purpose, a versatile tool for
establishing models for liquid bridges under general conditions
will be useful.

In the past, a number of studies have been devoted to the
analysis and modeling of the liquid bridges between binary
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solid surfaces. In some early theoretical studies [12–14],
analytical solutions were derived for some special cases,
and the necessary conditions to keep bridges stable were
discussed. Restrictions come with considerable simplifications
by assuming equal particles, symmetric bridge shape about the
midplane, and constant radius of the bridge profile. Recently,
theoretical efforts have been made to explore the region of
existence for concave bridges between two spheres [15], the
analytical solution of asymmetric capillary bridge profiles
[16], and the equilibrium distance for a force-free bridge
between two parallel plates [17]. Very recently, the influence
of contact angle hysteresis on formation of stable capillary
bridges has also been studied [18,19] in semianalytical
approaches.

For their broad relevance in practice, analytical equations
of static liquid bridge forces have been suggested neglecting
the effects of inertia, viscosity, and gravity. They are generally
written as the function of liquid volume, separation distance,
and contact angle. A simple equation can be found in the
book of Israelachvili [2]. Another equation is proposed by
Rabinovich et al. [3,20] for symmetric liquid bridges, which
is examined experimentally by [21,22]. Those equations have
simple forms and they can be efficiently incorporated for wet
granular simulations (see, e.g., [10,23]). However, a common
problem resides in their applicable range that is restricted
to relatively small liquid volumes and contact angles. For
example, according to Willett et al. [24], their force expression
is valid only for volume ratio <0.1 and contact angle <50◦. A
more evolved analytical model is derived by Huppmann and
Riegger [25]. Their model links the parameters of the liquid
bridge profile via the conditions of contact angle, total liquid
volume, and circular approximation of the bridge profile by
Heady and Cahn [26], and combines them implicitly to form
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a set of nonlinear equations. Once solved, the bridge shape
is obtained and consequently the force can be calculated.
Similar models have also been developed for asymmetric
liquid bridges with unequal particle radii and different contact
angles in recent years [27,28]. Improved accuracy can be
expected for those models, but the complication and increased
cost due to nonlinear solving make them less attractive in
practice.

When it comes to the modeling of more general liquid
bridges, numerical analysis is an indispensable tool. For
static liquid bridges, it is natural to represent the surface by
discretization of triangle elements, and perform a nonlinear
optimization procedure to minimize the interfacial energy
under the constraint of volume conservation [29]. In this
respect, the public domain software SURFACE EVOLVER [30]
has been used extensively for its ability to heuristically find
a surface with minimal energy. A number of past studies
have been done by using and adapting the SURFACE EVOLVER:
capillary forces and torques between cylinders [31], capillary
attraction by asymmetric bridges [32,33], capillary torque by
a liquid droplet between two plates [34], evolution of liquid
bridges in slit-pore geometry [35], and capillary assembly
of nonspherical particles at interfaces [36], to cite a few.
The drawback of the SURFACE EVOLVER approach is the
limitation to energetic description and static solutions for
steady problems. Besides that, the setup of surface mesh is
problem specific and the solver needs some user parameters
and managements.

In typical gas-solid-liquid flows, the dynamic interactions
between different phases are considerably complex. In order
to correctly predict the three-phase system behavior, it is
necessary to calculate deformation of the interface, fluid
motion, and particle movement under capillary actions. Direct
numerical simulation (DNS) has become a suitable approach
to resolve the complex coupling in those systems including
the liquid bridge problem. Unlike static solutions given by
the SURFACE EVOLVER, a DNS method solves the governing
equations of the motions of fluids, particles, and interfaces.
Thus not only the static state but also the dynamic evolution
of the system can be obtained to build more comprehensive
models of the interaction forces. In recent reports in the
literature, some DNS techniques have been developed for gas-
solid-liquid systems by using the lattice Boltzmann method
(LBM) [37,38], the finite element method (FEM) [39,40], the
diffuse interface method (DIM) [41–43], the level set (LS)
method [44], and the constrained interpolation profile (CIP)
method [45]. They filled the void for many three-phase flow
systems, among which the work of Villanueva et al. [41] is
notable for simulating planar and axisymmetric liquid bridges.
However, more work needs to be done to specifically treat the
subject of calculating the liquid bridge force on surrounding
solid particles in three-dimensional systems. Therefore, the
capability and advantage of DNS approaches have not been
thoroughly investigated for general liquid bridge problems.

In this study, we present a computational method to
perform three-dimensional simulations for gas-solid-liquid
flows involving capillary effects. In this method, the
THINC/WLIC(tangent of hyperbola for interface capturing
with weighed line interface calculation) volume-of-fluid
(VOF) method [46] is employed to calculate the shape and mo-

tion of the gas-liquid interface. The solid particles are coupled
to the continuous phase by using the immersed boundary (IB)
method [47,48] on Cartesian grids. Contact angles are specified
as input parameters and implicitly prescribed at three-phase
contact lines by using an interface extension technique [49].
The overall algorithm is simple and efficient. It is capable of
treating both static and dynamic gas-solid-liquid interactions
including the hydrodynamic and capillary forces. This method
is referred to as the VOF-IB-DNS method hereinafter.

The objective of this paper is the description of the VOF-IB-
DNS method and its application to the numerical analysis of
liquid bridges among spherical particles. We present numerical
results of the following problems concerning the modeling of
liquid bridge problems. First we examine existing liquid bridge
force correlations [3,25] with sufficiently small volumes. Next
we consider liquid bridges with higher liquid saturation so that
some analytical equations may fail to predict the force. The
DNS will be compared with experimental data or the SURFACE

EVOLVER to justify the results. Besides that, the dependence
of the liquid bridge shape and force on the volume, distance,
and contact angle is explored. In the third part, the complex
liquid bridges connecting multiple particles are simulated,
which may be encountered in wet particle layers to form small
clusters [50]. This type of liquid bridge, especially the action
force, has not been thoroughly studied in the past. Preliminary
results of bridge shape and force in triangular and tetrahedral
particle structures are presented here. The fourth problem
simulates the rupture of a liquid bridge under axial stretching.
The rupture distances involving the effects of viscosity and
gravity are obtained and compared with reference data. The last
test demonstrates the capability of treating dynamic systems
where the particle can freely move under the liquid bridge
force. It is shown that the dynamic liquid bridge action may
become cohesive or repulsive, which is also significantly
influenced by the particle motion. We compare the results
with past study [41] for different equilibrium states as the
contact angle is varied. Therefore, our DNS approach can
provide useful information to develop more comprehensive
understanding for complex liquid bridge phenomena in wet
granular materials, from which the interaction model can
be derived without assumptions and restrictions. It may also
become a powerful tool for simulating other gas-solid-liquid
systems involving particle-interface interactions.

II. GOVERNING EQUATIONS

We consider a three-phase flow system composed of
incompressible Newtonian gas and liquid and the solids
particles. For the fluid phases, the Navier-Stokes equation and
the continuity equation are written as

ρ

[
∂u
∂t

+ ∇ · (uu)

]
= −∇p + ∇ · [μ(∇u + ∇uT )]

+ ρg + fs + fp, (1)

∇ · u = 0, (2)

where ρ is density, u is velocity, p is pressure, μ is viscosity,
and g is gravity. The two terms f s and f p indicate the surface
tension and fluid-particle interaction, respectively. The surface
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tension is given by

fs = −σκδn, (3)

in which σ is the coefficient of surface tension, κ is the
curvature, δ is a delta function being nonzero at the interface,
and n is the unit normal vector to the interface.

There are NP spherical particles submerged in the fluid, for
which the motions are governed by Newton’s law of motion:

mP

dv
dt

= FP + FC + mP g,

(4)
IP

dω

dt
= TP + TC,

where v is the particle velocity and ω is the angular velocity.
For a spherical particle P of radius R, its volume is VP =
(4/3)πR3, mass is mP = ρP VP with the particle density ρP ,
and IP = (2/5)mP R2 is the moment of inertia. On the right-
hand side, FC and TC are the contact force and torque between
solids. The terms FP and TP are the interaction force and
torque from surrounding fluids. In the current context of gas-
solid-liquid flows, the fluid-particle interactions are made by
the surface integral of the pressure and viscous forces over the
particle surface S, and the line integral of capillary force along
the contact line CL:

FP =
∫

S
(−pI + τ ) · nP dS +

∫
CL

nCdL,

(5)
TP =

∫
S

r × (−pI + τ ) · nP dS +
∫

CL
r × nCdL.

Herein, τ is the viscous stress, nP is the unit normal vector
of the particle surface, nC is the unit vector of the capillary
action, and r = x − xP is the relative position from point x to
the particle center xP .

Those momentum equations are supplemented by the
compatible nonslip boundary condition,

u = uP = v + ω × (x − xP ), (6)

at point x on the particle surface or inside the particle, where
uP is the solid velocity. For the meniscus attached to the solid
surface, a static contact angle boundary condition is prescribed
as

n · nP = cos θ, (7)

FIG. 1. Contact angle boundary condition at gas-solid-liquid
three-phase point.

