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Effect of fluid inertia on the motion of a collinear swimmer
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The swimming of a two-sphere system and of a three-sphere chain in an incompressible viscous fluid is

studied on the basis of simplified equations of motion which take account of both Stokes friction and added mass
effects. The analysis is based on an explicit expression for the asymptotic periodic swimming velocity and a
corresponding evaluation of the mean rate of dissipation. The mean swimming velocity of the two-sphere system
is found to be nonvanishing provided that the two spheres are not identical. The swimming of a comparable chain

of three identical spheres is much more efficient.
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I. INTRODUCTION

In earlier work we studied the effect of inertia on laminar
swimming and flying of an assembly of rigid spheres in an
incompressible viscous fluid [1]. The spheres were assumed
to interact directly via central forces, and hydrodynamic
interactions were calculated from low Reynolds number
hydrodynamics [2] and the theory of potential flow [3]. It
turned out that in a wide range of dimensionless viscosity the
swimming is similar to that found in the Stokes regime where
friction dominates [4]. In the following we extend our study on
the basis of an explicit expression for the asymptotic periodic
swimming velocity.

The model takes account of the key effects of friction
and inertia on the motion of spheres in a fluid. In linear
response theory, as first studied by Stokes [5] for a single
harmonically bound sphere with fluid flow described by the
linearized Navier-Stokes equations, both effects are apparent.
The theory yields the velocity response to an applied periodic
force to first order in the amplitude of the force. In the Stokes
limit, corresponding to zero frequency, the admittance which
characterizes the frequency-dependent response reduces to the
Stokes mobility, the inverse of the friction coefficient. In the
high frequency limit the admittance is dominated by inertia,
as incorporated in the effective mass, the sum of the mass of
the sphere and the added mass.

The complete single-sphere admittance has an additional
term, proportional to the square root of frequency, corre-
sponding to memory effects [6] which are omitted from the
model studied here. It is known that the velocity relaxation
function, describing the relaxation of velocity after a sudden
impulse, is well approximated by an exponential, unless the
mass density of the sphere is much less than that of the fluid
[7]. The relaxation time of the exponential is given by the
ratio of effective mass and Stokes friction coefficient. The
additional term in the admittance makes the relaxation function
nonexponential, but has a marked effect only at long times.

The linear response theory can be extended to many spheres
[8,9]. The many-sphere admittance matrix automatically in-
cludes both Stokes friction and added mass hydrodynamic
interactions, but has complicated additional terms. The sim-
plified admittance matrix in which the latter are omitted may be
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regarded as an interpolation between the two extremes of pure
Stokes friction and pure inertia. Presumably this provides a
reasonably good approximation to the linearized motion unless
the spheres are much lighter than the fluid. We may expect that
in the theory of swimming of an assembly of spheres at small
amplitude, i.e., small Reynolds number, the effects of friction
and inertia, as found in the linearized theory, dominate. The
theory of swimming is of necessity nonlinear.

The relative importance of friction and inertia may be
characterized by a dimensionless scale number s defined by
s? = a’wp/(2n), where a is the radius of a sphere, w is the
frequency, p is the mass density of the fluid, and 7 is the shear
viscosity. We may consider the full range of scale number s,
as long as the amplitude ¢ of the swimming stroke is small.
The swimming of microorganisms is dominated by friction
and corresponds to the Stokes limit s = 0. In this limit inertia
is neglected completely. The model for larger scale number s
is relevant for larger organisms swimming at small Reynolds
number. The model does not account for the vortex shedding
relevant at larger Reynolds number [10,11].

The scallop theorem valid in the Stokes regime [12]
shows that a body consisting of two spheres, immersed in
a viscous fluid and in slow relative oscillatory motion along
the connecting axis, does not swim. It was recently found by
Klotsa et al. in experiment and computer simulation [13] that
such a body does swim for fast relative motion, provided the
spheres are not identical. This occurs in the inertial regime,
where mass effects dominate.

For the model with point hydrodynamic interactions we find
a nonvanishing mean swimming velocity for the two-sphere
system, even though the mean impetus vanishes. However,
the transition seen in experiment [13] is beyond the scope of
the present theory. Apparently, for a sufficiently large value
of the streaming Reynolds number a new mechanism sets in
with a transcritical bifurcation type instability [14], leading
to effective swimming in the inertial regime. The streaming
Reynolds number is of the order of the product &2s2.

It is of interest to study the effects of inertia on swimming
outside the Stokes regime, but before the transition. The
Stokes regime corresponds to the swimming of microorgan-
isms. Many small organisms occurring in nature will fit the
intermediate regime considered here.

