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The paper deals with the hexagonal convective flow near the stability threshold in an internally heated fluid
layer. In our previous numerical study of convection near the stability threshold in a square box with internal heat
generation [Phys. Lett. A 377, 2111 (2013)] for a region of large horizontal extent, it has been shown that at small
values of Prandtl number (Pr), convection sets in as a pattern of hexagonal cells with upward motion in the center
(up-hexagons), whereas at large Pr, a stable flow pattern is formed by hexagonal cells with a downward motion
in the center (down-hexagons). Here, we study axisymmetric convection in a cylinder as a model of motion in a
single hexagonal cell. The radius of the cylinder matches the size of hexagons observed in our three-dimensional
simulation. The lateral boundary of the cylinder is free and heat insulated. Horizontal bounding surfaces are
rigid. The upper boundary is maintained at a constant temperature; the lower one is insulated. Two stable,
steady-state motions with the upward and downward flow at the cylinder axis have been attained in calculations,
irrespective of Pr. Cylindrical motion with the same direction of circulation as in the stable hexagons has a
maximum temperature drop measured along the radius at the bottom of the cell. We suggest maximization of the
temperature drop as a selection criterion, which determines the preferred state of motion in an internally heated
fluid layer. This new selection principle is validated by the comparative analysis of the dominant nonlinear effects
in low- and high-Prandtl number convection.
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I. INTRODUCTION

Natural convection induced by internal heat generation
plays an important role in many geophysical, astrophysical,
industrial, and technological processes, such as mantle motion
in the Earth [1], convection in atmosphere [2], fluid motion
in crystal growth systems [3], and in nuclear reactor core [4].
Also, convection retained by internal heat sources is one of the
most attractive pattern-forming systems with broken inversion
symmetry where, in a scope of a sufficiently simple problem
statement, a variety of steady flow patterns is physically real-
izable. Near the onset of motion, one can observe stable rolls,
hexagonal cells with ascending (up-hexagons) and descending
(down-hexagons) flow at the center, finite amplitude motion at
Rayleigh number Ra below the threshold prescribed by linear
stability theory. Prediction and elucidation of flow pattern
formation induced by uniform internal heating contribute to
the study of nonlinear processes in hydrodynamic stability.
Usually, fluid arrangements with isothermal top boundary and
adiabatic bottom are used for this purpose.

Such systems are controlled by two dimensionless pa-
rameters: standard Prandtl number Pr = ν

�
, and the Rayleigh

number proportional to the volume strength of heat source
q, Ra = gβqd5

2ν�2 , where d is the height of the fluid, g is the
absolute value of the gravitational acceleration, β = − 1

ρ

∂ρ

∂T
is

the thermal expansion coefficient, ρ is the fluid density, ν is
the kinematic viscosity, and � is the thermal diffusivity [5].

A number of theoretical, experimental, and numerical
studies have addressed the stability of the convective structures
in a layer with internal heat generation. (See, for example,
Refs. [6–15]). Most of them are focused on convection at
moderate and large Prandtl number and show the stability of
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finite amplitude down-hexagons in the subcritical domain and
under slightly supercritical conditions.

A theoretical investigation performed by M. Tveitereid
and E. Palm [16] deserves particular attention. For weakly
nonlinear convection in an internally heated fluid layer, the
authors predicted an effect of Prandtl number Pr on the process
of planform selection. They found a critical value of Prandtl
number Prcr ≈ 0.25, such that at Pr > Prcr down-hexagons is
the only stable planform. At Pr < Prcr, the stable planform is
up-hexagons. In the subcritical domain, at a fixed Rayleigh
number Ra < Racr, the up- and down-hexagons exchange
stability with the conductive state instead of rolls.

Our numerical study [17] is closely related to the inves-
tigation of Ref. [16]. We performed a full-scale computer
simulation of convection in an internally heated fluid box,
square in horizontal direction, with the aspect ratio 15. The
calculations revealed stable flow patterns of up-hexagons at
Pr < Prcr, with down-hexagons being stable at Pr > Prcr, and
rolls near Prcr ≈ 0.25. Transitions between the conductive
state, rolls, up and down hexagonal flows were investigated
for the Prandtl number in the range [0.1,100] and the Rayleigh
number from subcritical values up to 1.5Racr. We predicted
regions in the (Pr, Ra) plane, where different flow patterns are
stable. The numerical results are consistent with theoretical
deductions [16]. Nevertheless, the mechanics of planform
selection is still unclear.