Gas

Liquid

Solid

Interface

Background mesh

FIG. 2. DNS grid for gas-solid-liquid flows. Calculation is based
on a Cartesian mesh, for which the grid size must be finer than the
characteristic length of the particle or meniscus.

in which θ is the contact angle. See Fig. 1 for a two-
dimensional schematic diagram of their definitions.

III. NUMERICAL METHODOLOGY

Now we briefly describe the DNS method developed in this
study. It solves the governing equations summarized in the
preceding section for gas-solid-liquid flows without employing
any specific models for their interactions. The modeling of
the fluid-particle system adopts the IB method [47,48], in
which a uniform Cartesian mesh covers the entire domain
for both fluid and particle phases. A schematic diagram of this
computational setup is illustrated in Fig. 2. The grids need
not conform to curved fluid interfaces or solid surfaces. The
grid size is required to be fine enough to resolve the important
characteristics of the underlying flow.

A. Multiphase flow solver

The immiscible interface separating the gas and liquid
phases is indicated by the so-called VOF function ϕ. By
definition, we have ϕ = 0 in the gas, ϕ = 1 in the liquid,
and 0 < ϕ < 1 near the interface. Using the VOF function, the
fluid density and viscosity are calculated by

ρ = ϕρl + (1 − ϕ)ρg,

μ = ϕμl + (1 − ϕ)μg, (8)

with the subscripts l and g denoting the liquid and gas phases,
respectively. The motion of the fluid interface is described by
the following advection equation:

∂ϕ

∂t
+ u · ∇ϕ = 0. (9)

It is solved by using the THINC-WLIC VOF method [46]
to sharply capture the fluid interface. The VOF functions ϕ

in the interfacial regions are periodically redistributed by using
the method described in our previous work [51] to conserve
the fluid volume. Similar methods of volume correction have
also been used by other authors [43,44,52] to eliminate
accumulative conservation error for long-time simulations.
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The static contact angle (7) at three-phase contact lines
is treated by using the extension approach [49] which can
readily apply to solid boundaries with arbitrary shapes. In
this approach, the VOF function is extrapolated into the
solid domain along a selected direction, so that a continuous
interface is formed across the solid surface and the contact
angle boundary condition is implicitly satisfied. The numerical
procedure consists in solving a special advection equation,

∂ϕ

∂τ
+ ue · ∇ϕ = 0, (10)

in solid domains with fictitious time step �τ = �x using a
semi-Lagrangian upwind scheme [51]. Herein, ue is an exten-
sion velocity for interface extrapolation, which is constructed
parallel but inverse to the desired capillary force vector by

ue =

⎧⎪⎨
⎪⎩

− nP −cot(π−θ)n2
|nP −cot(π−θ)n2| if c < 0

− nP +cot(π−θ)n2
|nP +cot(π−θ)n2| if c > 0

−nP otherwise

, (11)

with

n1 = n × nP

|n × nP | , n2 = n1 × nP

|n1 × nP | , and c = n · n2. (12)

For example, in Fig. 1 near the contact point, the extension
velocity ue is oriented toward the solid side away from the
capillary vector nC determined by the interface vector n,
the solid vector nP , and the contact angle θ . The extension
approach has made the contact angle treatment simple, since
it does not require locating the position of the contact line
explicitly. It can also be implemented for nonspherical particles
without much difficulty if the particle shape and surface
normal can be calculated efficiently. We note that extending the
interface by Eq. (10) will change the contact line position on
the solid surface while keeping the contact angle prescribed.
This is equivalent to introduce a finite slip distance numerically
at the length scale of grid spacing. In this way, the dilemma
between the moving contact line and the nonslip velocity
condition could be circumvented.

Particularly, we comment on the treatment of dynamic
contact angle. In recent years, some authors introduced
fundamental hydrodynamic models for dynamic wetting on
planar surfaces; see, e.g., Afkhami et al. [53] with Cox’s
asymptotic analysis [54], Yokoi et al. [55] with Tanner’s law
[56], Griebel and Klitz [57] with Shikhmurzaev’s interface
formation model [58], and the review and comparison by
Legendre and Maglio [59]. It is, however, not known how their
modeling applies to other problems or general geometries.
For this sake, many recent numerical studies on multiphase
systems choose to only use static contact angles; see, e.g.,
[37,60–64]. Similarly in this study, we consider static contact
angle conditions for liquid bridge problems without hysteresis
effects and postpone the implementation of a numerical model
for dynamic contact angle.

The basic fluid solver is similar to that used in our previous
study [51]. The governing equations are discretized on a
staggered grid where velocity components are defined on cell
faces and other scalars are defined at cell centers. The spatial
derivatives are calculated by second-order central difference.
A fractional-step method is used to advance the Navier-Stokes

equation (1) subject to the incompressible condition (2). At the
nth step of the simulation, the work-flow algorithm is written
as follows.

u(1) − un

�t
= −

[
3

2
∇ · (uu)n − 1

2
∇ · (uu)n−1

]

+ 1

ρ

(
1

2
∇ · μ∇u(1) + 1

2
∇ · μ∇un

)
, (13)

u(2) = u(1) + �tg + �t

ρ
fs , (14)

∇ ·
(

1

ρ
∇p

)
= 1

�t
∇ · u(2), (15)

u = u(2) − �t

ρ
∇p. (16)

In Eq. (13), we use an Adams-Bashforth method for the
convective term and a Crank-Nicolson method for the viscous
term, respectively. The surface tension f s in Eq. (14) is
calculated by the balanced continuous surface force (CSF)
model [65] which has been tested in Ref. [51]. The variable-
coefficient Poisson equation (15) is solved by using a multigrid
preconditioned conjugate gradient (MGPCG) method. Finally
Eq. (16) projects the velocity to a discretely divergence-free
space. The stable time step of the algorithm is limited by
the explicit Courant-Friedrichs-Lewy (CFL) condition and the
surface tension computation.

B. Fluid-particle interaction

The IB method is employed to achieve the coupling between
particles and fluids. Because all phases are simulated on the
same grid, the volume fraction ϕP is used to identify the
existence of solids in each numerical cell. Similar to the VOF
function, ϕP = 0 in the fluid, ϕP = 1 in the solid, and
0 < ϕP < 1 near the particle surface. Hence its 0.5 contour
smoothly represents the particle shape. In the simulation, an
intermediate velocity is first obtained by the fluid solver for
the whole domain, which does not satisfy the rigid motion (6)
for solids in general. This error is explicitly corrected by the
IB forcing term f P as

fP = ρ
ϕP (uP − u)

�t
. (17)

Subsequently, adding the action of f P to u yields an
updated velocity at the next time step:

un+1 = u + �t

ρ
fP = ϕP uP + (1 − ϕP )u. (18)

With the definition of ϕP , it is easy to find that for fluid
domains where ϕP = 0 the effect of f P vanishes, whereas
in regions with ϕP > 0, the velocity is modified by a linear
interpolation of local fluid and solid velocities. Particularly,
the velocity will be completely replaced by the solid velocity
uP inside solid particles (ϕP = 1).

For the solid phase, the problem is to evaluate correspond-
ingly the interaction forces for distinct particles. In the present
DNS method, their forms are derived by considering the
integral of fluid actions over the particle surface to ensure the
consistency with coupled fluid equations. For convenience,
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we let τ denote the deviatoric viscous stress and introduce
the tensorial form of the surface tension force via a capillary
pressure tensor  [66] satisfying

fs = −∇ · ,

 = −σ (I − n ⊗ n)δ. (19)

The total fluid force is thus defined by the integral of the
multiphase stresses over the particle surface S,

FP =
∫

S

(−pI + τ ) · nP dS +
∫

S

(−) · nP dS, (20)

in which the terms on the right-hand sides are the hydrody-
namic and capillary forces, respectively. In order to eliminate
the numerical intricacy of surface integration on nonconform-
ing IB meshes [47], it is equivalently transformed into a volume
integral for the particle body via the Gauss divergence theorem
provided that all stress terms are continuous across the particle
surface,

FP =
∫

P

∇ · (−pI + τ )dV +
∫

P

∇ · (−)dV . (21)

Although it is now possible to calculate the interaction
force f P by performing numerical quadrature for each term in
the equation above, we suggest an alternative approach which
is more efficient. We start with the momentum equation (1)
rewritten as

ρ
Du
Dt

= −∇p + ∇ · τ + ρg − ∇ ·  + fP . (22)

Integrating on both sides over the solid domain and
rearranging the equation to isolate stress terms, we arrive at an
alternative relationship useful for FP :

FP = −
∫

P

fP dV −
∫

P

ρgdV +
∫

P

ρ
Du
Dt

dV . (23)

The first term is the integration of the IB forcing fP inside
the particle domain, before which the minus sign indicates the
reciprocal relation of being an action and reaction pair between
fluid and particle phases. Therefore, it is identified as the total
fluid-particle interaction including both hydrodynamic and
capillary forces. The second term is apparently the hydrostatic
buoyancy separated from the dynamic actions. The last term
is due to the acceleration of the particle motion, which is
dropped for particles with prescribed motions or negligible
inertial effects. In a similar fashion, we are able to derive the
torque of fluid forces on a single particle as

TP = −
∫

P

(x − xP ) × fP dV . (24)

In each time step, we first solve the extended Navier-Stokes
equation and calculate the IB forcing term f P on the fluid
meshes. In the next stage, integrals contained in the interaction
force (23) and torque (24) are computed for individual solid
particles by using the solid volume fraction ϕP as weights:

FP = −
∑

ϕP (fP + ρg)�V ,
(25)

TP = −
∑

ϕP (x − xP ) × fP �V ,

in which the summations are taken over the numerical cells
accommodated by the bounding box of the particle and �V is

the cell volume. We remark that the present method extends
our previous study [51] to direct calculation of interactions
between multiphase flow and solid particles in light of
Eqs. (17), (23), and (24). Consequently, it allows for solving
degrees of freedom associated with particle motion, whereas
only prescribed boundary movements are handled by [51]. In
addition, this treatment of multiphase fluid-particle interaction
can be applied to nonspherical solids without modification, as
long as their shapes are discretized in a volume-of-solid way
on the fluid grid.