The two-sphere system with collinear motion is of theoreti-
cal interest, but it does not swim at all in the Stokes regime and
is fairly inefficient when inertial effects are taken into account.
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We investigate also the effects of inertia on the swimming of a
collinear three-sphere chain. This extends earlier work in the
Stokes regime [15,16]. The analysis suggests that the theory
can be applied also to more complicated sphere models with
realistic hydrodynamic interactions.

In Sec. II we derive the general expression for the asymp-
totic periodic swimming velocity in the discrete sphere model.
The expression demonstrates that inertia leads to an aftereffect
in the relation between swimming velocity and impetus [1],
whereas in the Stokes regime the relation is instantaneous. As
a consequence, the swimming velocity depends significantly
on the mass densities of spheres and fluid.

In the intermediate regime, where both friction and inertia
are relevant, the swimming velocity depends in a remarkably
complicated fashion on the amplitude and period of the stroke.
On the other hand, the present work shows that the numerical
dependence on parameters and amplitude is fairly simple for
both the two-sphere swimmer and the three-sphere chain.

II. N-SPHERE SWIMMER

We consider N spheres of radii (ay, . ..,ay) aligned along
the x axis of a Cartesian system of coordinates and immersed
in a viscous incompressible fluid of shear viscosity n and
mass density p. The spheres are assumed to be uniform with
mass densities (0,1, ...,0pn). The fluid flow velocity v(r,t)
and pressure p(r,t) are assumed to satisfy the Navier-Stokes
equations and the flow velocity is assumed to satisfy the no-slip
boundary condition at the surface of each sphere. The spheres
interact via central direct interaction forces which depend only
on the relative distances |x; — x| of sphere centers, and they
are acted upon by forces (E(¢), ..., E n(t)) oscillating in time
with period 7 = 2r/w and directed along the x axis, so that
E ;(t) = E;(t)e.. Moreover, we require that at any time the
applied forces sum to zero, so that the total force acting on
the assembly vanishes. If the spheres are initially at rest and
located on the x axis, then by symmetry they will remain on
the axis, so that it suffices to consider the x coordinates of the
centers. We are interested in the asymptotic periodic motion
of the center,

1 N
X0 = > xj(0). 2.1)
j=1

The swimming velocity is defined as Us,,(t) = d X /dt atlong
times. Its average over a period at long times defines the mean
swimming velocity U ,.

We assume that at any time the hydrodynamic interactions
between the spheres can be described approximately by a
(N — 1) x (N — 1) friction matrix ¢, which can be evaluated
from the steady state Stokes equations, and by a (N — 1) x
(N — 1) mass matrix m, which can be evaluated from potential
flow theory. The two matrices depend only on the relative

coordinates. In vector notation with R = (x1,...,xy) and
U= (x,...,xy) the sphere momenta p = (py,...,py) are
given by [1]

p=m-U, U=w-p, 2.2)

where w = m~! is the inverse mass matrix. We assume that to
a good approximation the motion of the spheres is described
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by the equations of motion [1]

dR dp oK 0 Vine

dt =~ om SV GR TR
where /C is given by K = %p -W - p and Vjy is the potential of
direct interaction forces. The partial derivative d/9R is taken
at constant momenta p. The applied forces are summarized
in E = (Ey,...,Ey). It follows from Eq. (2.3) that the center
velocity U(t) = d X /dt satisfies the equation of motion [1]

(2.3)

’

d
Z(MU)—i—ZU:Z, 2.4)
with time-dependent mass M(¢) and friction coefficient Z(¢)
given by

M=u-m-u, Z=Uu-¢-uU, u=(1,...,1), (2.5

and impetus Z(¢) given by

I(t):—%(wm-d)—u-;-d, (2.6)
where d is the time derivative of the displacement vector d(z),
which is defined such that u-d(z) = 0. The vector will be
specified below.

From Eq. (2.4) we find for the asymptotic periodic swim-
ming velocity

Usu(t) = L exp | — Z(") dr" |Z(ydt'. (2.7)
M) J-o v M@")

The impetus Z(¢) acts as a driving force and determines the
swimming velocity with a time lag. In the Stokes limit inertia
is neglected, and then the swimming velocity is given simply
by

Usw(t) = —1y ¢-d
with no time lag. The time lag in Eq. (2.7) becomes infinite in
the limit of small viscosity.