The purpose of this study is to gain a better understanding of
the physical grounds for the preference of one or another flow
pattern at different values of Prandtl number. We investigate
the axisymmetric convection in a cylinder of appropriate size
as a model of fluid motion in the regular hexagonal cell. The
motion is induced by internal heat generation. The lateral
boundary of the cylinder is free and heat insulated. Horizontal
bounding surfaces are rigid. The upper one is maintained at
a constant temperature, while the lower one is insulated. The
approach is approved by the geometrical similarity between
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the flow structure in a hexagonal cell and in a cylinder, the size
of which allows us to inscribe the cylinder into a hexagonal
cell. Such similarity has been noted by Rayleigh [18] and
other investigators subsequently. Under weakly overcritical
conditions, we achieved in calculation stable axisymmetric
motions with the upward and downward flow at the axis,
regardless of Prandtl number. The stability of the two motions
subjected to the same Prandtl and Rayleigh numbers permits
us to compare their temperature and velocity fields. From
the comparison, we deduce a new criterion that determines
the preferred direction of circulation in a hexagonal cell:
the physically realizable motion has a maximum difference
between the temperature at the axis and the outer boundary of
the cell, measured at the bottom. This new selection principle
is nonintegral, and in this sense, it is strongly different from
the well-known integral ones proposed by W. Malkus [19,20],
F. Busse [21], and E. Palm [22]. A physical interpretation of
the suggested selection principle is provided.

II. PROBLEM STATEMENT

A. Governing equations

Convective motion of internally heated Boussinesq fluid
is studied within a cylindrical region with the height d and
radius r0d. The fluid motion is governed by the Navier-Stokes
equations and heat conduction equation with uniform heat
source term. For nondimensional description, the length is
scaled with the height of the cylinder d, tν = d2/ν is a
unit of time. Nondimensional temperature is introduced as
T = 2(Td−Ttop)κ

q̄d2 , Td is the dimensional temperature, Ttop is the
temperature of the upper boundary. Below, all functions and
variables are nondimensional.

The flow is axisymmetric. In cylindrical polar coordinates
(r,ϕ,z), the motion is constrained to be purely meridional,
thus velocity V = (Vr,0,Vz). Equations of motion are written
in stream function-vorticity form. Vorticity 	 is the curl of the
velocity and for axisymmetric motion 	 = (0,	ϕ,0). Since
velocity field is solenoidal, stream function ψ can be chosen
such that

Vr = 1

r

∂ψ

∂z
, Vz = −1

r

∂ψ

∂r
. (1)

It is convenient to use ω = −	ϕ/r, instead of 	ϕ. Then
dynamic equation for ω is

r
∂ω

∂t
+ ∂

∂r

(
∂ψ

∂z
ω

)
− ∂

∂z

(
∂ψ

∂r
ω

)

= ∂

∂r

[
1

r

∂

∂r

(
r2ω

)] + ∂

∂z

[
1

r

∂

∂z

(
r2ω

)]−Ra

Pr

∂T

∂r
. (2)

Kinematic equation connecting ψ and ω has the form

−rω = ∂

∂r

(
1

r

∂ψ

∂r

)
+ ∂

∂z

(
1

r

∂ψ

∂z

)
. (3)

Heat conduction equation is

∂T

∂t
+ 1

r

[
∂

∂r
(rVrT ) + ∂

∂z
(rVzT )

]

= 1

Pr

1

r

[
∂

∂r

(
r
∂T

∂r

)
+ ∂

∂z

(
r
∂T

∂z

)]
+ 2

Pr
. (4)

FIG. 1. The temperature field in the square box 15 × 15 × 1 in
the section z = 0.5. Results of our 3D calculations for Ra = 1420,
Pr = 1 [17]. The temperature field displays a hexagonal cellular flow
pattern. The size of the hexagon is approximately 2r0. Dark regions
correspond to cold sinking fluid; in light regions, hot fluid is rising
(down-hexagons).

Equations (2)–(4) are solved in the cylindrical region 0 � r �
r0, 0 � z � 1.

The boundary conditions for the velocity field are no-slip
on the rigid surfaces and tangential slip without any tangential
stress on the cylindrical boundary, so that

ψ |z=0,1 = ∂ψ

∂n

∣∣∣∣
z=0,1

= 0, (5)

ψ |r=r0
= ω|r=r0

= 0. (6)

The temperature is fixed at z = 1, elsewhere on the boundary,
heat flux vanishes:

T |z=1 = 0;
∂T

∂z

∣∣∣∣
z=0

= ∂T

∂r

∣∣∣∣
r=r0

= 0. (7)

At the axis, symmetry requires that

ψ |r=0 = 	ϕ

∣∣∣∣r=0 = 0;
∂T

∂r

∣∣∣∣
r=0

= 0. (8)

The radius of the cylinder r0 is prescribed by the size
of hexagonal cells observed in our three-dimensional (3D)
simulation of a fluid flow induced by uniform heating in a
rectangular box of height h = 1 and square in the horizontal
direction. The aspect ratio of the box is 15. All boundaries are
rigid; the vertical walls are perfectly insulated; as in the case
with the cylinder, the upper boundary is maintained at constant
temperature Ttop = 0, the lower boundary is adiabatic. At
Rayleigh number near the stability threshold, we numerically
obtained a steady flow pattern of regular hexagons (Fig. 1).
Their size r0 = 1.4 determines the radius of the cylinder.