C. Particle dynamics

The present method contains a contact force model for
particle-particle and particle-wall interactions. The contact
force FC and torque TC are based on the discrete element
method (DEM) [67] widely applied in granular material
simulations. In the DEM, an artificial overlap sufficiently
smaller than particle radius is allowed for two solids in
contact, for which the interaction is computed by a Voigt
model consisting of spring, dashpot, and friction slider.
The details and applications can be found in our previous
studies [11,68,69]. Compared with other “ad hoc” models
implemented for particle suspensions (e.g., [70–72]), the DEM
is advantageous to treat viscoelastic collisions and dissipative
frictions between solid particles. Recently, it has been also
justified to use the DEM for modeling particle roughness in
dense suspensions [73–75]. In this study, the contact force
mainly serves to prevent nonphysical penetration of particles
connected by cohesive liquid bridges. Therefore, the DEM
parameters are not discussed in detail.

Once the total force and torque are obtained for a particle,
the Newton equations (4) can be integrated to update the
particle states. If the particle is fixed or subject to prescribed
motion, we simply skip this part. The symplectic Euler scheme
is used:

vn+1
P = vn

P + �t
(
mP g + Fn

C + Fn
P

)/
mP

xn+1
P = xn

P + �tvn+1
P (26)

ωn+1
P = ωn

P + �t
(
Tn

C + Tn
P

)/
IP

The symplectic Euler scheme yields satisfactory results for
the present study. It can be easily replaced by another integrator
(e.g., the second-order Adams-Bashforth scheme) targeting
higher-order accuracy. Additionally, we note that the algorithm
can be extended to nonspherical particles in a straightforward
way, which will be taken as a future development.

D. Related work

In the past, some numerical techniques have been developed
to resolve three-phase flows involving capillary actions. The
lattice Boltzmann method (LBM) has been first used to
study the lateral capillary force between two-dimensional
objects such as squares [76] and circles [37,77], and simulate
three-dimensional problems including the self-assemblies of
colloidal particles on substrate [78] and spreading drops
containing particle suspensions [71]. Recently, the LBM is
applied to spheroidal particles captured at fluid-fluid interfaces
for evaluating the detachment energy [79] and simulating their

063301-5



XIAOSONG SUN AND MIKIO SAKAI PHYSICAL REVIEW E 94, 063301 (2016)

alignment under magnetic fields [80,81]. In the LBM, circular
particles are directly mapped onto lattice points, resulting in
a stair-shaped representation of the particle surface at the
discrete space. The multiphase LBM may also suffer from
some numerical stability problems for gas-liquid flows with
high-density ratios. Some authors coupled the LBM with
VOF-based interface tracking [82] or phase-field formulation
[38,83] to simulate flows involving high-density ratios or free
surfaces.

The finite element method (FEM) has also been used to
simulate spheres and disks floating on free surfaces [39,84]
and liquid bridges between two circular disks experiencing
coaxial stretching [40]. In the FEM, the numerical algorithm
is considerably complicated. Moreover, FEM using body-fitted
grids needs frequent mesh manipulation and regeneration for
moving particle simulations, which is difficult to implement
and computationally expensive in three-dimensional cases.

The diffuse interface method (DIM) with phase-field
formulations has particular strength in modeling complex
fluids involving multiple components and phase separations.
Villanueva et al. simulated the multiphase flow system
during liquid sintering [41]. Their special contribution is
the computation of particles connected by liquid bridges in
two-dimensional and axisymmetric systems. However, the
equilibrium state of the liquid bridge between particle pairs
did not agree well with theoretical predictions. Their approach
cannot calculate the liquid bridge force for a single particle,
either. By using the so-called diffuse interface field approach
(DIFA) [42], Cheng and Wang [43] simulated the formation of
two-dimensional capillary bridges between packed particles
during phase separation of liquids. However, their interface
solver is not coupled with a dynamic solver for fluid and
particle motions. As a result, the liquid bridge force firming
the particle structure cannot be obtained.

Very recently, several computational fluid dynamics (CFD)
approaches have been developed to allow for efficient DNS of
three-phase flows on fixed grids. Fujita et al. [44,85] described
their immersed free surface model based on the level set (LS)
method and simulated the capillary interactions among drying
particle suspensions. We find that our method shares some
common aspects with theirs, especially for the treatment of the
contact angle and the capillary force. Kan et al. [45] treated
capillary interactions based on the constrained interpolation
profile (CIP) modeling of three-phase problems [86,87]. They
studied the particle adhesion by liquid bond after a head-on
collision. Unlike their method requiring evaluation of distinct
fluid actions, in the present approach both hydrodynamic and
capillary forces are taken into account by a single IB forcing
term. Another different point is that our interface modeling
is based on the VOF method, which may conserve the liquid
volume to a better accuracy than the LS or CIP method.

IV. PROBLEM DESCRIPTION

As specified, we study liquid bridges between spherical
particles. Figure 3 depicts two fundamental situations of
liquid bridges with different wettability of spherical surfaces
separated by distance H . The left part shows a hydrophobic
case where the contact angle θ>π/2 and the sectional shape of
the liquid bridge is convex; the right part shows a hydrophilic
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FIG. 3. Liquid bridges between two spheres: typical hydrophobic
case (left) and hydrophilic case (right).

bridge with θ<π/2 and a concave surface. We note that Fig. 3
is at most a demonstration of typical bridge shapes depending
on contact angles. It is apparent that a hydrophilic surface does
not necessarily give rise to concave bridges.

A. Liquid bridge force

We consider the force on the spheres exerted by the liquid
bridge. The static liquid bridge force should be a function of
the bridge volume VLB , the particle separation distance H ,
and the contact angle θ . It can be defined by two methods,
i.e., the geometric approach and the energetic approach [22].
The former models the liquid bridge action FLB by directly
decomposing it into contributions of the Laplace pressure FL

and the surface tension FT :

FLB = FL + FT . (27)

The Laplace term FL is the surface force by integrating
the liquid pressure and ambient gas pressure over the sphere,
while the tension term FT is a singular force found along
the contact line. As illustrated in Fig. 3, the direction of FL

may vary depending on the shape of the bridge: For convex
bridges the Laplace pressure is positive and FL is repulsive,
while for concave bridges the pressure is negative and the
corresponding FL is attractive. On the other hand, the tensile
force FT always tends to pull spheres together. In principle,
both terms can be determined geometrically provided that
the profile of the bridge shape is known. Moreover, in an
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axisymmetric liquid bridge, the forces are reduced to scalars
by their axial components: FLB,FL, and FT . In this study, it
is designated that F > 0 for attractive forces and F < 0 for
repulsive forces.

The energetic definition of liquid bridge force considers the
following interfacial free energy W :

W = σ (Sgl − Ssl cos θ ). (28)

Here Sgl and Ssl are the gas-liquid and solid-liquid contact
areas, respectively (see Fig. 3). The minimal surface energy
is associated with the static configuration of the liquid bridge.
According to the virtual work principle, the variation of W

with respect to some perturbed displacement �h of particles
gives the total liquid bridge force, i.e.,

FLB = −�W

�h
. (29)

The value of FLB can be readily calculated by numerical
difference. For the axisymmetric bridge between a pair of
particles, the virtual displacement �h coincides with the
incremental separation distance �H , but this might not be
the case for the liquid bridge among multiple particles.

If the particles are allowed to move, the liquid bridge force
may also depend on dynamic parameters such as fluid density,
viscosity, and particle velocity. In that case, the total action of
the liquid bridge should be given by the integral of fluid stress
and surface tension over the particle as in Eq. (20). Besides
the capillary interaction, the relative motion of particles
causes the liquid bridge to be squeezed or stretched, which
will introduce a damping effect owing to lubrication mediated
by the bridge [88,89].

B. Characteristic quantities

We present dimensionless results for the liquid bridge
problem if not specified. The spatial dimensions are divided
by the characteristic length L0 = R, area S0 = R2, and
volume V0 = R3, respectively. The dimensionless force and
pressure are obtained with the factors F0 = σR and P0 = σ/R.
The scale of the interfacial energy is given by W0 = σR2.
Specifically, the volume of the liquid bridge is described as
the ratio with respect to the sphere volume for convenience.