It is useful to measure the influence of viscosity in terms of
the dimensionless scale number s given by [17]

(Stokes), 2.8)

2
=22 2.9)
2n
where a is a typical radius. The Stokes limit corresponds to
s — 0. The scale number is related to the Roshko number by
Ro = 4s2/77, if in the latter we use the diameter 2a as the
characteristic length.
The drag force exerted on the spheres by the fluid is given
by

Dit)y=—-u-¢-U=—-ZUy —u-¢-d. (2.10)

In periodic swimming the time average of the drag over a

period vanishes, as follows from Eq. (2.4) and the above

definition. The mean impetus 7, where the overhead bar

indicates the average over a period, in general does not vanish.
The time-dependent rate of dissipation is given by

D=U-¢-U. (2.11)
The power used for a stroke in periodic swimming is
P =1D. (2.12)
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It is of interest to study the mean swimming velocity Uy, for
given power P as a function of the parameters.

We set ourselves the goal of calculating the asymptotic
periodic swimming velocity Uy, (¢) for given periodic relative
motion r(¢). This is a kinematic point of view. Since the friction
matrix ¢ and the mass matrix m depend only on relative
coordinates the time-dependent total friction coefficient Z(z)
and the total mass M(¢) can be calculated from Eq. (2.5)
once I(¢) is specified. The time-dependent impetus Z(¢) can be
evaluated from Eq. (2.6). These three quantities are sufficient
to calculate the swimming velocity Uy, (t) from Eq. (2.7).
The applied periodic forces E(¢) necessary to achieve the
motion may be evaluated subsequently from the equations of
motion (2.3). For small amplitude motion the relative motion
r(z) which leads to maximal speed for given power can be
determined from an eigenvalue problem.

III. PERIODIC SWIMMING

The explicit expression in Eq. (2.7) for the asymptotic
periodic swimming velocity Us,, () can be put as

Us (1) = %/ K(t,tI(t)dt, 3.1)

where the kernel K (¢,¢') is positive, tends to zero as t’ — —o0,

increases monotonically as ¢’ increases, and has final value
K(t,t) = 1. We put

Z(t)

y() = W,

y(t) =y +8y(), (3.2)
where 8y (¢) is periodic with vanishing mean value. By putting
t'=t—1 we can write the expression Eq. (2.7) in the
alternative form

1 o
Ug(t) = ———— VTH(E —t)Z(t —1)dTr, (3.3
sw(t) M(t)H(t)/O e (t —0I@t —1)dr, (3.3)
with the periodic function
t
H(t) = exp |:/ Sy(t’)dt/:|. (34
0
We define the functions
Vit) = ——, W)= H@®)I®). 3.5
(1) MOH®D (1) (1)Z() (3.5)
The mean swimming velocity is given by
00 —
Ugy = / e VTF(r)dT, 3.6)
0
with the function
F@)=V@)W({ — 7). 3.7

Both V(¢) and W(¢) are periodic with period 7 = 27 /w.
Writing both functions as Fourier series of the form

> . 1 (7 A
Vo= Y v V=2 [ voear
n=—o00 0

(3.8)
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we have
o0
F(r)= Y ViW,e". 3.9)
n=—o00
Hence the mean swimming velocity is given by
— VoW, =\ VEW,
Uy = —— +2Re[z _—] (3.10)
Y 1 Y —ilnw

In explicit calculations the sum converges rapidly. The expres-
sion can be generalized to the higher order Fourier coefficients
of Uy, (¢) as

o0

Via W,

J n;oo = inw (3.11)
We define relative coordinates {r;} with j =1,...,N — 1

as

r =X —X1, IN=X3—X2,..., I'N-1=XN —JXN-1.

(3.12)
The internal vibrations can be put as
l’j(i):d()jﬁ-é‘fj(l), j=1,...,N —1,

with equilibrium distances {dp;} and amplitude factor ¢. The
displacement vector d(¢) in Eq. (2.6) is defined by

d=¢T1.(0,8),

where T is the matrix relating center and relative coordinates to
the Cartesian coordinates, as given explicitly by Eqs. (2.1) and
(3.12). The vector satisfies U - d = 0, as one sees by applying
T to Eq. (3.14).

In the asymptotic regime the individual sphere velocities,
summarized in the N-vector

U=U,,u+d,

(3.13)

(3.14)

(3.15)

are periodic functions of time. Hence the power, defined in
Eq. (2.12), can be evaluated as the time average of the rate of
dissipation over a period. Both the mean swimming velocity
and the power are functions of the amplitude factor ¢, and are
of order &2 at small amplitude.