The basic state of pure conduction is described by the stream
function ψ = 0 and the reference temperature profile T0(z) =
1−z2.
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The initial conditions are determined by the basic state, with
a perturbation of conductive temperature at the level z = 1/3:

ψ(r,z,0) = ω(r,z,0) = 0, (9)

T (r,z,0) = T0(z) + Aε(r)δ(z − 1/3), (10)

where A is constant amplitude of the perturbation, A > 0, ε(r)
is a monotone function, 0 < ε < 1, δ(z−1/3) = 0 for z �=1/3
and δ(z−1/3) = 1 for z = 1/3.

To initiate up-flow at the axis of the cell, perturbation with
∂ε/∂r < 0 is imposed. By analogy with hexagonal motion,
we call such flow pattern up-cell. Perturbation with ∂ε/∂r > 0
activates opposite direction of circulation inside the cylinder.
We call this flow arrangement down-cell.

The problem Eqs. (2)–(8) is solved by two-level implicit fi-
nite difference procedure specially designed for the numerical
study of long-term convective motion in incompressible fluid
[23]. Space-differencing of the advection terms in Eqs. (2) and
(4) is done following Ref. [24]. At each time level, the Navier-
Stokes equations and equation of heat transfer are solved in
turn. First, the velocity field is determined. Then, velocity is
inserted into the discretized Eq. (4) and the temperature is
calculated. The algorithm for the equation of motion is based
on a scheme, which conserves the mean kinetic energy [24].
Finite-difference equations for vorticity and stream function
are solved by coupled algorithm with respect to the vector
X = (ω,ψ). Boundary condition on vorticity is specified
in Tom’s form [25] and incorporates vorticity and stream
function at the implicit time level. Under this approach, integral
restriction on the vorticity [26] (conservation of vorticity),
which is essential for the physical problem statement, is
valid in the discrete model. Finite difference approximation
of heat conduction equation ensures conservation of mean-
square temperature [24]. Conservation of the quadratic means
(the mean kinetic energy and square temperature) together
with the integral constraint on the vorticity, provided by the
coupled solution of the motion equations, make the numerical
procedure very reliable in long-term numerical integration.
Most of the calculations have been done on a spatial grid
of the size 128 × 128 with time step 0.1tν . The results are
practically insensitive to grid refinement.

B. Integral quantities

Let us consider volume averaged kinetic energy, E =
1
2

∫ 1
0

∫ r0

0 (V 2
r + V 2

z )rdrdz, and vertical convective heat flux,

〈VzT 〉 = ∫ 1
0

∫ r0

0 VzT rdrdz, of the steady-state fluid motion
described by Eqs. (2)–(4) and boundary condition Eqs. (5)–(8).
As described in Ref. [27], we relate 〈VzT 〉 to the boundary
temperature. Multiplying Eq. (4) by (z − 1/2) and integrating
the result over the volume, the following equation is obtained:∫ 1

0

∫ r0

0
VzT rdrdz + 1

Pr

∫ r0

0

[
1

2

∂T

∂z

∣∣∣∣
z=1

+ T (r,0)

]
rdr = 0.

(11)

Since integration of Eq. (4) yields

− 1

Pr

∫ r0

0

∂T

∂z

∣∣∣∣
z=1

rdr = r2
0

Pr
,

Eq. (11) can be rewritten in the form

〈VzT 〉 = 1

Pr

∫ r0

0
[T0(0) − T (r,0)]rdr; (12)

i.e., volume-averaged vertical convective heat flux is com-
pletely defined by a deviation of the temperature from the
reference value at the cylinder bottom.

Averaged heat flux as a selective factor for a realizable
steady-state solution of the equations of motion was first
conjectured by W. Malkus [19] and discussed thereafter in
Ref. [20]. The author anticipated that the preferable convective
flow pattern maximizes the heat transport. F. Busse displayed
the equivalence between Malkus’s selection principle and
maximization of the kinetic energy in a stable solution [21]. It
will be shown how these selection criteria work for the problem
in hand.

III. NUMERICAL RESULTS

A. Stability map

Our numerical experiments estimate that the critical
Rayleigh number, Ra∗

cr, for the considered axisymmetric
problem is close enough to Ra∞

cr = 1386, suggested previously
for an infinite horizontal layer [8], Ra∗

cr ≈ Ra∞
cr + 20.

Under weakly overcritical conditions, namely, Ra =
1420,1440, and Prandtl number in the range Pr∈[0.01,100],
two steady-state solutions, one with up-flow and the other
with down-flow at the center of the cell, were observed
in the calculations. The direction of the circulation was
determined by the initial temperature distribution. Thus, if
the deterministic disturbance enhances the temperature toward
the axis, ∂ε/∂r < 0, steady-state motion has positive vertical
velocity near the center (r = 0) and negative velocity near
the lateral boundary (r = r0). Conversely, if ∂ε/∂r > 0, the
steady flow is downward near the center and upward near the
outer boundary.

In the subcritical domain Ra∈[Ramin,Ra∗], only one of these
flows saves its stability. Ramin and direction of circulation in
the unique stable motion depend on Pr. There is a critical
Prandtl number Prcr, such that at Pr > Prcr down-cell is stable;
up-cell is stable at Pr < Prcr, Prcr ≈ 0.225.