The DNS involves the initialization, relaxation, and conver-
gence of the liquid bridge toward a balanced state, which is es-
sentially a dynamic process. Provided a characteristic velocity
U , important dimensionless numbers are the capillary number
Ca = μU/σ (relative effect of viscosity vs surface tension),
the Weber number We = ρU 2R/σ (inertia vs surface tension),
and the Bond number Bo = ρgR2/σ (gravity vs surface
tension, if the gravity is present). The well-known Reynolds
number is given by Re = We/Ca (inertia vs viscosity).

Among the characteristic quantities, a natural choice of
characteristic velocity U is the speed of a solid particle. If
a particle is fixed or the velocity is not known a priori, it
can be defined on the capillary scale U = σ/μ. The density
ratio and viscosity ratio between liquid and gas may affect the
dynamic behaviors without changing the equilibrium state of
the liquid bridge. In this study, the density and viscosity ratios
are typically chosen as high as 100:1 to show the capability for
modeling real gas-liquid flows in wet granular systems. This

results in flow behaviors dominated by the liquid phase, but it
should have no appreciable influence on the static shape and
force of the liquid bridge. On the other hand, those parameters
between two comparable fluid phases may be important in
liquid-liquid systems. Some results of those low-density ratio
flows may be found in past studies using the lattice Boltzmann
method or the phase-field method; see, e.g., [37,41,71].

C. Simulation and force calculation

The computational domain is a box accommodating the
particles and liquid bridge while the rest of the void is filled
with gas. On the domain borders transparent or symmetric
boundary conditions are set. The liquid bridge is initialized
by a simple shape (e.g., cylinder for dual particles and sphere
for multiple particles) with prescribed volume, and then it is
released for free motion. If static problems are concerned,
we freeze the particles and allow the bridge to relax until an
equilibrium state is reached. The numerical Reynolds number
is chosen to be relatively small at an order of Re ∼ 101 to
accelerate the convergence.

In our DNS method, the overall interaction force can be
collected straightforwardly for individual particles during the
simulation, i.e., the fluid-particle force of Eq. (23). Specifically
for static problems, this is equivalent to the calculation of
total liquid bridge force with the geometric approach (27).
On the other hand, the energetic approach is also available by
taking the differentiation for the interfacial energy (28) in a
postprocessing stage. Two approaches have been tested and
similar results are obtained, which proves their equivalence as
argued by [22]. In addition, reference solutions are generated
by using the SURFACE EVOLVER, from which the interfacial
shape and energy can be found but the action force is, however,
not directly available. In that case, we use the geometric
definition to calculate the force for simple axisymmetric
particle pairs and the energetic definition for multiple particles.
It is emphasized that the present DNS method can be applied
to dynamic problems while the SURFACE EVOLVER approach is
restricted to static configurations.

V. MODEL TEST

A. Basic spreading behavior

The dynamic simulation of gas-solid-liquid problems re-
quires calculating the fluid motions over a solid surface.
We present an example for the basic spreading behavior
of a droplet on a fixed spherical particle. This problem is
studied experimentally and numerically using commercial
CFD software by Mitra et al. in [90]. The problem setup
is composed of a spherical droplet whose diameter is a =
2.1 mm and a solid particle whose diameter is 10 mm. They
are kept just in touch with each other; see the inset of Fig. 4.
The liquid is isopropyl alcohol with density ρl = 780.8 kg/m3

and viscosity μl = 0.0022 Pa s. The air phase has density
ρg = 1.184 kg/m3 and viscosity μg = 1.82 × 10−5 Pa s. The
surface tension coefficient is σ = 0.0236 N/m, and the contact
angle is set to θ = 0.5◦. The effect of contact angle hysteresis
can be neglected as the contact angle is small. The droplet hits
the particle with initial velocity U = 0.45 m/s. This gives a
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FIG. 4. Spreading of a droplet on spherical particle surface.
Reference data are obtained from Mitra et al. [90].

Weber number of We = 14.1, which is sufficiently close to the
condition in the literature [90] (We ∼ 15).

The spreading behavior of the droplet is computed by using
the present DNS method with grid size �x = 1/16 mm and
time step �t = 5.0 × 10−6 s. We compared the spreading
radius r (normalized by the initial diameter a) on the solid
surface with the values obtained from [90]. The results are
plotted as a function of time in Fig. 4, together with several
snapshots (at time instant t = 0,2,4,6 ms) inserted as insets.
The relative spreading radius r/a starts with zero (initial state)
and quickly expands over a factor of 2 on the hydrophilic
surface. Its evolution well agrees with the experimental and
numerical data of [90]. It is thus shown that the present DNS
method can give reasonable prediction for gas-liquid flow
moving on a solid surface, such as the nonequilibrium liquid
bridge between particles.

B. Convergence of force calculation

We focus on the liquid bridge problem from now on. Prior
to detailed validation and investigation in the next section, here
we carry out a grid convergence study for the force calculation.
A static liquid bridge between two equal particles is chosen as a
test problem, for which the relative liquid volume is VLB/VP =
0.2, the particle separation distance is H/R = 0.2, and the
contact angle is θ = 36◦. For the current condition, a reference
value of the dimensionless liquid bridge force is FRef = 2.67
(attractive) when computed by the SURFACE EVOLVER.

This problem is calculated to check the force results by
using meshes gradually refined. For convenience, the grid
spacing is given in terms of the particle diameter D by
D/�x = 10,20,40,60, and 80, respectively. The results are
summarized and compared with the reference value in Table I.
The convergence of force calculation can be clearly confirmed.
Figure 5 indicates that the convergence rate is close to first
order. Particularly, on the coarsest mesh (D/�x = 10) the
relative error is up to 20%; on a medium grid of D/�x = 40
the error is below 7%, showing qualitative agreement with

TABLE I. Convergence of liquid bridge force calculation toward
reference solution.

D/�x H/�x DNS Evolver Error

10 2 2.15 2.67 19.5%
20 4 2.35 12.2%
40 8 2.49 6.84%
60 12 2.55 4.51%
80 16 2.58 3.55%

the reference solution. Therefore, based on a compromise
between efficiency and accuracy, we have typically 30–40
computational cells along the diameter of a single particle
when choosing the spatial resolution in the following studies.

VI. RESULTS AND DISCUSSION

A. Small-volume liquid bridge

The first part is an examination of the existing liquid bridge
force correlations. We consider the two analytical models for
the liquid bridge between two equal spheres by Rabinovich
et al. [3]. In model A the liquid bridge force is given by

F A
LB = 2πRσ cos θ

1 + H/2d
, (30)

where

d = (H/2)[−1 +
√

1 + 2VLB/(πRH 2)] (31)

is the immersion height between the sphere tip and the contact
ring. Model B adds a correction to the previous one by

F B
LB = F A

LB + 2πRσ sin α sin(α + θ ), (32)

where the embracing angle α subtending the contact ring posi-
tion and axial direction is demonstrated in Fig. 3. Rabinovich
claims that the extra term on the right-hand side of model B
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FIG. 5. Convergence of liquid bridge force calculation toward
reference solution. The line of first-order rate is drawn as a guide to
the eye.
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takes the tensile term into account for the total liquid bridge
force, which has been invalidated experimentally by [22] and
will be tested by the present DNS. The previous equations
are mainly developed for liquid bridges with rather small
volumes or contact angles. In [3], the derived equations are
compared with experimental data with liquid volume <0.05%
of the particle volume and contact angle <10°. The validation
study [22] shows results of a relative volume of 4.2% and a
contact angle of 15°. Another semianalytical model, proposed
by Willett et al. [24], is valid for a liquid bridge up to 2.4%
of the particle volume and a 50° contact angle. Therefore, the
typical range of the analytical model is designated as a liquid
amount below approximately 5% of a single particle’s volume
in the current work.

Besides the two simple models, we also compare a more
complicated model C derived by Huppmann and Riegger [25]
based on the circular approximation of the bridge profile [26].
In this model, the liquid bridge force is given by the summation
of the pressure term and the tension term as

F C
LB = πR2sin2α�p + 2πRσ sin α sin(α + θ ). (33)

The pressure jump �p is given by the Laplace formula:

�p = σ
(
ρ−1

2 − ρ−1
1

)
, (34)

and the two principle curvature radii ρ1 and ρ2 in axial and
meridional planes are calculated, respectively, as

ρ1 = R sin α − [R(1 − cos α) + H/2]
1 − sin(α + θ )

cos(α + θ )

ρ2 = R(1 − cos α) + H/2

cos(α + θ )
. (35)

The equations are closed by the conservation of total liquid
volume:

VLB = 2π [cos(α + θ ) − (π/2 − α − θ )]
(
ρ3

2 + ρ1ρ
2
2

)
+πρ2

1ρ2 cos(α + θ ). (36)

Therefore, Eqs. (35) and (36) are coupled in a nonlinear
way, and they must be solved for the key parameter, viz. the
embracing angle α, to obtain ρ1 and ρ2 inserted into the force
equation (33). This implicit nature limited its practical usage
in discrete particle simulations.

We begin by investigating the symmetric liquid bridge with
0.5% volume out of a single sphere. The separation distance
between spheres is changed by H/R = 0.05,0.1,0.15, and
0.2 to obtain the liquid bridge force correspondingly. The
influence of the contact angle is tested by setting its value
to θ = 15◦,30◦, and 60° respectively. For this problem, the
grid spacing is determined to resolve the small meniscus of
the bridge, so we use a small cell size R/�x = 90. Because of
the restriction of computational cost, the problem symmetry is
used to reduce the size of the computational domain, and the
liquid-gas density ratio is set to unity to accelerate the solution
of the pressure equation.