IV. TWO-SPHERE SWIMMER

As a first example we consider a two-sphere swimmer
with spheres of radii a and b and mass densities p,,0p,
centered at positions x;(¢) and x,(¢) on the x axis. The relative
positionis x(¢) = x,(t) — x(z). By conventiona > b. A direct
interaction ensures that x(t) > a + b. Fora = b and p, = p,
the swimming velocity vanishes by symmetry.

For two spheres the time average of the impetus over a
period vanishes. In periodic swimming the average of the first
term in Eq. (2.5) vanishes obviously. The second term can be
expressed as

: dx
—u-;-d:f(x)z. 4.1
Its integral over a cycle is
jgf(x)fl—); dt = % fx)dx =0. 4.2)
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Therefore for two spheres we have in periodic swimming
D=0, Z=0. 4.3)

The average of each term on the right in Eq. (2.10) vanishes
separately. In the Stokes limit the mean swimming velocity
vanishes, because Eq. (2.8) takes the form

f(x) dx
Z(x) dt
so that the integral over a cycle vanishes as in Eq. (4.2).

In our explicit calculations we use approximate expressions
for the hydrodynamic interactions. The friction matrix ¢ is

Usy (1) = (Stokes), (4.4)

J

m =

3x6 — 3a3b3 —3a’b3x3p

The approximations are valid for distance x between centers
much larger than a + b.
We choose a time-dependent relative distance x(¢) given by

x(t) =d + eacos wt. 4.7

In Fig. 1 we show the mean dimensionless swimming velocity
lij = j/(a)a) for b =a/2 and d = 3a, mass densities
Pa = pp = p fors = 1, as a function of the squared amplitude
2. The mean swimming velocity is negative, in the direction
of the larger sphere. The variation with amplitude is nearly
quadratic. The reduced mean swimming velocity is fitted by

Usw
wa

= 0.00234 &> — 0.00006 &*, (4.8)
in the range 0 < ¢ < 1. For a typical three-sphere swimmer
the dependence is also nearly quadratic over a wide range [3].
The streaming Reynolds number Re; used by Klotsa et al. [13]
is related to amplitude and scale number by

Re, = 8¢2s2, 4.9)

232 4

L L
0.0 0.2

e

FIG. 1. Plot of the dimensionless mean swimming velocity
Uy /(wa) of the two-sphere swimmer as a function of the square
amplitude g2 forp, =pp =p,b=a /2, and d = 3a at scale number
s=1.

21 <a3[x6(p +2p4) + 2% (p — pa)]
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found as the inverse of the mobility matrix g, calculated
in Oseen approximation [18]. In Oseen approximation the
friction matrix ¢ is given by

_ 12mnx 2ax  —3ab
¢= 4x2 —9ab\-3ab 2bx )’

The mass matrix m is found from potential flow theory in
dipole approximation [1,19]. In dipole approximation the mass
matrix m for the two-sphere swimmer is given by

4.5)

(4.6)

—3a3b3x3p
b*[x8(p + 2pp) + 2a°b* (0 — o)1)

(

so that for fixed scale number s Fig. 1 may be regarded as a
plot of swimming speed versus streaming Reynolds number.
In Fig. 2 we show the corresponding plot for the power. This
shows also a nearly quadratic dependence on the amplitude.
The reduced power is fitted by

=4.770¢* +0.118 &*, (4.10)

nw?a?
in the range 0 <& < 1. The Fourier coefficients of the
swimming velocity decrease rapidly with increasing order. The
first five absolute ratios for ¢ = 1 are

{1 Usw,l Usw,Z ‘ Usw,3

1 U 1l Usy 1l U
= {1,66.81,3.37,0.60,0.12}.

Note that the ratio |Uy,,, 1/ m| is much larger than unity. The

swimmer moves back and forth, making a little progress on

average.

In Fig. 3 we plot the reduced mean dimensionless swim-
ming velocity Uy, /(wa) for the above example withe = 1 asa
function of the square scale number s. In the Stokes limit the
mean swimming velocity vanishes, as found below Eq. (4.4).
For large s the function decays in proportion to 1/s2.

Usw,4
Usw

@.11)

490" B
4881 4
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A
S
(o]
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N e
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<
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///
80 — ]
- e
[ - j
-
a8 ]
L L L L L L L
0.0 02 04 0.6 08 1.0
62

FIG. 2. Plot of the dimensionless mean power P /(e’nw’a®) as a
function of the square amplitude &? for the same model as in Fig. 1.
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30

FIG. 3. Plot of the dimensionless mean swimming velocity
Uy, /(wa) of the two-sphere swimmer as a function of the square
scale number s2 for p, = p, = p, b = a/2, and d = 3a at amplitude
factor ¢ = 1.