Regions in the (Pr,Ra) plane, where up- and down-cells are
stable, resemble the stability map for hexagonal convection in
a square box with internal heat generation [17]. At Pr > Prcr

near the stability threshold, cylindrical and hexagonal motions
with down flow in the center are, in a certain sense, preferable
flow patterns: in a rectangular box, down-hexagon is the only
stable planform both in subcritical and overcritical domains. In
axisymmetric convection, the preference of down cells shows
itself in the stability under subcritical conditions. In the same
sense, cylindrical cells with upward flow in the center are
preferred at Pr < Prcr.

With regard to convection in a fluid with temperature-
depended viscosity, Liang, Vidal, and Acrivos in Ref. [28]
have shown that both “up” and “down” solutions are stable
in a cylinder when Ra > Racr. Moreover, they predicted that
only one of these solutions remains stable in the subcritical
regime. Joseph [29] confirmed the result of Liang et al. in a
more general statement of the problem. The remaining two
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FIG. 2. Comparison of integral quantities in up and down cells.
Ra = 1420. (a) The ratio between averaged convective heat fluxes in
up-cell and down-cell (λ) as a function of Pr; (b) Kinetic energy versus
Prandtl number. •, Eup; �, Edn. Near Pr = 0.225 〈VzT 〉up = 〈VzT 〉dn

and Eup = Edn.

investigations [28,29] were restricted to the case of large
Prandtl number.

B. Kinetic energy and convective heat flux

Mean convective heat flux 〈VzT 〉 has been calculated for
steady motion in up- and down-cells under weakly overcritical
conditions. To compare the effectiveness of convective heat
transport in the flows with different directions of circulation,
the ratio λ = 〈VzT 〉up/〈VzT 〉dn as a function of Prandtl number
is plotted in Fig. 2(a). Here and below, subscripts “up” and “dn”
denote quantities related to up- and down-cells, respectively.
At small Prandtl number, motion with up-flow in the center
maximizes averaged vertical convective heat flux, λ > 1.

Near the critical Prandtl number, effectiveness of both flow
patterns equalizes, λ = 1. For Pr > Prcr, motion with down
flow along the cylinder axis produces maximum heat flux,
λ < 1. According to Eq. (12), maximum vertical heat transport
is associated with minimum averaged over the cylinder bottom
temperature.

The kinetic energy displays similar behavior as vertical heat
flux. Numerical data show that Eup > Edn for Pr < Prcr and
Eup < Edn for Pr > Prcr [Fig. 2(b)].

The calculations reveal a significant extremum property of
steady motions in the cylindrical cell. Flow, which rotates
in the same direction as in the stable 3D hexagon, has
maximum kinetic energy, and maximum averaged over the
volume vertical convective heat flux.

Strictly speaking, Malkus’s selection principle [19,20] and
Busse’s criterion [21] are not applicable to convection in a
finite circular cylinder, where the two stable solutions with
different transport capacities exist at Ra > Racr. On the other
hand, the maximum of the kinetic energy and averaged vertical
heat transport indicates the unique solution, which is stable
under subcritical conditions.

C. Temperature and velocity fields

Specific features of convective motion at small and large
Prandtl number are determined by different dominant non-
linearities. For Pr 	 1, the dominant nonlinear effect lies
in advection of temperature isolines, while nonlinearity in

FIG. 3. Temperature field. Up-row: Pr = 0.01, (a) down-cell,
(b) up-cell. Down-row: Pr = 100, (c) down-cell, (d) up-cell. At
small Prandtl number, fluid motion produces small deviation of
strait contour lines from horizontal. At large Prandtl number, curved
isotherms display advection of temperature.

hydrodynamic part is less important. In the case of Pr 
 1,
advection of velocity prevails since the main nonlinear terms
come from Navier-Stokes equations.

Figure 3 shows the effect of Prandtl number on the
temperature distribution. At Pr = 0.01, the temperature field
is scarcely affected by convection. Isotherms are practically
straight lines, and the temperature is very close to the pure
conductive case. At Pr = 100, temperature is the quantity that
is advected by the dominant nonlinear effects and isotherms
are curved under the action of fluid motion.

The vertical component of the velocity field is plotted in
Fig. 4. There are two bending points in the velocity field.
The absolute value of Vz always has its maximum at the axis
and minimum at the outer boundary. At low Prandtl number,
nonlinear effects lead to a compression of vertical flux in the
direction of motion: down flux becomes narrower approaching
the cell bottom, while up-flux expands. The demarcation line
between upward and downward motion, contour line Vz(r,z) =
0, is inclined toward the axis in up-cell and outward in down-
cell. At large Prandtl number, the demarcation line is parallel
to the cylinder axis.