Figure 6 plots the forces obtained with different separation
distances and contact angles. In general, the liquid bridge force
decreases monotonically with increasing distance, which is
recovered by all approaches. DNS and the SURFACE EVOLVER

results agree well, and the analytical model A is also able to
calculate the force consistently. The agreement between model
A and numerical results is most remarkable at small separation
distances and contact angles. As the distance or contact
angle increases, the analytical model slightly deviates from
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FIG. 6. Forces of a small-volume liquid bridge with different contact angles: (a) θ = 15◦, (b) θ = 30◦, (c) θ = 60◦.
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FIG. 7. Comparison of forces by an asymmetric liquid bridge.
The reference plots of experiment and simulation are measured from
Lambert et al. [22].

numerical results. On the other hand, model B yields stronger
attraction due to the extra term which is always positive. This
systematic error becomes even larger with increasing contact
angle, for which the pulling effect stemming from the extra
term becomes significant. As for the more complicated model
C, it is close to the numerical calculation when the separation
is small in general, but it does not seem to work very well if the
distance is large. This implies that the circular approximation
of the liquid bridge profile may not be accurate for the current
small volumes.

In another test, we computed the asymmetric liquid bridge
problem of Lambert et al. [22], in which they experimentally
measured the millimeter-scale adhesion between two spheres
with different physical properties. For validation against their
data, our results are also presented in dimensional forms. For
the problem setup, the lower sphere has radius R1 = 2 mm
and contact angle θ1 = 0◦ (set to 0.5° in DNS), and the upper
sphere has radius R2 = 3.95 mm and contact angle θ2 = 14.3◦
(set to 15° in DNS). The volume of the liquid bridge is
VLB = 1.4 mm3, which is 4.2% of the lower sphere volume
in percentage. The surface tension is 0.0208 N/m. Since the
asymmetric bridge involves unequal radii and contact angles
of solid surfaces, an effective configuration [2] is introduced
for adapting the analytical models: The effective radius
is Reff = 2R1R2/(R1 + R2) and the effective contact angle
satisfies cosθeff = (cosθ1 + cosθ2)/2, giving Reff = 2.66 mm
and θeff = 10.1◦. Both the asymmetric case and the effective
case are calculated by using the DNS method.

The force-distance relationships obtained by using different
approaches are plotted in Fig. 7, where the plus symbols are
the experimental data in Lambert et al. [22], and the circles are
their simulation results using the SURFACE EVOLVER [91]. For
separation distances varying from zero to 0.5 mm (or 0.25R1),
our DNS results of both asymmetric and effective cases agree
well with the data of Lambert et al. The prediction by model
A is still acceptable, but model B overestimates the total force
severely. In this case, model C is very accurate except for
slightly overestimating the force for H > 0.4 mm. The validity
of circular approximation is ensured by the increased liquid
volume (1.78% of effective sphere volume) of the current test.

Hence it is shown that model A can provide reasonable
accuracy for liquid bridges whose volumes are small compared

FIG. 8. Shapes for liquid bridges at zero separation distance H/R = 0.0 with different volume: (a) VLB/VP = 0.1 and (b) VLB/VP = 0.2.
Rows from top to bottom correspond to contact angle θ = 15◦,45◦,90◦, and 120◦.
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with the particles, although the discrepancy will be enlarged
by the increasing liquid volume, contact angle, and separation
distance. However, model B is incorrect because of the extra
term. In fact, as Lambert et al. [22] commented, model A
is formulated under the energetic approach, so it already
includes the effects of both the tension and Laplace terms.
It is thus redundant to append the extra tensile term, which has
unexpectedly spoiled the results instead. Model C, the most
evolved model, seems to be less accurate for very small liquid
bridges, but its performance becomes notable when the liquid
volume is slightly increased. The test in this section validates
the DNS method in the small-volume liquid bridge regime and
highlights its ability to examine model equations.

B. Liquid bridge with relatively large volume

Next we simulate liquid bridges with larger volumes of
VLB/VP = 0.1 and 0.2, respectively. In the first case, the
particle distance is H/R = 0.0,0.1,0.2, and 0.4; in the second
case, the particle distance is H/R = 0.0,0.2,0.4, and 0.8. For
both cases, the contact angle is changed by θ = 15◦,45◦,90◦,
and 120°. Thanks to the symmetry, only half the actual bridge
is computed.

We first present the comparison of the DNS results with
SURFACE EVOLVER solutions at zero separation distance.
Figure 8 shows the liquid bridges formed with different liquid
volumes and contact angles. The results are almost visually
indistinguishable. The influence of increasing contact angle
is clearly seen by changing the pendular bridge (top row) to
a toruslike surface (bottom row). We further give a closeup
view of the meridional profile in Fig. 9 by overlaying the
SURFACE EVOLVER interfaces with DNS results. From the
figure, the agreement between them can also be confirmed.
A small difference can be found in Fig. 9(d) where θ = 120◦;
the DNS surface is slightly more retracted than that of the
SURFACE EVOLVER. It may affect the evaluation of liquid
bridge actions. Comparisons of bridge profiles at nonzero
separations are given in Fig. 10, which shows the DNS (red
curves on the right side) and the SURFACE EVOLVER (green
curves on the left side) solutions for the case of liquid volume
VLB/VP = 0.1. In general, they agree with each other for
all combinations of separation distances and contact angles.
The sectional profile is concave with the small contact angle
θ = 15◦. It seems to be approximately straight and parallel to
the axis at θ = 45◦, i.e., the liquid bridge is close to cylindrical
shape. In fact, a critical embracing angle αc = 90◦−θ is known
for the transition between concave and convex bridge shapes
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FIG. 10. Comparison of sectional profiles for liquid bridges with VLB/VP = 0.1. The lines indicate separation distances: solid lines,
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[15], which incidentally coincides with the current θ = 45◦
case. Then beyond that the liquid bridge becomes convex (we
emphasize that our description of bridge shape is based on
whether the surface curves inward or outward in the sectional
plane). Hence it is clear that the contact angle has a significant
influence on the shape of the liquid bridge. Similar results have
been obtained with relative volume VLB/VP = 0.2, so they are
omitted here.

Figures 11(a) and 11(c) plot the total liquid bridge force
obtained with the DNS, SURFACE EVOLVER, model A, and
model C against the separation distance. Within the range of
parameters tested, the solutions by the DNS and the SURFACE

EVOLVER agree qualitatively, apart from some deviations near
the zero separation for large contact angles (e.g., the line of
θ = 120◦). As noted previously, in that case the simulated
surface is slightly less curved than the SURFACE EVOLVER one
[Fig. 9(d)], which consequently leads to a weaker action of
the convex capillary bridge. This problem may be improved
with further mesh refinement of the DNS. Nevertheless, the
current results are still in reasonable agreement, and they
qualitatively account for the influences of physical parameters.
For the comparison with analytical models, model A fails to
predict the liquid bridge force in all cases, despite its success

in previous tests where the liquid volume is small. For acute
contact angles θ = 15◦ and 45◦, the analytical model vanishes
with the distance much faster than numerical results. For the
neutral contact angle θ = 90◦, its remains constantly zero,
which is obviously wrong. For obtuse contact angles θ � 90◦,
the liquid bridge force undergoes a change of sign from being
repulsive (FLB < 0) to attractive (FLB > 0). This is consistent
with a previous study of a convex liquid bridge [92]. However,
this transition of action cannot be recovered by model A. On
the other hand, good agreements can be confirmed between
the numerical results and model C, which is able to correctly
describe the effects of contact angle and separation distance
on static liquid bridge force with relatively large volume.

In Figs. 11(b) and 11(d), the tension term FT and the
Laplace term FL contributing to the total liquid bridge force
are plotted, which can be easily calculated from the DNS
results by integration of the two terms in Eq. (21). It is
emphasized that this unique advantage allows us to compute
contributions from distinct interactions and thus to gain better
understanding of liquid bridge problems. Unlike the DNS, it is
not so natural for the SURFACE EVOLVER based on an energetic
perspective to inspect different terms separately for general
liquid bridges. For the simulated liquid bridges, the terms of
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FIG. 11. Liquid bridge force vs separation distance. (a,c) Comparison of total liquid bridge force by the DNS, SURFACE EVOLVER, and
analytical Models A and C. (b,d) Contributions by the tension term (solid lines) and the Laplace term (dashed lines), and the symbols are as
follows: circles, θ = 15◦; squares, θ = 45◦; triangles, θ = 90◦; crosses, θ = 120◦. In (a,b), VLB/VP = 0.1; in (c,d), VLB/VP = 0.2.

tension and Laplace are comparable in strength but inverse in
direction. As mentioned, FT is always cohesive by definition.
Its absolute value decreases slowly as the separation distance
or the contact angle increases. Large contact angles can also
cause the tension term to fall, and for some small contact angles
(θ = 15◦ and 45◦) the tension forces become quite close. On
the contrary, FL arising from Laplace pressure is generally
repulsive in this case. In other words, the Laplace pressure
inside the liquid bridge is positive so it is pushing particles
away from each other. For small contact angles (θ = 15◦
and 45◦), FL is insensitive to the separation distance, but for
large contact angles (θ = 90◦ and 120◦) it vanishes with the
distance. Therefore, the net force of FT and FL may have
different signs depending on the distance and contact angle,
which explains the transition of the total force from repulsion
to attraction in convex liquid bridges. This fact implies that
there may exist a balance point where solid particles connected
by such liquid bridges are force free. Kusumaatmaja and
Lipowsky [17] calculated the equilibrium state of the liquid
bridge between two parallel plates, and the current work
can be helpful in extending their discussions to curved solid
surfaces.