We define the dimensionless efficiency as

Usw
Er = na)azu (4.12)

In Fig. 4 we show the efficiency for the above example with e =
1 as a function of scale number s. The efficiency is maximal
ats = 1.230 and there takes the value 0.000 505.

In their experiments and computer simulations for scale
number s =~ 40 Klotsa et al. [2] find a sharp increase in mean
swimming velocity at streaming Reynolds number Re; ~ 20
corresponding to & ~ 0.05. This corresponds to a regime far
to the right in Figs. 3 and 4. For larger values of the amplitude
the mean swimming velocity appears to depend only on Re;,
but to be independent of frequency for the same Re;. The
behavior is clearly not covered by our theory, and suggests
that a new mechanism sets in with a transcritical bifurcation
type instability [14], as in Haken’s model of the laser.

10* Er
/

30

FIG. 4. Plot of the efficiency E7 of the two-sphere swimmer as
a function of the square scale number s> for p, = pp = p, b = a/2,
and d = 3a at amplitude factor ¢ = 1.
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V. THREE-SPHERE CHAIN

As a second example we consider a chain of three spheres
of equal radius a and mass density p,. The relative positions of
centers are r1(t) = xo(t) — x1(¢) and ro(t) = x3(¢) — x»(¢). We
discussed this model with harmonic elastic interactions earlier
in the Stokes limit [4,16] and with inertia [1] on the basis of
Eq. (2.3). Here we take a kinematic point of view and assume
that the relative positions vary harmonically. In analogy to Eq.
(4.7) we consider relative positions

r(t) = d + ea& cos(wt — @),
5.1

ri(t) =d + cacoswt,

with equilibrium distance d, relative magnitude &, and phase
difference ¢. This can be used directly in Eq. (2.4). Hence we
evaluate the asymptotic periodic swimming velocity Uy, (¢),
as given by Eq. (2.7), and the rate of dissipation D(¢), as
given by Eq. (2.11). This three-sphere swimmer is much more
efficient than the two-sphere swimmer considered above. We
shall study the efficiency, as defined in Eq. (4.12), as a function
of the scale number s.

The stroke is specified by the amplitude factor &, the relative
magnitude &, and the phase difference ¢. We choose the latter
two values such that the efficiency is optimized in the Stokes
limit in the bilinear theory. To second order in & the optimum
stroke is found from an eigenvalue problem, which we solved
earlier in analytic form [4]. We found that in the bilinear theory
applied to a fluid with inertia and neutrally buoyant spheres
the optimum stroke is nearly the same [1].

In the following we consider neutrally buoyant spheres with
pa = p and d = 3a. The friction matrix is evaluated in Oseen
approximation and the mass matrix is evaluated in dipole
approximation, as for the two-sphere system. We examine first
to what extent the bilinear theory is valid. In Fig. 5 we show
the reduced mean swimming velocity Us,,/(wa) as a function
of &2 for s = 1. The dependence is nearly quadratic and the
curve is fitted by

UY w

" —0.044 &% 4+ 0.008 £*, (5.2)
wda
52 /,
D 5ok / ]
< | _
S| —
b’" 481 /// B
S | _
= -
461 - — 4
4.4 : | | | | | |
0.0 02 0.4 0.6 0.8 10
62

FIG. 5. Plot of the dimensionless mean swimming velocity
U, /(wa) of the three-sphere chain as a function of the square
amplitude &2 for p, = p, = p and d = 3a at scale number s = 1.
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FIG. 6. Plot of the dimensionless mean power P/(¢*nw’a®) as a
function of the square amplitude &> for the same model as in Fig. 5.

in the range 0 < ¢ < 1. In Fig. 6 we show the corresponding
plot for the power. This also shows a nearly quadratic
dependence on amplitude. The reduced power is fitted by

P
—— =18.68 &2+ 1.76 &%,

53
nola (5.3)

in the range 0 < ¢ < 1. The first five absolute ratios of the
Fourier coefficients fore =1, s = 1 are

{1 Usw,l ‘ Usw,2 ‘ Usw,3 Usw,4
1 U ' U ' Uso I' U

= {1,0.868,0.073,0.037,0.009}.
Per beat, the three-sphere chain makes much more progress
than the two-sphere system.