Global properties of the motion manifest themselves in the
velocity profiles near the cell bottom (Fig. 5). At Pr = 0.01,
rising column of fluid in up-cell has a larger diameter than
descending flux in down-cell, while at Pr = 100 vertical
velocity in up- and down-cells changes its sign at the same
point. At low Prandtl number, motion in up-cell is more
intensive than in down cell and advection flattens velocity
profile near the axis [Fig. 5(a)]. At high Prandtl number,
nonlinear deformation of the velocity field is weak, profiles
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FIG. 4. Vertical component of the velocity. Up-row: Pr = 0.01,

(a) down-cell, (b) up-cell. Down-row: Pr = 100, (c) down-cell, (d)
up-cell. At Pr = 0.01, z coordinates of velocity bending points are
shifted. In the down-cell, minimum of Vz at the axis is located lower
than the maximum on the outer boundary, and vice versa, maximum at
the axis in up-cell is higher than the minimum at r = r0. At Pr = 100,

bending points have the same vertical coordinate z = 0.5 both in up-
and down-cells.

of vertical velocity near the bottom of up and down cells are
similar and meet the level Vz = 0 at the same point [Fig. 5(b)].

Magnitudes of the velocity averaged over the axis and outer
boundary is

V �
z (r) = Pr

∫ 1

0
Vz(r,z)dz, r = 0, r0, (13)

FIG. 5. Vertical velocity near the bottom (at z = 0.06) in up- and
down-cells. (a) Pr = 0.01; (b) Pr = 100. Notice that near the axis
absolute value of vertical velocity in down-cell is larger than velocity
in up-cell both at Pr = 0.01 and Pr = 100. Profiles of V dn

z and V up
z ,

plotted against −V dn
z . �, V dn

z ; •, V up
z ; �, −V dn

z . Velocity is scaled
with ν/d .

TABLE I. Averaged velocity V �
z and corresponding time interval

�t� = 1/V �
z .

Pr 0.01

Cell Up Down

r 0 r0 0 r0

V �
z 6.1×10−2 −3.1×10−2 −4.6×10−2 2.3×10−2

�t� 16.4 31.12 21.45 42.33

Pr 100

Cell Up Down

r 0 r0 0 r0

V �
z 7.2×10−1 −2.8×10−1 −9.9×10−1 4.3×10−1

�t� 1.39 3.51 1.006 2.3

and corresponding time intervals for a fluid particle to travel
along the vertical boundaries, �t� = 1/V �

z , r = 0,r0 are given
in Table I. (Here velocity is scaled with �/d.)

The data show that at Pr = 0.01, fluid moves along the
vertical boundaries very slowly on the thermal time scale.
Under such conditions, the heat conduction has enough time
to balance out the temperature and prevents the motion
from distorting the parabolic temperature profile substantially
[Fig. 6(a)].

At Pr = 100, time interval for a particle to travel a distance
of the cylinder height is near order of magnitude less than at
Pr = 0.01. Heat transport is dominated by fluid motion in this
case. As a result, at the boundaries, we observe considerable
departure of the temperature from the conductive profile
[Fig. 6(b)].

D. Temperature distribution along the bottom of the
cylindrical cell

Volume-averaged heat flux, which reaches its maximum in
up-cell at Pr < Prcr and in down-cell at Pr > Prcr, is strongly
coupled with temperature distribution at the bottom of the
cylinder [see Eq. (12)]. In this section, the effect of Prandtl

FIG. 6. Temperature profiles on the axis and outer boundary in
up- and down-cells: (a) Pr = 0.01, (b) Pr = 100; �, down-cell, axis;•, down-cell, boundary; �, up-cell, axis; ✶, up-cell, boundary. The
inset shows a noticeable deviation of the temperature profile from the
reference one near the cylinder bottom at Pr = 0.01.
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T

δTcold

δ Thot1

20.97

1

1.02

r0 0.2 0.4 0.6 0.8 1 1.2 1.4

ΔT

Pr0.01 0.05 0.2 5 100

δ Tcold

δ Thot
T

4

3

0.93

1.00

1.02

r0 0.2 0.4 0.6 0.8 1 1.2 1.4

FIG. 7. Temperature distribution at the bottom. Ra = 1420. (a) Pr = 0.1; (1) T up(r,0); (2) T dn(r,0); (b) Pr = 100; (3) T up(r,0); (4) T dn(r,0);
(c) The temperature drop between the axis and outer boundary; •, down-cell; �, up-cell. The magnitude of temperature drop in up- and
down-cells increases with Pr number while Pr � 2, then settles approximately on constant.

number on the temperature field at the bottom of the cell is
considered in detail.