C. Liquid bridge among multiple particles

In this section, we show numerical results for liquid bridge
forces in the presence of multiple spheres. It is evident that the
liquid volume must be large enough to form a bridge joining all
particles in a cluster. This kind of liquid bridge can be found in
the pore structures of colloidal agglomerations [43,50] and
packed beds [93,94]. In the past, those “funicular” liquid
bridges were calculated in two dimensions by solving the
Young-Laplace equation [95] or by minimization of interfacial
energy [96]. Recently, modeling of the capillary transport in
three-dimensional porous media [97] via microstructures of
liquid bridges and thin films covering solid surfaces has been
reported [19,98]. However, the true multibody liquid bridge
interactions are usually neglected or approximated by super-
position of two-body actions in the literature [10,23,99,100].
Although the two-dimensional particle clusters with liquid
bridges have been simulated by some authors using the
phase-field method [41,43], it seems that the strength of the
multibody liquid bridge is not obtained exactly, and they
have not yet been calculated for three-dimensional systems.
In this study, we consider the DNS of two fundamental cases
involving regular structures by equal particles: the triangular
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FIG. 12. Liquid bridges in triangular particle configurations at different distances: (a) H/R = 0.2, (b) H/R = 0.4, (c) H/R = 0.6.

configuration and the tetrahedral configuration, which are two
of the primary cluster geometries identified in [93,94] (i.e., the
“trimer” and the “tetrahedron”).

In the planar triangular configuration, NP = 3 particles
with the same radius R; the particles lie on the vertices of an
equilateral triangle, for which the particle separation is defined
as the distance between two adjacent sphere surfaces, or H =
L−2R with L the side length of the equilateral triangle. In
our simulations, the bridge volume is VLB/VP = 0.26 and the
contact angle is θ = 15◦. The liquid bridge force is measured
for separation distance H/R = 0.2,0.4, and 0.6, respectively.
Figure 12 depicts the final states of the liquid bridges. As
the distance becomes longer, the liquid bridge gradually gets
stretched in shape. At the largest distance H/R = 0.6, three
particles are pulled aside and their connections with the liquid
bridge are necked. It is confirmed that the forces exerted on
three particles are almost equally pointing to the center of the
triangle.

The dimensionless forces are plotted for the triangular
configuration in Fig. 13(a). We note that, on calculating the
liquid bridge force by the energetic approach, the geometrical
relationship �h = �H/

√
3 between the virtual displacement

�h and the incremental separation distance �H is used.

As shown in the chart, the total liquid bridge force is
adhesive and its action decays with the increasing particle
distance. Qualitative agreement is found between the DNS
and the SURFACE EVOLVER results. As for the individual
contributions due to surface tension and pressure, it is seen
that the tension term rather than the Laplace term is the major
source to the total force. When the distance increases, both
terms decrease. Figure 13(b) plots the interface area between
liquid-gas and solid-liquid phases together with the associated
energy. For the triangular liquid bridge under stretching, the
area of the liquid-gas interface rises slightly, whereas the
solid-liquid wetting area is torn off from the hydrophilic
particle surface. As a result, the total interfacial energy rises,
for which the DNS result also agrees with that of the SURFACE

EVOLVER.
The tetrahedral configuration may be viewed as a part

of the three-dimensional packing of particles, for which
NP = 4 spheres; the spheres are placed on the vertices of
a regular tetrahedron. Similarly, the separation is defined by
the surface distance between two adjacent spheres; that is,
H = L−2R with L the edge length of the regular tetrahedron.
Again, the volume of the liquid bridge is VLB/VP = 0.26
and the contact angle is set to θ = 15◦. Figure 14 depicts
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FIG. 14. Liquid bridges in tetrahedral particle configurations at different distances: (a) H/R = 0.2, (b) H/R = 0.4, (c) H/R = 0.6.

the steady bridges formed in this tetrahedral element at
separation distances H/R = 0.2,0.4, and 0.6, respectively. At
the smallest separation, the interstitial liquid adheres to the gap
among the four spheres; when the separation is large, necking
of the interface is observed.

The variation of the liquid bridge force against the separa-
tion distance is plotted for a single particle in Fig. 15(a). In
this case, one has to use the relationship �h = (

√
6/4)�H

in the energetic approach. The present trend indicates that the
adhesive force loses its strength as particles move away from
each other. With respect to the liquid bridge force calculated,
the agreement between the DNS and SURFACE EVOLVER is
noticeable. As for the composition by the tension term and
the Laplace term, they are both decreasing within the range of
H/R = 0.2 to 0.6. Unlike the triangular case, the portion of the
Laplace term is now comparable to that of the tension term at a
close distance H/R = 0.2, beyond which it vanishes very fast.
Figure 15(b) shows the change of contact area and interfacial
energy with the elongation of the tetrahedral liquid bridge.
Similarly, the liquid-gas interface expands and the solid-liquid
contact area shrinks. The interfacial energy calculated from
the DNS is in good agreement with the reference solution by
the SURFACE EVOLVER. Therefore, the complex liquid bridge
among multiple particles can be conveniently modeled by
using the present DNS method.

D. Rupture of stretching liquid bridge

In the preceding sections, the static liquid bridges be-
tween particles are computed and their interaction forces
are obtained. In this part, another important aspect of liquid
bridge modeling, namely, the rupture distance beyond which
a steady liquid bridge cannot be formed [14], is investigated
by using the DNS approach. In this problem, a liquid bridge
is stretched by particles forced to move along the axial
direction. The bridge structure will consequently break at
some critical separation distance HRup. In this problem, two
equal spheres with radius R = 1 mm are aligned vertically.
The lower sphere is fixed and the upper sphere moves
upward with stretching velocity U = 0.5 mm/s. The liquid
bridge has physical properties of density ρl = 1000 kg/m3

and viscosity μl = 0.01 Pa s, which are larger than those of
the surrounding gas phase by a factor of 100. The surface
tension is σ = 0.01 N/m and the contact angle is θ = 10◦.
This pendular bridge is affected by gravity g = 12.5 m/s2

pointing from the upper particle to the lower one. Those
parameters give dimensionless numbers as follows: the Bond
number Bo = ρgR2/σ = 1.25, the Capillary number Ca =
μU/σ = 5 × 10−4, and the Weber number We = ρU 2R/σ =
2.5 × 10−5, respectively. The liquid volume is varied by
VLB = 0.10,0.15,0.20, and 0.25 mm3 to obtain corresponding
rupture distances (Table II).
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TABLE II. Rupture of stretched liquid bridge.

Bridge volume Initial distance Rupture distance
V/R3 H0/R HRup/R

0.10 0.480 0.514
0.15 0.520 0.589
0.20 0.560 0.647
0.25 0.620 0.691

Some representative snapshots of the case VLB/R3 = 0.2
are shown in Fig. 16. We can observe a smooth bridge profile at
the initial stage similar to those in previous examples. When the
rupture distance is reached, a thin neck is formed [Fig. 16(c)]
and the bridge breaks into disconnected parts very fast. We note
that such a neck is not stable and its formation mainly owes
to the liquid viscosity. It is also clearly seen that the weak but
finite gravitational effect causes the liquid bridge to be more
biased to the lower particle, for which a larger distribution of
liquid can be found after the rupture.

The critical rupture distance HRup is determined from the
simulation results as the particle separation at which the
axial bridge connection disappears. Figure 17 plots the liquid
bridge forces acting on the upper sphere as functions of
separation distance for different volumes under stretching until
the breakup. The force-distance plot indicates a fast softening
of the liquid bridge bond when the rupture point is approached.
Series of static solutions by SURFACE EVOLVER without gravity
are also presented in Fig. 17 for reference, which are obtained
by iteratively increasing the particle separation until stable
bridge states can no longer be found. According to Fig. 17, the
rupture distance predicted by the DNS is shorter than that by
the SURFACE EVOLVER as the liquid bridge volume increases.
This implies that gravity has an influence on liquid bridge
rupture.