In Fig. 7 we show the reduced mean swimming velocity
m/(wa) as a function of s? for ¢ = 1. In Fig. 8 we show
the efficiency E7 as a function of s2 for ¢ = 1. The efficiency
varies little with s in the whole range studied, as we found
earlier for the maximum eigenvalue in the bilinear theory [1].
The three-sphere chain is more than ten times more efficient
than the comparable two-sphere system given by the maximum
in Fig. 4.

(5.4)

5.5\ —

54\ i

saf \ ]

Sk AN 4

sl L L I L L L L L L L L L L L I
0 2 4 6 8 10

FIG. 7. Plot of the dimensionless mean swimming velocity
Uy, /(wa) of the three-sphere chain as a function of the square scale
number s? for p, = p, = p and d = 3a at amplitude factor & = 1.
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0.5 ’

FIG. 8. Plot of the efficiency E7 of the three-sphere chain as a
function of the square scale number s> for p, = p, = p and d = 3a
at amplitude factor ¢ = 1.

In the Stokes limit we find m/(a)a) =0.0552 and Ey =
0.0027, again at ¢ = 1. For the maximum eigenvalue in the
bilinear theory we find in the Stokes limit A, = 0.0025, as
given by Eq. (6.5) in Ref. [4].

Finally, it is of interest to compare the kinetic energy of the
swimmer, including added mass, with the total kinetic energy
in the asymptotic periodic regime. Thus we define

Ko@) = 1 M®)Us, (1), K@®)=1U-m-U.  (55)
In Fig. 9 we show the ratio of the two quantities as a function
of time for the three-sphere chain studied above for amplitude
& = 1 and squared scale number s> = 10. The figure shows
that the kinetic energy KC;,,(7) is small compared to the total
K(t) over the whole period. For comparison we show also the
swimming velocity U, () and the total kinetic energy /C(¢) in
suitably chosen units. This shows that the kinetic energy varies
more strongly than the swimming velocity.

200 / 4

150 / i
/ \
\

z .

2 e RO . o
S ’ \\\ 7 .
10007 . s . 3

Lo~ ’ N ~ -
. ) \\\ .
L B \\7;*\\< -7 >~
50} ~ - N e d

FIG. 9. Plot of the ratio of the total kinetic energy X(¢) and the
kinetic energy of the swimmer Cj,,(¢), as defined in Eq. (5.5), as a
function of time for the three-sphere swimmer at amplitude factor
& = 1 and squared scale number s = 10 (drawn curve). We compare
with the total kinetic energy /C(¢) (short dashes) and the swimming
velocity Uy, (¢) (long dashes) in suitably chosen units.
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VI. DISCUSSION

The analysis shows that the swimming velocity is the result
of a remarkable interplay of the effects of friction and added
mass. For the discrete particle model with given applied forces
the motions of the separate spheres can be analyzed in detail.
In our calculations we concentrated on the asymptotic periodic
swimming velocity. This can be studied from a kinematic
point of view with specified time dependence of the relative
distances of the spheres, as in Egs. (4.7) and (5.1). In these
calculations it is not necessary to know the applied forces and
the direct interaction potential. The required power can be
studied in the same context.

In our model calculation for the two-sphere system we find a
dependence of the mean swimming velocity on the amplitude
of excitation, but no sharp transition as in the experiments
of Klotsa et al. [13]. Presumably with more accurate hydro-
dynamic interactions the dependence on amplitude becomes
more pronounced. In the lubrication region the hydrodynamic

PHYSICAL REVIEW E 94, 063114 (2016)

interactions depend greatly on distance. This suggests that for
amplitude ¢ =~ (d —a — b)/a in Eq. (4.7) there is a strong
increase in the mean swimming velocity. However, the above
estimate suggests that the transition seen in experiment occurs
also at small amplitude. The experiments indicate that a new
mechanism sets in at Re; &~ 20, where Re; is the streaming
Reynolds number defined in Egs. (2.9) and (4.9).

Transient effects can be studied on the basis of the
postulated equations of motion Eq. (2.2) with specified direct
interaction, for example a harmonic spring interaction. One
can associate a flow pattern with the instantaneous positions
and velocities, given by a superposition of Oseen flow patterns
corresponding to the forces on the spheres and potential flow
patterns corresponding to the sphere velocities. More accurate
hydrodynamic interactions lead to more complicated flow
patterns, with the effect of higher order multipoles included. It
would be of interest to compare the motion of the spheres and
the corresponding flow patterns with computer simulations.
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