Figure 7, where T up(r,0) and T dn(r,0) are plotted for Pr =
0.1 and Pr = 100, illustrates typical temperature distribution
at small and large values of Prandtl number at the cylinder
bottom. It is clearly seen that at small Prandtl number “cold”
ends of the temperature profiles are closer than “hot” ones,
i.e.:

δTcold < δThot, (14)

δTcold = T up(r0,0)−T dn(0,0), (15)

δThot = T up(0,0)−T dn(r0,0). (16)

On the contrary, at large Prandtl number, temperature in the
descending fluxes differs more than in uprising fluid:

δTcold > δThot. (17)

Inequalities Eqs. (14) and (17) can be rewritten in the form,
which allows to compare the temperature drop between the
axis and outer boundary at the bottom of the cylinder:

�T up > �T dn for small Pr, (18)

�T dn > �T up for large Pr, (19)

where

�T α = |T α(0,0) − T α(r0,0)|,α = up, dn. (20)

The dependence of the temperature drop on Prandtl number
is presented in Fig. 7(c). Qualitative results Eqs. (18) and
(19) are confirmed by corresponding numerical data given in
Table II. At small Pr, calculations manifest maximization of the
temperature drop in the up-cell, while at large Pr the maximum
is registered in down-cell.

It is worth noticing that in our simulation kinetic energy
and averaged heat flux in up- and down-cells are equal at Pr =
0.225 (Fig. 2); the temperature drop in both types of cells levels
off at a little bit lower value. We do not know the exact reason

for this discrepancy. Maybe there is an interval of Prandtl
numbers where axisymmetric motions pertain to some specific
properties and the situation resembles 3D cellular convection.
In the 3D calculations [17], a band of Pr numbers near Prcr

where roll flow is preferred has been registered. Outside that
band, the transition from rolls to down-hexagons occurs with
increasing Pr. As the Prandtl number decreases, up-hexagons
become predominant motion planform. We can’t observe 2D
rolls in our cylindrical domain, but an interval of Pr numbers
where cells with both types of circulation are on equal terms
can exist. Axisymmetric convection with Rayleigh and Prandtl
numbers near critical values requires a special investigation.
However, such an investigation is not essential for the purpose
of this study.

To sum up, outside an immediate vicinity of critical Pr
number, the maximum temperature drop, maximum kinetic
energy, and averaged heat flux are observed in the cylindrical
motion, which rotates in the same direction as in the stable
hexagonal cell. Maximization of the temperature drop provides
a nonintegral selective factor, which can’t be formally obtained
from integral extremum properties (see Sec. III B) under ap-
parent and reasonable restrictions on temperature distribution.

IV. PHYSICAL INTERPRETATION

A. Cylindrical motion

The full-scale numerical simulation displays maximization
of the temperature drop in the preferred flow motion. It would
be interesting to predict this result on the grounds of qualitative
physical considerations and simplified mathematical models.
Such physical understanding, rather than pure calculations, can

TABLE II. Temperature drop at the bottom of cylindrical cell.

Pr 0.01 0.05 0.1 0.2 1 5 100

102 × �T up 0.73 3.54 5.52 6.95 7.45 7.32 7.28
102 × �T dn 0.62 2.58 4.67 7.04 10.82 11.42 11.53
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FIG. 8. Pr = 100. (a) Velocity distribution close to the bottom of
the cylinder; (b) temperature distribution at the bottom of the cylinder;
�, down-cell; •, up-cell

shed light on the problem of planform selection in Rayleigh-
Benard convection.

At low Prandtl number and Rayleigh number close to
Racr, temperature field is controlled mainly by heat diffusion.
Heat conduction has enough time to balance out temperature
difference between the fluid element and its new surroundings.
The temperature field is close to pure heat conduction profile.
The velocity is small; its action on the temperature field is
weak but still noticeable.

Under such conditions, 1D diffusion-dominated
convection-diffusion problem Eqs. (A1) and (A2) provide
simplified mathematical descriptions of the temperature
distribution.

Now suppose both types of circulation in the cylinder are
on equal terms. It means in particular that at the axis, absolute
values of the averaged over z vertical velocity |ua| in up-
and down-cells are equal, the same is true for the velocity at
the outer boundary |ub|, |ua| 
 1, |ub| 
 1, uaub < 0. From
geometrical consideration, it is obvious that velocity at the
cell axis is higher than that at the lateral boundary: |ua| >

|ub|. A reasonable estimate for the temperature drop �T α

Eq. (20) is given by the value of the temperature difference
�Q(ua,ub), which is calculated in the Appendix. Equations
(A5) and (A6) show that �Q at ua > 0 is greater than �Q at
ua < 0. Therefore, at small Prandtl number, up-flow at the axis
favors maximization of the temperature drop at the bottom of
the cell.

Assessment of the temperature drop at high Prandtl number
is based on the properties of the velocity field discussed in
Sec. III C, namely, (P1) at the axis, near the bottom, absolute
value of vertical velocity in down cell exceeds the velocity in
up cell (Fig. 5), |V dn

z (0,z)| > V
up
z (0,z), 0 < z�ζ < 0.4; (P2)

at a fixed z, vertical velocity in up and down cells as functions
of r change their sign at the same point. Let it be that r = r̄ and
it is the only point, where |V up

z (r,z)| = |V dn
z (r,z)|, z = const.