The values of rupture distance are listed in Table II for each
liquid bridge volume. In order to validate those results, we
make a comparison with the experimental data of Mazzone
et al. [101] and the numerical solution from [102]. We also
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FIG. 17. Liquid bridge force on the upper particle during
stretching. Colors and symbols indicate liquid volumes: red circles,
VLB/R3 = 0.10; yellow squares, VLB/R3 = 0.15; green diamonds,
VLB/R3 = 0.20; purple triangles, VLB/R3 = 0.25. The black markers
show the corresponding static solutions without gravity obtained by
the SURFACE EVOLVER.

consider a widely used empirical model suggested by Lian
et al. [14]:

HRup = (1 + 0.5θ )V 1/3. (37)

Another slightly different version is proposed by Willet et al.
[24]:

HRup = (1 + 0.5θ )

(
V 1/3 + V 2/3

10R

)
. (38)

Figure 18 compares different results and correlations of
HRup. It is seen that all numerical results and empirical
equations tend to give longer rupture distance than the
experiment of [101]. The present DNS results agree well with
those of Darabi et al. who used boundary-fitted dynamic mesh
to simulate similar problems [102]. As for empirical models

FIG. 16. Simulated liquid bridge (V/R3 = 0.2) under stretching at different time instants: (a) t = 12.5 ms, (b) t = 125 ms, (c) t = 170 ms,
(d) t = 175 ms.
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FIG. 18. Rupture distance of liquid bridge under stretching.

that do not reflect the effect of gravity, the equation of Willet
et al. [24] overestimates the rupture distance for larger liquid
volumes, which is similar to the SURFACE EVOLVER results;
on the other hand, the equation of Lian et al. [14] coincides
with the DNS results in this test. Through the current test, it
is shown that the proposed method can be applied to liquid
bridge rupture problems involving viscous and gravitational
effects and can predict the critical rupture distance accurately.

E. Particle motion driven by liquid bridge

The solid particles are either fixed or forced to prescribed
motion in previous simulations. In this section, we simulate
the dynamic particle motions driven by the liquid bridge,
which requires a full integration of capabilities to calculate the
interface deformation, fluid motion, and particle displacement.

We consider a pair of particles connected by a liquid
bridge which is similar to the axisymmetric problem of
Villanueva et al. using a multicomponent phase-field method
[41]. The particle radius is R = 1 mm, and the solid density
is ρP = 2500 kg/m3. The liquid density is ρl = 1000 kg/m3

and the liquid viscosity is μl = 0.01 Pa s; the gas density
is ρg = 10 kg/m3 and the gas viscosity is μg = 0.001 Pa s.
The surface tension is σ = 0.01 N/m. The liquid bridge
has a relative volume of VLB/VP = 0.2 with interparticle
separation H0 = 0.8R, which is initialized as a cylindrical
surface connecting the particles (see Fig. 19). The particle is
then released to move under the action of the liquid bridge.
The spatial resolution is �x = 0.05 mm and the time step is
�t = 0.01 ms. Thanks to symmetry, only half the problem
domain is simulated with symmetric boundary conditions.

The behaviors during relaxation of the system toward
a balanced state are studied by setting the contact angle
to θ = 36◦ and 90◦, respectively. For the case of θ = 36◦,
Fig. 20 shows some illustrative snapshots. During the first

FIG. 19. Initial configuration of liquid bridge. The black bold line
shows the circumference of the particle, and the red line shows the
surface of the liquid bridge initialized as a cylindrical shape.

stage [Fig. 20(a)], the cylindrical shape of the bridge profile
does not conform to the local contact angle condition, and
hence the contact line expands to wet the particle surface. The
liquid bridge then begins to pull the particle in the attractive
direction [Figs. 20(b) and 20(c)]. The dynamic effect of inertia
finally causes the particle to collide on the symmetry plane and
rebound [Fig. 20(d)]. Such rebound arises from modeling the
particle contact force by the DEM, and it may take place for
several times until the kinetic energy is damped out completely,
which can be confirmed from plotting temporal variations of
the separation distance and the total liquid bridge force in
Fig. 21(a). In Fig. 21(b), we also examined the history of the
distance-force relationship. During the first approaching to the
symmetry plane, it is observed that at sufficiently far distance,
the total liquid bridge force is mainly composed of capillary
attraction (F > 0). Around the point H ∼ 0.2R, the dynamic
effect of lubrication dominates and the force switches to be
repulsive (F < 0) and reverses to the relative particle motion.

At the final state, the particle stays in contact with the
symmetry plane, for which a static liquid bridge action is
F = 2.32 (attractive, in dimensionless units). This reasonably
agrees with a reference solution of FRef = 2.48 obtained by
SURFACE EVOLVER at a zero-separation state (within 7% error).
Their agreement confirms the fact that the liquid bridge creates
a cohesive pair of particles under current conditions. On the
other hand, with similar conditions of VLB/VP = 0.2 and
θ = 36◦, Villanueva et al. reported a final state with nonzero
separation at H/R = 0.21 (see their Table 4 in [41]), which is
not consistent with the attractive liquid bridge action.

For another case of θ = 90◦, as discussed previously, the
bridge profile is convex so there may exist a balanced point
at H > 0 at which the liquid bridge force becomes zero.
Representative snapshots are shown in Fig. 22 to understand
this behavior. In Fig. 22(a), the bridge is recovering from the
initial cylindrical shape, and the difference from the previous
case is a receding contact line. Again the liquid bridge attracts
the particle moving toward the symmetry plane [Fig. 22(b)].
However, the liquid bridge can effectively prevent the particle
collision in this case. In Fig. 22(c) it almost reaches the state of

063301-17



XIAOSONG SUN AND MIKIO SAKAI PHYSICAL REVIEW E 94, 063301 (2016)

FIG. 20. Temporal evolution of particle connected by liquid bridge with contact angle θ = 36◦. The velocity profiles (blue arrows) are
shown for different configurations of the particle position (black circles) and liquid bridge shape (red line). (a) t = 1 ms, initial wetting.
(b) t = 5 ms, particle acceleration under attraction. (c) t = 15 ms, approaching the symmetry plane. (d) t = 24 ms, just after the first rebound.

maximum compression, and in Fig. 22(d) the particle moves in
the repulsive direction. The temporal variations of separation
distance and liquid bridge force of Fig. 23(a) imply that the
oscillatory behavior is similar to a spring system with damping.
According to the distance-force plot of Fig. 23(b), it finally
converges to a balanced state where F = 0 and H > 0.

After performing the simulation with sufficiently long time,
we find that the particle finally stops at a separation distance of
H/R = 0.40. Using SURFACE EVOLVER, the balanced point for
F = 0 is obtained around HRef = 0.42R, which agrees well

with the current result (below 5% error). This agreement is
remarkable in comparison with the past result of H = 0.68 (see
Table 4 of Villanueva et al. [41]), although the exact reason of
their deviation is not clear. On the other hand, the present DNS
method can satisfactorily compute the solid particle dynamics
driven by the liquid bridge and correctly predict the state of
equilibrium. Besides that, another advantage of the present
DNS is the easy calculation of total liquid bridge force for
individual particles, which cannot be achieved by using the
method of [41].
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FIG. 22. Temporal evolution of particle connected by liquid bridge with contact angle θ = 90◦. The velocity profiles (blue arrows) are
shown for different configurations of the particle position (black circles) and liquid bridge shape (red line). (a) t = 1 ms, initial wetting.
(b) t = 20 ms, undergoing attraction. (c) t = 40 ms, the bridge is now near its maximum compression. (d) t = 60 ms, receding under repulsion.

VII. CONCLUSIONS

In this study, the VOF-IB-DNS method is developed for
simulating three-dimensional gas-solid-liquid flows involving
capillary interactions. It uses the VOF method to track the
fluid interface and solves the incompressible Navier-Stokes
equations for multiphase flows. Solid particles are modeled
by the IB method which is modified to calculate the fluid-
particle interactions in three-phase flow systems. The proposed
method can simulate complex gas-solid-liquid flow problems
with ease. As a DNS method, its ability to calculate the

hydrodynamic and capillary forces a priori has enabled an
alternative approach to examine and establish model equations
for three-phase interactions.

The main subject of this paper is the numerical study of
liquid bridges among spherical particles by using the VOF-
IB-DNS method. The purpose is twofold: to validate our DNS
method by qualitative comparison with available analytical
and numerical solutions, and to investigate the liquid bridge
forces in a range of parameters that have not been thoroughly
studied in the past. First we examine the static interaction
force in the context of small-volume liquid bridges, and then
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those associated with larger liquid volumes. Simulations are
carried out by varying the parameters of bridge volume, contact
angle, and separation distance to inspect their influences. The
DNS results of static liquid bridge force are validated against
the reference solution by SURFACE EVOLVER, and they are
compared with different types of analytical models to check
the applicability in a wide range of flow cases. We also present
results for liquid bridges among multiple spheres. Particles
arranged regularly in triangular and tetrahedral structures are
computed, for which the multibody liquid bridge forces are
obtained. Next the breakup of the liquid bridge caused by
axial stretching of end particles is simulated. The effects of
viscosity and gravity on bridge shape before rupture and liquid
distribution after rupture are satisfactorily reflected by the DNS
results. The critical rupture distances predicted by the DNS are
also in good agreement with reference data. In another test,
the DNS calculates the particle motion driven by relaxing
the liquid bridge, which is a typically dynamic problem
involving fully coupled dynamics of interface, fluid, and solid.
The dynamic interactions are obtained showing attractive or
repulsive actions depending on the contact angle and particle
motion. In comparison with a past study, the present method
can also yield balanced states that are more consistent with
analysis of force balance, which is considered to be proof of
better resolving the physics in gas-solid-liquid flows.