At high Prandtl number, velocity is comparatively large on
the thermal time scale and advection has a substantial impact
on the temperature field (Fig. 8). Quickly moving along the
axis, cold flow in the down-cell does not have enough time
for good heating. At the axis, near the bottom, the absolute
value of vertical velocity in the down-cell exceeds the velocity
in the up-cell (Fig. 5, 8(a); P1). Velocity directly affects the
temperature, and at the axis near the bottom, temperature in

the down-cell deviates from the reference profile more than
that in the up-cell:

T0(z) − T dn(0,z) > T up(0,z) − T0(z),0 � z � ζ < 0.4.

(21)
Similar inequality is true at the outer boundary. Indeed,
properties P1 and P2 ensure the following:

S−
dn > S+

up, (22)

where (see Fig. 8)

S−
dn =

∣∣∣∣
∫ r̄

0
rV dn

z (r,z)dr

∣∣∣∣; S+
up =

∣∣∣∣
∫ r̄

0
rV up

z (r,z)dr

∣∣∣∣.
By virtue of the continuity equation,

S−
dn = S+

dn; S+
up = S−

up,

S+
dn =

∣∣∣∣
∫ r0

r̄

rV dn
z (r,z)dr

∣∣∣∣; S−
up =

∣∣∣∣
∫ r0

r̄

rV up
z (r,z)dr

∣∣∣∣.
Consequently,

S+
dn > S−

up. (23)

Allowing for velocity property P2, integral inequality Eq. (23)
means that V dn

z (r0,z) > |V up
z (r0,z)|, and as well as near

the axis, near the outer boundary temperature in down-cell
deviates from the reference profile to a greater extent than that
in the up-cell:

T dn(r0,z) − T0(z) > T0(z) − T up(r0,z), 0 � z � ζ. (24)

Added together, Eqs. (21) and (24) give at z = 0

T dn(r0,0) − T dn(0,0) > T up(r0,0) − T up(r0,0),

i.e., at high Prandtl number down flow at the axis is preferred
for the maximization of the temperature drop at the cell bottom.

B. Hexagonal motion

Specific features of the motions essential to the physical
interpretation of the selective factor are the same in cylindrical
and hexagonal cells. Our 3D numerical simulation of hexago-
nal convection in a rectangular box of large horizontal extent
(see Sec. II A) displays the likeness. For example, averaged
time interval �t� for a fluid element to move along the axis
and outer boundary of the stable up-hexagon at Pr = 0.01
is about 25t� and 75t� , respectively. At these time scales,
heat conduction flattens out the temperature in the horizontal
direction. Nonlinear effects are mainly associated with the
equations of motion. Consequently, at small Prandtl number,
as in the axisymmetric case, 1D model Eqs. (A1) and (A2)
are suitable for the qualitative analysis of the temperature
field in hexagons. At Pr = 100, on the axis of down-hexagon
�t� ≈ t� , and on the lateral boundary, �t� ≈ 3t� . At large
Prandtl number, dominant nonlinearity lies in advection of
temperature isolines. Figure 9 shows that the departure of the
temperature from the reference level T0(0) = 1 at the bottom
of down-hexagon (Pr = 100) exceeds the appropriate value in
up-hexagon (Pr = 0.01) by more than an order of magnitude.

The similarity between the velocity fields in cylindrical and
hexagonal cells is illustrated in Fig. 10, where contour lines of
3D vertical velocity are plotted in a plane passing through the
axes of two adjacent hexagonal cells.
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FIG. 9. Departure of the temperature from the reference point at
the bottom of hexagonal cells, f (r) = T (r,0) − T0(0); based on the
results of our 3D calculations. (1) up-hexagon, Pr = 0.01, f (r) × 10;
(2) down-hexagon, Pr = 100, f (r).

At small Prandtl number, we notice in up-hexagon the
compression of fluid flux in the direction of motion. As well as
in the cylinder with ascending flow at the center, demarcation
line Vz = 0 is inclined to the axis of up-hexagon [Fig. 10(a)].
At large Prandtl number, contour line Vz = 0 is parallel to the
cell axis both in down-hexagon [Fig. 10(b)] and in the cylinder.
The latter is the key point in using the mass conservation law
for the estimation of the temperature drop at the bottom of the
cell.

V. SELECTION CRITERIA

A close resemblance between fluid motion in the cylinder
and hexagonal cell leads to the conclusion that a selective
factor, which indicates the preferred (i.e., stable both in
subcritical and overcritical domains) type of the motion in
the cylinder equally pertains to hexagonal motions. Therefore,
the selection criterion for physically realizable planform near
the stability threshold in a fluid layer with internal heat
generation, isothermal upper boundary, and adiabatic lower
one reads as follows: subjected to the same Ra and Pr
numbers, a stable flow pattern maximizes the absolute value
of the difference between the temperature at the axis and the
lateral boundary of a hexagonal cell. The temperature drop is
measured at the bottom of the cell.