Therefore, the numerical studies in this work justify the
VOF-IB-DNS method in several important aspects of bond
force, rupture distance, dynamic motion, and clustered state
with successful prediction of the liquid bridge physics.
Especially owing to its capability to obtain liquid bridge
behavior and interaction directly, this method might be
helpful for developing more general models of wet granular
materials. It can also be suitable for simulating other gas-
solid-liquid flows where the particle-interface interaction is
important.

In the future, we are planning to perform detailed in-
vestigations of complex liquid bridges in multiple particle
configurations. Besides that, the current algorithm will be
enhanced by our arbitrary shape boundary model [68] so
the liquid bridge interaction between nonspherical particles
could be evaluated. Another research topic is the fully
resolved DNS for dynamic liquid bridges involving particle
motion, bridge rupture, and liquid redistribution, for which
a computational model of contact angle hysteresis is to be
incorporated.
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24, 3157 (2008).
[23] S. Radl, E. Kalvoda, B. J. Glasser, and J. G. Khinast, Powder

Technol. 200, 171 (2010).
[24] C. D. Willett, M. J. Adams, S. A. Johnson, and J. P. K. Seville,

Langmuir 16, 9396 (2000).
[25] W. Huppmann and H. Riegger, Acta Metall. 23, 965 (1975).
[26] R. B. Heady and J. W. Cahn, Metall. Trans. 1, 185 (1970).
[27] Y. Chen, Y. Zhao, H. Gao, and J. Zheng, Particuology 9, 374

(2011).
[28] A. F. Payam and M. Fathipour, Particuology 9, 381 (2011).
[29] L.-F. Wang, W.-B. Rong, L.-N. Sun, L.-G. Chen, and B. Shao,

Chin. Phys. Lett. 26, 126801 (2009).
[30] K. A. Brakke, Exp. Math. 1, 141 (1992).
[31] A. Virozub, N. Haimovich, and S. Brandon, Langmuir 25,

12837 (2009).
[32] T. P. Farmer and J. C. Bird, J. Colloid Interface Sci. 454, 192

(2015).

063301-20

https://doi.org/10.1021/la9000686
https://doi.org/10.1021/la9000686
https://doi.org/10.1021/la9000686
https://doi.org/10.1021/la9000686
https://doi.org/10.1021/la0517639
https://doi.org/10.1021/la0517639
https://doi.org/10.1021/la0517639
https://doi.org/10.1021/la0517639
https://doi.org/10.1039/c0sm00497a
https://doi.org/10.1039/c0sm00497a
https://doi.org/10.1039/c0sm00497a
https://doi.org/10.1039/c0sm00497a
https://doi.org/10.1103/PhysRevE.80.031306
https://doi.org/10.1103/PhysRevE.80.031306
https://doi.org/10.1103/PhysRevE.80.031306
https://doi.org/10.1103/PhysRevE.80.031306
https://doi.org/10.1103/PhysRevE.73.051304
https://doi.org/10.1103/PhysRevE.73.051304
https://doi.org/10.1103/PhysRevE.73.051304
https://doi.org/10.1103/PhysRevE.73.051304
https://doi.org/10.1016/S0009-2509(97)00325-4
https://doi.org/10.1016/S0009-2509(97)00325-4
https://doi.org/10.1016/S0009-2509(97)00325-4
https://doi.org/10.1016/S0009-2509(97)00325-4
https://doi.org/10.1103/PhysRevE.87.022206
https://doi.org/10.1103/PhysRevE.87.022206
https://doi.org/10.1103/PhysRevE.87.022206
https://doi.org/10.1103/PhysRevE.87.022206
https://doi.org/10.1063/1.3543916
https://doi.org/10.1063/1.3543916
https://doi.org/10.1063/1.3543916
https://doi.org/10.1063/1.3543916
https://doi.org/10.1016/j.apt.2016.02.021
https://doi.org/10.1016/j.apt.2016.02.021
https://doi.org/10.1016/j.apt.2016.02.021
https://doi.org/10.1016/j.apt.2016.02.021
https://doi.org/10.1016/j.ces.2015.05.059
https://doi.org/10.1016/j.ces.2015.05.059
https://doi.org/10.1016/j.ces.2015.05.059
https://doi.org/10.1016/j.ces.2015.05.059
https://doi.org/10.1002/aic.690170125
https://doi.org/10.1002/aic.690170125
https://doi.org/10.1002/aic.690170125
https://doi.org/10.1002/aic.690170125
https://doi.org/10.1016/0021-9797(82)90161-8
https://doi.org/10.1016/0021-9797(82)90161-8
https://doi.org/10.1016/0021-9797(82)90161-8
https://doi.org/10.1016/0021-9797(82)90161-8
https://doi.org/10.1006/jcis.1993.1452
https://doi.org/10.1006/jcis.1993.1452
https://doi.org/10.1006/jcis.1993.1452
https://doi.org/10.1006/jcis.1993.1452
https://doi.org/10.1002/aic.11726
https://doi.org/10.1002/aic.11726
https://doi.org/10.1002/aic.11726
https://doi.org/10.1002/aic.11726
https://doi.org/10.1021/la401324f
https://doi.org/10.1021/la401324f
https://doi.org/10.1021/la401324f
https://doi.org/10.1021/la401324f
https://doi.org/10.1021/la102206d
https://doi.org/10.1021/la102206d
https://doi.org/10.1021/la102206d
https://doi.org/10.1021/la102206d
https://doi.org/10.1103/PhysRevLett.114.234501
https://doi.org/10.1103/PhysRevLett.114.234501
https://doi.org/10.1103/PhysRevLett.114.234501
https://doi.org/10.1103/PhysRevLett.114.234501
https://doi.org/10.1103/PhysRevE.91.042204
https://doi.org/10.1103/PhysRevE.91.042204
https://doi.org/10.1103/PhysRevE.91.042204
https://doi.org/10.1103/PhysRevE.91.042204
https://doi.org/10.1163/156856102760136454
https://doi.org/10.1163/156856102760136454
https://doi.org/10.1163/156856102760136454
https://doi.org/10.1163/156856102760136454
https://doi.org/10.1021/la0507131
https://doi.org/10.1021/la0507131
https://doi.org/10.1021/la0507131
https://doi.org/10.1021/la0507131
https://doi.org/10.1021/la7036444
https://doi.org/10.1021/la7036444
https://doi.org/10.1021/la7036444
https://doi.org/10.1021/la7036444
https://doi.org/10.1016/j.powtec.2010.02.022
https://doi.org/10.1016/j.powtec.2010.02.022
https://doi.org/10.1016/j.powtec.2010.02.022
https://doi.org/10.1016/j.powtec.2010.02.022
https://doi.org/10.1021/la000657y
https://doi.org/10.1021/la000657y
https://doi.org/10.1021/la000657y
https://doi.org/10.1021/la000657y
https://doi.org/10.1016/0001-6160(75)90010-3
https://doi.org/10.1016/0001-6160(75)90010-3
https://doi.org/10.1016/0001-6160(75)90010-3
https://doi.org/10.1016/0001-6160(75)90010-3
https://doi.org/10.1016/j.partic.2010.11.006
https://doi.org/10.1016/j.partic.2010.11.006
https://doi.org/10.1016/j.partic.2010.11.006
https://doi.org/10.1016/j.partic.2010.11.006
https://doi.org/10.1016/j.partic.2010.11.004
https://doi.org/10.1016/j.partic.2010.11.004
https://doi.org/10.1016/j.partic.2010.11.004
https://doi.org/10.1016/j.partic.2010.11.004
https://doi.org/10.1088/0256-307X/26/12/126801
https://doi.org/10.1088/0256-307X/26/12/126801
https://doi.org/10.1088/0256-307X/26/12/126801
https://doi.org/10.1088/0256-307X/26/12/126801
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1021/la902578j
https://doi.org/10.1021/la902578j
https://doi.org/10.1021/la902578j
https://doi.org/10.1021/la902578j
https://doi.org/10.1016/j.jcis.2015.04.045
https://doi.org/10.1016/j.jcis.2015.04.045
https://doi.org/10.1016/j.jcis.2015.04.045
https://doi.org/10.1016/j.jcis.2015.04.045


DIRECT NUMERICAL SIMULATION OF GAS-SOLID- . . . PHYSICAL REVIEW E 94, 063301 (2016)

[33] R. Ardito, A. Corigliano, A. Frangi, and F. Rizzini, Eur. J.
Mech., A: Solids 47, 298 (2014).

[34] A. Takei, K. Matsumoto, and I. Shimoyama, Langmuir 26,
2497 (2010).

[35] D. J. Broesch and J. Frechette, Langmuir 28, 15548 (2012).
[36] S. Dasgupta, M. Katava, M. Faraj, T. Auth, and G. Gompper,

Langmuir 30, 11873 (2014).
[37] A. S. Joshi and Y. Sun, Phys. Rev. E 79, 066703 (2009).
[38] K. W. Connington, T. Lee, and J. F. Morris, J. Comput. Phys.

283, 453 (2015).
[39] P. Singh and D. D. Joseph, J. Fluid Mech. 530, 31 (2005).
[40] J. Zhuang and Y. S. Ju, Langmuir 31, 10173 (2015).
[41] W. Villanueva, K. Grönhagen, G. Amberg, and J. Ågren,
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[79] G. B. Davies, T. Krüger, P. V. Coveney, and J. Harting, J. Chem.

Phys. 141, 154902 (2014).
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