The proposed selection principle can be easily general-
ized to a fluid arrangement with another thermal boundary
condition. As an example, we have investigated convection
in a cylinder with rigid horizontal boundaries maintained

FIG. 10. Vertical velocity contour lines in a plane passing through
the axis of two adjacent hexagons; (a) stable up-hexagon, Pr = 0.01;
(b) stable down-hexagon, Pr = 100. Results of our 3D calculations.

at a constant temperature and correspondent 3D motion
in a box. (Similar flow arrangement has been considered
in Refs. [13,27].) Homogeneous heat generation produces
conduction profile with an unstable temperature gradient in
the upper part of the region and stable fluid stratification
near the lower boundary. In this case, the effect of Prandtl
number on the motion stability is the same. Stable up-hexagons
have been observed at Pr < Prcr, while down-hexagons are
preferred at Pr > Prcr, in the cylinder both directions of
circulation are stable. The axisymmetric flow, which rotates
in the same direction as in the stable hexagons, has maximum
kinetic energy, averaged vertical heat flux, and the temperature
drop. However, the temperature drop should be measured near
the boundary between stably and unstably stratified fluid, at
z = 0.5 or somewhere near this level.

In our calculations, we have found that temperature drop
in the up and down cylindrical cells are equal at Prcr ≈ 0.225
(Fig. 2). In 3D convection, both types of hexagons lose their
stability in the vicinity of Prcr ≈ 0.25 and rolls become the
preferred state of motion [17]. Critical Prandtl number in
the Benard-Marangoni convection is near the same [30]. We
cannot suggest any physical reasons why the Prandtl number
values around Pr = 0.25 are crucial for the process of planform
selection in different flow arrangement with broken inversion
symmetry.

VI. CONCLUSIONS

The paper contributes to the investigation of the problem
of planform selection in the internally heated fluid. The study
concerns the stability of up- and down-hexagons at large and
small Prandtl numbers. We have considered axisymmetric
motion in the cylinder of appropriate size as a model of a
hexagonal cell. The cylindrical domain has stress-free and
heat-insulated lateral boundaries. Direct numerical simulation
of axisymmetric motion has been done near the stability thresh-
old for Pr number in the range [0.01,100]. In the calculations,
under slightly overcritical conditions, we obtained two stable
solutions, one with up-flow and the other with down-flow at
the cylinder axis, regardless of Pr number.

Flows, which rotate in the same direction as in the
stable 3D hexagonal cell, have maximum kinetic energy, and
maximum averaged convective heat flux. Up-cell possesses
these extremum properties at Pr < Prcr ≈ 0.25, and down-
cell exhibits the extremum properties at Pr > Prcr. Under
subcritical conditions, only motion with maximum kinetic
energy and heat flux retains stability.

The comparative study of the flows with the different
directions of circulation reveals one more extremum property
of the preferred flow pattern: the maximum value of the
temperature drop at the bottom of the cell. Maximization of
the temperature drop does not stem directly from the averaged
flow properties; nevertheless, it is approved by the distinct
dominant nonlinear effects in small and large Prandtl number
convection. Nonlinearities equally affect the flow, both in the
cylindrical cells and in the 3D hexagons, and favor stability
of up-hexagons at low Pr numbers and down-hexagons at
high Pr numbers. Because of this similarity, we put forward
maximization of the temperature drop as a new nonintegral
selection principle for physically realizable convective motion
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in the internally heated fluid. The principle can be generalized
to different boundary conditions.
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APPENDIX

At small Prandtl number, temperature distribution along
coordinate z can be qualitatively described by a solution of the
following 1D convection-diffusion problem:

d2Q

dz2
− u

dQ

dz
+ 2 = 0, z ∈ (0,1), (A1)

dQ

∂z

∣∣∣∣
z=0

= 0,Q|z=1 = 0, (A2)

where u is constant. Its magnitude lies in the range, which
is determined by the averaged vertical velocity Eq. (13) from
Table I, u∈[−0.5×10−2,6.5×10−2], with u < 0 correspond-
ing to down-flowing fluid in our 2D model and u > 0
representing the up-flowing flux.

The solution of Eqs. (A1) and (A2) is

Q(z,u) = 2

u
(z − 1) − 2

u2
(euz − eu). (A3)

Let us determine the deviation of Q(z,u) from reference profile
at z = 0:

δQ(u) = |T0(0) − Q(0,u)| ≈ 1

3
|u|

(
1 + u

4

)
. (A4)

Here, expansion of Q(0,u) in powers of u has been used.
The following statements are easily derived from Eq. (A4):
(1) if two values of the velocity, ua and ub, have the same

sign and |ua| > |ub|, then δQ(ua) > δQ(ub);
(2) if ua > 0, then δQ(ua) > δQ(−ua);
Propositions (1) and (2) reveal that departure of Q(u) from

reference point T0(0) increases with |u| and that the velocity
of the same magnitude produces a greater departure from the
reference value in the up-flowing fluid than in descending flux.

Further, from Eq. (A4) or directly from Eq. (A3), we can
evaluate the temperature drop for given magnitudes ua and ub:

�Q(ua,ub) = |Q(0,ua) − Q(0,ub)|

≈ 1

3
|ua−ub|

[
1 + (ua + ub)

4

]
, (A5)

and notice that if |ua| > |ub|, then

�Q(|ua|, − |ub|) > �Q(−|ua|,|ub|). (A6)
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